

NBER/NSF Time Series Conference

Vienna University of Economics and Business

September 25-26, 2015

Dynamic data: IT, e-commerce, finance, economics, ...

Aims:

- Scale up in m
 - sequential analysis, filtering & forecasting
- "Decoupled" univariate series / models
 - Series-specific independent predictors
 - o Series-specific states, time evolutions, volatilities, hyperparameters
 - Sequential analysis: Analytic/fast? Parallelisation?
- Critical cross-series / multivariate structure
 - Sensitive co-volatility modelling
 - Coherent joint forecast distributions

Simultaneous models: Coupled set of univariate DLMs

Independent across j: residuals & univariate volatilities: $u_{jt} \sim N(0, 1/\lambda_{jt})$ $\Lambda_t = \text{diag}(\lambda_{1t}, \dots, \lambda_{mt})$

Implied coherent multivariate model

$$y_{jt} = \mathbf{x}'_{jt} \boldsymbol{\phi}_{jt} + \mathbf{y}'_{sp(j),t} \boldsymbol{\gamma}_{jt} + \nu_{jt}$$
$$\mu_{jt}$$
$$\mathbf{y}_{t} = \boldsymbol{\mu}_{t} + \boldsymbol{\Gamma}_{t} \mathbf{y}_{t} + \boldsymbol{\nu}_{t}$$

dynamic regressions & precision/volatility

$$\mathbf{y}_t = (\mathbf{I} - \mathbf{\Gamma}_t)^{-1} \boldsymbol{\mu}_t + N(\mathbf{0}, \mathbf{\Omega}_t^{-1})$$
$$\mathbf{\Omega}_t = (\mathbf{I} - \mathbf{\Gamma}_t)' \boldsymbol{\Lambda}_t (\mathbf{I} - \mathbf{\Gamma}_t)$$

Notation: extend γ_{jt} to row *j* and pad with 0 entries

Non-zeros in Γ_t

Dynamic graphical model structure induced

zero precision: conditional independence

$$\Omega_t = (\mathbf{I} - \Gamma_t)' \Lambda_t (\mathbf{I} - \Gamma_t)$$

Class of volatility matrix decompositions

Simultaneous models: Coupled set of univariate DLMs

Multiple univariate models

- "decoupled"
- in parallel

$$y_{jt} = \mathbf{F}'_{jt} \boldsymbol{\theta}_{jt} + \nu_{jt}$$

Parallel states - independent evolutions

$$\theta_{jt} = \mathbf{G}_{jt}\theta_{j,t-1} + \omega_{jt}, \quad \omega_{jt} \sim N(\mathbf{0}, \mathbf{W}_{jt})$$

Duke

Special examples: Dynamic dependency network models

Subclass of simultaneous models

• Γ_t triangular form: by choice or chance

- Sparse Cholesky-style precision (... popular)
- Directed graphical model
- <u>Compositional</u> model form enables computation

$$\Omega_t = (\mathbf{I} - \Gamma_t)' \Lambda_t (\mathbf{I} - \Gamma_t)$$

[Multiregression DLMs: JQ Smith, C Queen 1990s DDNMs: Z Zhao & MW 2014,15 Latent threshold versions: J Nakajima & MW 2012-15]

General class of SGDLMs

Non-zeros in Γ_t

Decoupling/Recoupling sequential analysis of SGDLM

Intuition:

- Increasingly sparse Γ_t for larger m
- $|\mathbf{I} \mathbf{\Gamma}_t|$ "minor" correction to likelihood
 - Triangular: compositional parallel models
 - Partly triangular: no impact on determinant
 - Very sparse: determinant close to 1

Sequential analysis strategy - At each *t*:

Non-zeros in Γ_t

Decoupled parallel models: Conjugate forms Forecast: simulate in parallel & recouple

Time *t* updating: Update decoupled models then recouple for coherent inferences

Evolution to *t*+1: decoupled models

Decoupling/recoupling: Forecasting at time t

$$\mathbf{y}_t = (\mathbf{I} - \mathbf{\Gamma}_t)^{-1} \boldsymbol{\mu}_t + N(\mathbf{0}, \boldsymbol{\Omega}_t^{-1})$$
$$\boldsymbol{\Omega}_t = (\mathbf{I} - \mathbf{\Gamma}_t)' \boldsymbol{\Lambda}_t (\mathbf{I} - \mathbf{\Gamma}_t)$$

$$y_{jt} = \mathbf{F}'_{jt} \boldsymbol{\theta}_{jt} + \nu_{jt}, \quad \nu_{jt} \sim N(0, 1/\lambda_{jt})$$
$$= \mathbf{x}'_{jt} \boldsymbol{\phi}_{jt} + \mathbf{y}'_{sp(j),t} \boldsymbol{\gamma}_{jt} + \nu_{jt}$$

$$p(\boldsymbol{\Theta}_{t}, \boldsymbol{\Lambda}_{t} | \boldsymbol{y}_{1:t}) \propto |\mathbf{I} - \boldsymbol{\Gamma}_{t}| \prod_{j=1:m} \tilde{p}_{jt}(\boldsymbol{\theta}_{jt}, \lambda_{jt} | \boldsymbol{y}_{1:t})$$

