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Overview

Summary: We use Bayesian time series regression to model the
counterfactual when measuring the impact of market interventions.

Introduction

Structural time series

Case study
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Measuring advertising effectiveness is a tricky business

I know that half my advertising dollars are wasted.
I just don’t know which half.

John Wanamaker

I One of the basic promises of online advertising is measurement.
I It is supposed to be easy.

I Change something (e.g. increase bid on Google).
I Look to see how many incremental ad clicks you get.

I You’d like to know what would have happened if you hadn’t
advertised.
(Lots of potential confounders)
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Example
Real Google advertiser. 6-week ad campaign. Random shift added to both axes.
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Problem statement

I An actor engages in a market intervention.
I Has a sale.
I Begins (or modifies) an advertising campaign.
I Introduces (or adopts) a new product.

I Other similar actors don’t engage in the intervention.
I This is an important limitation!
I Can’t use this technique to gague the effect of Christmas sales.

I We have data on both the actor and the similar actors prior to the
intervention.

I Question: What was the effect of the intervention?
I Total change to the bottom line.
I How quickly did changes begin to occur?
I How quickly did the effect begin to die out?
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The “CausalImpact” model for counterfactual imputation

I Use data in the pre-treatement period to build a flexible time series
model for the series of interest.

I Forecast the time series over the intervention period given data from
the pre-treatment period.

I Can use contemporaneous regressors in the forecast.
I Model fit is based on pre-treatment data.
I Deviations from the forecast are the “treatment effect.”

I Generalizes “difference in differences” and “synthetic controls.”
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Problem solved!



Difference in differences
An old trick from econometrics. Only measures at two points.
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Synthetic controls
A more sophisticated counterfactual model than DnD

Abadie et al. (2003, 2010) suggested synthetic controls as counterfactuals.
I Weighted averages of untreated actors used

to forecast actor of interest.

I Weights (0 ≤ wi ≤ 1) estimated so that
“synthetic control” series matches actor’s
series in pre-treatment period.

I Difference from forecast is estimated
treatment effect.

Good Allows multiple controls, captures temporal effects.

Bad Scaling issues (California vs. Rhode Island), sign constraints
(negative correlations?), other time series?
Time series signals ignored (left as “unexplained variance”).
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Structural time series models
Can combine time series behavior with contemporaneous predictors

Observation equation

yt = ZT
t αt + εt εt ∼ N (0,Ht)

I yt is the observed data at time t.
I Zt and Ht are structural parameters (partly known).
I αt is a vector of latent variables called the “state”.

Transition equation

αt+1 = Ttαt + Rtηt ηt ∼ N (0,Qt)

I Tt , Rt , and Qt are structural parameters (partly known).
I ηt may be of lower dimension that αt .
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Structural time series models are modular
Add your favorite trend, seasonal, regression, holiday, etc. models to the mix

Z
t

T
tState Vector

Trend

Seasonal

Regression
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A good default model

The model with S seasons can be written

yt = µt︸︷︷︸
trend

+ γt︸︷︷︸
seasonal

+ βTxt︸ ︷︷ ︸
regression

+εt

µt = µt−1 + δt−1 + ut

δt = δt−1 + vt

γt = −
S−1∑
s=1

γt−s + wt

This is the “basic structural model” with an added regression effect.

I Trend: “level” µt + “slope” δt .

I Seasonal: S − 1 dummy variables with time varying coefficients.
Sums to zero in expectation.

I Regression: Spike and slab prior to handle sparsity.
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The default model written in bsts code

y <- my.data$ResponseVariable

ss <- AddLocalLinearTrend(

list(), ## No previous state specification.

y) ## Peek at the data for scaling.

ss <- AddSeasonal(

ss, ## Adding state to ss.

y, ## Peek at the data for scaling.

nseasons = 7) ## 7 "seasons" for day of week effect

model <- bsts(y ~ ., ## regression formula like ’lm’

state.specification = ss, ## time series spec

niter = 1000, ## MCMC iterations

data = my.data,

expected.model.size = 1) ## spike-slab
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MCMC

I The model parameters are θ = {σε, σu, σv , σw , β}.
I The state is α = {α1, . . . , αn}.

I MCMC algorithm:
I Draw α given y, θ

I Kalman filter “forward filter - backward sampler”
[Carter and Kohn(1994)], [Frühwirth-Schnatter(1995)],
[de Jong and Shepard(1995)], [Durbin and Koopman(2002)].

I Draws α directly

I Draw θ given α.
I Given α, then [σu], [σv ], [σw ], [β, σε] are conditionally independent.
I Independent priors on the time series σ’s. Boring.
I “Spike and slab” prior on β handles sparsity when there are many

potential controls.
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Other potential models
There is a lot of modeler’s choice at play here.

I The “default model” is robust, fast, scalable, and (nearly) automatic.
I Local level vs local linear trend?
I Seasonality?

I There are many other approaches we could have taken instead.
I Time varying regression coefficients.
I “Intervention analysis” (dummy variable for intervention period).
I Dynamic factor models.
I Other “sparse” priors.
I Spike and slab on state components.

I All of these would have been reasonable too.
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Why we settled on this approach

I Simple to understand, implement, and automate.

I Works with limited data.

I “Pure” in terms of potential outcomes
I Yt0: outcome at time t under control.
I Yt1: outcome at time t under treatment.
I Model is based on Yt0’s, and not “polluted” with Yt1’s.
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Case study
A Google advertiser ran a marketing experiment.

I Google search ads ran 6 weeks.

I Response is total search related visits to the site.
I Native search clicks.
I Ad clicks.

I 95 of 190 “designated marketing areas” received the ads. (DMA’s are
areas that can receive distinct TV ads).
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This particular advertiser ran an experiment
Plot shows clicks from treated vs untreated geos. Each dot is a time point.
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Case study
Google advertiser. Treated vs. Untreated regions
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Case study
Google advertiser. Competitor’s clicks as predictors
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Case study
Google advertiser. Untreated regions. Competitor’s sales as predictors
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Case study
Summary

Clicks % 95% Interval

vs. Untreated (1) 84,100 20 (15, 26)%
vs. Competitors (2) 84,800 21 (13, 26)%
A-A (placebo) test 8,000 2 (-5, 6)%

I Need experimental data to do analysis 1.

I Analysis 2 is observational, but replicates the experimenatal results.
I Using Google trends (instead of competitor information) gets about

the same results.
I Google trends are publicly available, while competitor clicks are not.
I Many more potential controls for Google trends. Spike and slab

variable selection / model averaging is useful for selecting appropriate
control groups.

Steve Scott (Google) CausalImpact: Measuring the impact of market interventions May 20, 2015 24 / 29



What if you don’t have competitor information?



Google trends “categories” are good industry proxies.



Conclusion

Nice features of CausalImpact:

I Handy way of measuring the impact of market interventions.

I Gives “shape” as well as magnitude (bought with wider SE’s).

I Works with arbitrary predictor time series (Google trends!)

Limitations:

I It would be nice to have a diagnostic of when it doesn’t work.
(I.e. regime change in the X’s).

I Like any causal model, you still need exogenous variation to measure
causal effects.

R packages:

I CausalImpact

I bsts
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https://google.github.io/CausalImpact/
http://cran.r-project.org/web/packages/bsts/index.html
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