Structural Analysis with Multivariate Autoregressive Index Models

Andrea Carriero ${ }^{1}$ George Kapetanios ${ }^{2}$ Massimiliano Marcellino ${ }^{3}$

September 25, 2015

${ }^{1}$ Queen Mary, University of London
${ }^{2}$ Queen Mary, University of London
${ }^{3}$ Universita' Bocconi, IGIER and CEPR

Introduction

- Econometric models for large datasets widely used in applied econometrics literature
- A large information set helps in structural analysis:
- Large datasets better reflect the information set of central banks and the private sector
- Large models allow to study the effect of shocks on a wide range of variables
- A large information set helps in improving forecast accuracy
- Two main approaches to deal with overparameterization: factor models and BVARs

Factor models

- Large scale: Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002)
- Often two step approach (estimate factors, then treat them as known), though full ML possible, e.g. Doz, Giannone, and Reichlin (2006)
- Relies on N diverging for consistent estimation
- Conditions on the idiosyncratic and common component are required
- Complex to identify economically the factors, e.g. Bai and $\operatorname{Ng}(2006,2010)$, though structural FAVAR is a solution, e.g. Forni et al. (2009), Gambetti and Forni (2010)

BVARs

- Large Bayesian VARs offer an alternative to factor models. Feasible with a conjugate prior (Banbura, Giannone, Reichlin (2010))
- BVARs perform well in forecasting
- In a large system it can be difficult to identify some shocks
- A structural shock is modelled as a shock to one particular variable
- The choice of a specific data series to represent a general economic concept (e.g. "real activity") is often arbitrary to some degree

Multivariate Autoregressive Index (MAI) models

- MAI models proposed by Reinsel (1983) bridge VARs and factor models by imposing a rank reduction on a VAR
- Reduced rank regressions have been considered in Anderson (1951) and Geweke (1996). The proposed way to impose rank reduction in MAI models differs from these approaches in two respects:
- Makes the MAI similar to a factor model
- Allows to give the factors an economic interpretation which facilitates structural analysis
- Moreover, MAI models
- Do not rely on N diverging for consistency
- Do not require conditions on the idiosyncratic and common component
- We review estimation via ML and study the case of N large, provide an MCMC algorithm for Bayesian estimation, and show how MAI models can be used for structural analysis

Multivariate Autoregressive Index model

- Consider a VAR for a N-dimensional vector $Y_{t}=\left(y_{1, t}, y_{2, t}, \ldots, y_{N, t}\right)^{\prime}$:

$$
\begin{equation*}
Y_{t}=\Phi(L) Y_{t}+\epsilon_{t} \tag{1}
\end{equation*}
$$

where $\Phi(L)=\Phi_{1} L+\ldots .+\Phi_{p} L^{p}$ and ϵ_{t} are i.i.d. $N(0, \Sigma)$

- Assume $\Phi(L)=A(L) B_{0}$, where $A(L)=A_{1} L+\ldots+A_{p} L^{p}$, each A_{u} is $N \times r, B_{0}$ is $r \times N$ with rank r. Then:

$$
\begin{equation*}
Y_{t}=\sum_{u=1}^{p} A_{u} B_{0} Y_{t-u}+\epsilon_{t} \tag{2}
\end{equation*}
$$

- If r much smaller than N, the MAI has much fewer parameters than the VAR. For example, if $N=20, p=13$, and $r=3$, there are $N^{2} p=5200$ parameters in the VAR and $\operatorname{Nr}(p+1)=840$ in the MAI
- Reinsel (1983) studied ML estimation of this model

MAI models and factors

- Recall the model:

$$
\begin{equation*}
Y_{t}=A(L) B_{0} Y_{t}=\sum_{u=1}^{p} A_{u} B_{0} Y_{t-u}+\epsilon_{t} \tag{3}
\end{equation*}
$$

- Defining:

$$
\begin{equation*}
F_{t}=B_{0} Y_{t} \tag{4}
\end{equation*}
$$

we have:

$$
\begin{equation*}
Y_{t}=A(L) F_{t}+\epsilon_{t}=\sum_{u=1}^{p} A_{u} F_{t-u}+\epsilon_{t} \tag{5}
\end{equation*}
$$