"Complicating" term
"Most" of the posterior

Full posterior inferences: Monte Carlo importance sampling

$$\boldsymbol{\Theta}_{t}^{i}, \boldsymbol{\Lambda}_{t}^{i} \leftarrow \{ \boldsymbol{\theta}_{jt}^{i}, \lambda_{jt}^{i} \sim \tilde{p}_{jt}(\cdot, \cdot | \mathbf{y}_{1:t}), \ j = 1:m \}$$

Importance weights: $\alpha_{it} \propto |\mathbf{I} - \mathbf{\Gamma}_t^i|$

- inference using weighted samples
- very large samples: trivial computations
 - ... decoupled conjugate posteriors in parallel

Decoupling posteriors at time *t*

Posterior "almost" decoupled normal-inverse gammas

Decoupling: match product form with full posterior importance sample

$$q(\boldsymbol{\Theta}_{t}, \boldsymbol{\Lambda}_{t} | \mathbf{y}_{1:t}) = \prod_{j=1:m} p_{jt}(\boldsymbol{\theta}_{jt}, \lambda_{jt} | \mathbf{y}_{1:t}) \qquad \underbrace{\operatorname{approx}}_{\longleftrightarrow} \qquad p(\boldsymbol{\Theta}_{t}, \boldsymbol{\Lambda}_{t} | \mathbf{y}_{1:t}) = \{\boldsymbol{\Theta}_{t}^{i}, \boldsymbol{\Lambda}_{t}^{i}; \alpha_{it}\}$$
normal-gamma

min Kullback-Leibler divergence

Variational Bayes (mean field approximation)

Parallel states - independent evolutions

$$\boldsymbol{\theta}_{j,t+1} = \mathbf{G}_{j,t+1} \boldsymbol{\theta}_{jt} + \boldsymbol{\omega}_{j,t+1}, \quad \boldsymbol{\omega}_{j,t+1} \sim N(\mathbf{0}, \mathbf{W}_{j,t+1})$$

Kullback-Leibler divergence: Decreases through evolutions

Time *t*+1: Parallel, normal/inverse-gamma priors:

$$\prod_{j=1:m} p_{j,t+1}(\boldsymbol{\theta}_{j,t+1}, \lambda_{j,t+1} | \mathbf{y}_{1:t})$$

Time t+1: Decoupled priors Recouple to forecast Update Decouple to evolve

Completes the *t* : *t*+1 forecast/update/evolve sequence ... Continue ...

Example: SGDLM for 400 S&P stock price series

m=400 stocks & S&P index : daily closing prices

1/2002 - 10/2013

Model (log-difference) returns

Training data : 1/2002 - 12/2006

Test/prediction/portfolio decisions : 1/2007 – 10/2013

S&P example – Models for comparison

Model Predictors

$$\begin{array}{ll} \mathsf{WDLM 1} \\ \mathsf{SGDLM 1} \end{array} \quad \mathbf{F}_{jt} = \mathbf{F}_t = 1 \end{array}$$

- WDLM 2 SGDLM 2 $\mathbf{F}_{jt} = \mathbf{F}_t = (1, y_{\text{SPX},t-1}, \text{TNX}_{t-1})'$
- WDLM 3 SGDLM 3 $\mathbf{F}_{jt} = \mathbf{F}_t = (1, \Delta y_{\text{SPX},t-1}, \Delta \text{TNX}_{t-1}, \Delta^2 \text{VIX}_{t-1})'$
- WDLM 4 SGDLM 4 $\mathbf{F}_{jt} = \mathbf{F}_t = (1, 0.5 \sum_{k=1:2} y_{\text{SPX}, t-k} - 0.2 \sum_{k=1:5} y_{\text{SPX}, t-k}, \Delta^2 \text{VIX}_{t-1})'$

SGDLM 5
$$\mathbf{F}_{jt} = (1, 0.5 \sum_{k=1:2} y_{j,t-k} - 0.2 \sum_{k=1:5} y_{j,t-k}, \Delta^2 \text{VIX}_{t-1})^{\prime}$$

- WDLM Wishart discount DLM common predictor model
- *y*SPX,*t* S&P index series (*j*=1 of 401)
- TNX_t Annualized 10-year T-bill rate
- VIX_t Volatility index (annualized, implied 30-day volatility)

Bayesian model selection / model averaging

Parallel stochastic search over parental sets

"Simpler" specification methods

Duke

S&P example – Monitoring decoupling/recoupling

Importance sampling-recoupling: *I=10,000* Monte Carlo sample size

S&P SGDLMs : 1-step forecast insights

data 1-step forecasts volatilities

co-volatilities

data 1-step forecasts volatilities

Uni-bivariate/empirical - Wishart DLM - SGDLM

Realized 1-step forecast CDF transform : U(0,1) is perfect

No recoupling

Full recoupling

Traditional Bayesian/Markowitz portfolios: target return minimize risk (portfolio SD) subject to constraints

Test/prediction/portfolio decisions period: 1/2007 – 10/13 Hypothetical trading cost: 20bp

Strategy Constraints

\$1	target return $ au_t = 10\%/252$
\$2	target return $ au_t = 15\%/252$
\$3	target return $ au_t = \hat{\mu}_{SPX,t} + 5\%/252$
\$4	SPX neutral, target return $ au_t = 10\%/252$
\$5	SPX neutral, target return $ au_t = 15\%/252$
\$6	SPX neutral, target return $\tau_t = \hat{\mu}_{\text{SPX},t} + 5\%/252$

S&P SGDLMs and portfolios: Cumulative returns

Strategy	\$1	\$2	\$3	\$4	\$5	\$6
WDLM 1 SGDLM 1	<mark>-0.96%</mark> 10.09%	$-0.46\%\ 9.94\%$	$rac{0.05\%}{9.47\%}$	-1.13% 10.18%	$-1.04\%\ 11.65\%$	-1.28% 13.45\%
WDLM 2 SGDLM 2	$-0.34\%\ 8.63\%$	$-0.15\%\ 8.98\%$	$0.96\%\ 6.74\%$	$-0.71\%\ 9.14\%$	$-0.22\%\ 8.64\%$	$1.20\% \\ 6.60\%$
WDLM 3 SGDLM 3	$0.43\% \\ 7.11\%$	$0.36\%\ 8.16\%$	$-2.08\%\ 6.22\%$	$-0.38\%\ 7.83\%$	$-1.08\% \\ 7.07\%$	-3.46% 9.33%
WDLM 4 SGDLM 4	-0.12% 10.91\%	$-0.39\%\ 11.43\%$	- <mark>0.21</mark> % 11.76%	-0.11% 12.44%	$-0.30\%\ 12.64\%$	-1.14% 13.36%
SGDLM 5	11.25%	12.19%	6.31%	12.13%	11.77%	11.26%

Targets undershot or overshot 2007-2013

S&P SGDLMs and portfolios: Cumulative returns

Portfolios \$3 (solid) and \$6 (dash-dot) WDLM 2 SGDLM 4

- Flexible, customisable univariate models: decoupled, in parallel
- Simultaneous parental structure: flexible, sparse & improved multivariate stochastic volatility models
- No series-order dependence

- Scale-up : conceptual & computational

- On-line sequential learning: Analytics + simulation + VB - all parallelisable per step in time
- Exploit multi-core, GPU implementation for technical scale-up
- Recoupling for coherent posterior and predictive inferences - importance sampling recouples: return to CPU

Links

Zoey Zhao PhD (Duke 2015) Quantitative Researcher in Statistical Arbitrage Trading Citadel, Chicago

Dynamic dependence networks: Financial time series forecasting & portfolio decisions, ASMBI, 2015 (to appear)

Lutz F Gruber PhD (TUM 2015) Visiting Assistant Professor in Statistical Science Duke University

GPU-accelerated Bayesian learning in simultaneous graphical dynamic linear models, *Bayesian Analysis, 2015* Bayesian forecasting and portfolio decisions using simultaneous graphical dynamic linear models, *submitted*

www.stat.duke.edu/~mw

Bayesian selection &/or model averaging:

Parallel stochastic model search

Relevant/worthwhile?

- prediction focus
- major collinearities

Example here - (ad-hoc) Bayesian "hotspot"

- choose 10-20 parents per series

- Update/refresh periodically (end of each year, 252 days)

How?

Run Wishart discount DLM in parallel to SGDLM

Quick simulation at any time point:

- 20 "most important" parents
- Posterior ranks on abs(precision matrix entries)

2007	2008	2009	2010	2011	2012	2013
SPX						
С	ABT	AAPL	AAPL	AAPL	ABC	BCR
EBAY	AEE	ABT	AEE	BCR	AXP	BF/B
EQR	AFL	APD	BEN	СРВ	BCR	BMY
EXC	APD	BEN	BLL	DOV	BK	CPB
HES	BBT	BLL	DOV	EBAY	СРВ	EBAY
HRS	BHI	EBAY	EBAY	EIX	D	INTC
IFF	COP	EIX	EIX	HCN	DNB	JNJ
MKC	DOV	HES	ETR	INTC	DOV	MCK
MRO	EBAY	JNJ	HD	JPM	EBAY	MSFT
MTB	GIS	MAS	INTC	KO	INTC	NI
NSC	LMT	MKC	L	L	KO	OMC
PCP	NSC	MTB	MSFT	MSFT	MCK	PCLN
PEP	PX	NEE	NEE	NI	MSFT	PG
ΡX	SIAL	PG	NSC	PG	NI	RSG
SIAL	SO	SIAL	PKI	PKI	PG	SO
SO	TEG	SO	Т	ТМО	SO	TROW
STI	ТМО	TEG	ТМО	TROW	ТМО	TRV
Т	UPS	UNP	VZ	VTR	XEL	XEL
YHOO	XL	UPS	XEL	XEL	XOM	XOM

sp(Amazon) in SGDLM 1:

Turn-over – red parents switched out at end of year reassessment