- As in factor models, the loadings A_{u} and the factor weights B_{0} are not uniquely identified, we set $B_{0}=\left(I_{r}, \widetilde{B}_{0}\right)$
- Importantly, restrictions on \widetilde{B}_{0} can be easily imposed

Data and restrictions on B

Variable	FRED code	F1	F2
Employees on nonfarm payroll	PAYEMS	1	0
Average hourly earnings	AHETPI	$b_{1,2}$	0
Personal income	A229RX0	$b_{1,3}$	0
Real Consumption	PCE $\div P C E P I$	$b_{1,4}$	0
Industrial Production Index	INDPRO	$b_{1,5}$	0
Capacity Utilization	TCU	$b_{1,6}$	0
Unemployment rate	UNRATE	$b_{1,7}$	0
Housing starts	HOUST	$b_{1,8}$	0
CPI all items	CPIAUCSL	0	1
Producer Price Index (finished goods)	PPIFGS	0	$b_{2,10}$
Implicit price deflator for personal consumption expenditures	PCEPI	0	0
PPI ex food and energy	PPILFE	0	$b_{2,11}$
Federal Funds, effective	FEDFUNDS	0	$b_{2,12}$
M1 money stock	M1SL	0	0
M2 money stock	M2SL	0	0
Total reserves of depository institutions	TOTRESNS	0	0
Nonborrowed reserves of depository institutions	NONBORRES	0	$b_{3,14}$
S\&P's common stock price index	S\&P	0	0
Interest rate on treasury bills, 10 year constant maturity	GS10	0	0
Effective Echange rate	CCRETT01USM661N	0	$b_{3,15}$

Factor dynamics

- The factors $F_{t}=B_{0} Y_{t}$ have closed form $\operatorname{VAR}(p)$ representation, obtained by pre-multiplying (5) by B_{0} :

$$
\begin{equation*}
F_{t}=B_{0} \sum_{u=1}^{p} A_{u} F_{t-u}+B_{0} \epsilon_{t}=C(L) F_{t}+u_{t} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
C(L)=B_{0} A_{1} L+B_{0} A_{2} L^{2}+\ldots+B_{0} A_{p} L^{p} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{t}=B_{0} \epsilon_{t} ; u_{t} \sim \text { i.i.d. } N(0, \Omega) ; \Omega=B_{0} \Sigma B_{0}^{\prime} \tag{8}
\end{equation*}
$$

- Note both factors and data follow a VAR. This does not happen in factor models (Dufour and Stevanovic, 2010)

MA representation (1)

- The factors have the following MA representation:

$$
\begin{equation*}
F_{t}=(I-C(L))^{-1} u_{t}=\left(I-B_{0} A(L)\right)^{-1} B_{0} \epsilon_{t} \tag{9}
\end{equation*}
$$

- Therefore the moving average representation of $Y_{t}=A(L) F_{t}+\epsilon_{t}$ is:

$$
\begin{equation*}
Y_{t}=\left(A(L)\left(I-B_{0} A(L)\right)^{-1} B_{0}+I\right) \epsilon_{t} . \tag{10}
\end{equation*}
$$

- Representation (10) is similar to the one used in the BVAR literature. There are as many shocks as variables (N)

MA representation (2)

- Define the matrix $B_{0 \perp}$ as the $(N-r) \times N$ full row rank matrix orthogonal to B_{0}. Then, consider the following decomposition (Centoni and Cubadda 2003):

$$
\begin{equation*}
\Sigma B_{0}^{\prime}\left(B_{0} \Sigma B_{0}^{\prime}\right)^{-1} B_{0}+B_{0 \perp}^{\prime}\left(B_{0 \perp} \Sigma^{-1} B_{0 \perp}^{\prime}\right)^{-1} B_{0 \perp} \Sigma^{-1}=I_{N} \tag{11}
\end{equation*}
$$

- This key identity can now be inserted into the Wold representation in (10) to yield:

$$
\begin{equation*}
Y_{t}=\left(\Sigma B_{0}^{\prime} \Omega^{-1}+A(L)\left(I-B_{0} A(L)\right)^{-1}\right) u_{t}+B_{0 \perp}^{\prime}\left(B_{0 \perp} \Sigma^{-1} B_{0 \perp}^{\prime}\right)^{-1} \xi_{t} \tag{12}
\end{equation*}
$$

where $u_{t}=B_{0} \epsilon_{t}, \xi_{t}=B_{0 \perp} \Sigma^{-1} \epsilon_{t}$, and $\Omega=B_{0} \Sigma B_{0}^{\prime}$.

- The representation in (12) shows that each element of Y_{t} is driven by a set of r common errors, the u_{t} that are the drivers of the factors F_{t}, and by linear combinations of ξ_{t}. Since

$$
\begin{align*}
E\left(u_{t} \xi_{t}^{\prime}\right) & =E\left(B_{0} \epsilon_{t} \epsilon_{t}^{\prime} \Sigma^{-1} B_{0 \perp}^{\prime}\right)=0 \tag{13}\\
E\left(u_{t-i} \xi_{t}^{\prime}\right) & =0, \quad E\left(u_{t} \xi_{t-i}^{\prime}\right)=0, \quad i>0 \tag{14}
\end{align*}
$$

u_{t} and ξ_{t} are uncorrelated at all leads and lags.

Relation with factor models

- In summary, the MAI is close to the generalized dynamic factor model of Forni, Hallin, Lippi, and Reichlin (2000) and Stock and Watson (2002a, 2002b), and even more to the parametric versions of these models in the FAVAR literature, e.g. Bernanke et al. (2005) and Kose et al. (2005))
- Can answer questions similar to those considered by Forni et al. (2009), Forni and Gambetti (2010) using structural factor models
- But also possibly relevant differences

Relation with factor models

- Imposing economically meaningful restrictions on the factors F_{t}, such as equality of one factor to a specific economic variable, or group of variables, can be much simpler in the MAI context
- In the factor literature factors are unobservable and can be consistently estimated only when N diverges. Within an MAI context it is possible to consistently estimate the factors with N finite
- In the factor literature consistency requires conditions on the common and idiosyncratic components. For the MAI standard ML results apply

Relation with multivariate regressions

- Reduced rank regressions have been considered in Anderson (1951), Velu et al. (1986), and Geweke (1996). Consider, again:

$$
\begin{equation*}
Y_{t}=\Phi(L) Y_{t}+\epsilon_{t} \tag{15}
\end{equation*}
$$

- Assume $\Phi(L)=A_{1} B(L)$, where $B(L)=B_{0} L+B_{1} L^{2}+\ldots+B_{p-1} L^{p}, A_{1}$ is $N \times r$, each B_{v} is $r \times N$. Defining $X_{t}=\left(Y_{t-1}^{\prime}, \cdots, Y_{t-p}^{\prime}\right)^{\prime}$, the resulting model can be written as:

$$
\begin{equation*}
\underset{N \times 1}{Y_{t}}=\underset{N \times r}{A_{1}}\left[B_{0}, \underset{r \times N p}{\ldots, B_{p-1}}\right] \underset{N p \times 1}{X_{t}}+\underset{N \times 1}{\epsilon_{t}} \tag{16}
\end{equation*}
$$

- It is useful to compare (16) with the MAI model:

$$
\begin{equation*}
\left.\underset{N \times 1}{Y_{t}}=\underset{N \times r p}{\left[A_{1}, \ldots, A_{p}\right]} \underset{r p \times N p}{\left(I_{p} \otimes B_{0}^{\prime}\right.}\right)^{\prime} \underset{N p \times 1}{X_{t}}+\underset{N \times 1}{\epsilon_{t}} \tag{17}
\end{equation*}
$$

- Estimation of (16) is easier than estimation of the MAI model, but the MAI model allows to derive a finite order VAR representations for a set of r factors.

Estimation

- For estimation, we compactly rewrite the MAI as:

$$
\begin{equation*}
Y_{t}=A Z_{t-1}+\epsilon_{t} \tag{18}
\end{equation*}
$$

where:

$$
\begin{aligned}
Z_{t-1}^{\prime} & =\left(F_{t-1}^{\prime}, \ldots, F_{t-p}^{\prime}\right)=\left(Y_{t-1}^{\prime} B_{0}^{\prime}, \ldots, Y_{t-p}^{\prime} B_{0}^{\prime}\right)=\left(Y_{t-1}^{\prime}, \ldots, Y_{t-p}^{\prime}\right)\left(I_{p} \otimes B_{0}^{\prime}\right) \\
B_{0} & =\left(I_{r}, \widetilde{B}_{0}\right) \\
A & =\left(A_{1}, \ldots, A_{p}\right)
\end{aligned}
$$

Estimation via Maximum Likelihood

- The likelihood function is:

$$
\begin{equation*}
-0.5 T \log |\Sigma|-0.5 \sum_{t=1}^{T}\left(Y_{t}-A Z_{t-1}\right)^{\prime} \Sigma^{-1}\left(Y_{t}-A Z_{t-1}\right) \tag{19}
\end{equation*}
$$

where $Z_{t-1}^{\prime}=\left(Y_{t-1}^{\prime}, \ldots, Y_{t-p}^{\prime}\right)\left(I_{p} \otimes B_{0}^{\prime}\right)$ and $B_{0}=\left(I_{r}, \widetilde{B}_{0}\right)$

- Reinsel (1983) studies this model extensively. He provides the FOCs and updating rule for the gradient of the ML estimator for this case
- ML estimates can also be obtained by iterating over the first order conditions of the maximization problem with respect to A, \tilde{B}_{0}, and Σ
- In the paper, we extend the consistency proof to the case of N diverging

Estimation via Markov Chain Monte Carlo

- Recall the model:

$$
\begin{equation*}
Y_{t}=A Z_{t-1}+\epsilon_{t} \tag{20}
\end{equation*}
$$

where $Z_{t-1}^{\prime}=\left(Y_{t-1}^{\prime}, \ldots, Y_{t-p}^{\prime}\right)\left(I_{p} \otimes B_{0}^{\prime}\right)$ and $B_{0}=\left(I_{r}, \widetilde{B}_{0}\right)$

- The model contains three sets of parameters, in the matrices A, \widetilde{B}_{0}, and Σ. The joint posterior distribution $p\left(A^{\prime}, \widetilde{B}_{0}, \Sigma \mid Y\right)$ has not a known form, but it can be simulated by drawing in turn from:

$$
\begin{align*}
& p\left(A^{\prime}, \Sigma \mid \widetilde{B}_{0}, Y\right) \tag{21}\\
& p\left(\widetilde{B}_{0} \mid A^{\prime}, \Sigma, Y\right) \tag{22}
\end{align*}
$$

- Draws from (21) can be obtained using $p\left(\Sigma \mid \widetilde{B}_{0}, Y\right)$ and $p\left(A^{\prime} \mid \Sigma, \widetilde{B}_{0}, Y\right)$, which are both available given a suitable choice of the prior (conjugate)
- Conjugate N-IW prior
- Draws from (22) can be obtained via a RW-Metropolis step
- Prior based on auxiliary model on pre-sample

Determining the rank of the system - Classical

- Two main approaches: information criteria or sequential testing
- Standard info criteria can be used. An attractive feature is that both the rank r and the number of lags p can be jointly determined
- Sequential testing: starting with the null hypothesis of $r=1$, a sequence of tests is performed. If the null hypothesis is rejected, r is augmented by one and the test is repeated until the null cannot be rejected

Determining the rank of the system - Bayesian

- Compute the marginal data density $p_{r}(Y)$ as a function of the chosen r. The optimal rank can be obtained as:

$$
\begin{equation*}
r^{*}=\arg \max _{r} p_{r}(Y) \tag{23}
\end{equation*}
$$

note r^{*} corresponds to the posterior mode of r under a prior assigning equal probabilities to each candidate rank

- The density $p_{r}(Y)$ can be efficiently approximated numerically by using Rao-Blackwellization and the harmonic mean estimator, as in Fuentes-Albero and Melosi (2013).
- The lag length can be chosen similarly

Monte Carlo evaluation

- We produce artificial data from two alternative DGPs. Recall:

$$
\begin{equation*}
Y_{t}=\sum_{u=1}^{p} \Phi_{u} Y_{t-u}+\epsilon_{t}, \epsilon_{t} \sim \text { i.i.d.N }(0, \Sigma) . \tag{24}
\end{equation*}
$$

- DGP1 is an unrestricted VAR, so it uses (24) without imposing any further restriction
- DGP2 is the MAI, so it imposes the rank reduction restriction:

$$
\begin{equation*}
\Phi_{u}=A_{u} B_{0}, \quad u=1, \ldots, p . \tag{25}
\end{equation*}
$$

- For each DGPs we estimate i) the MAI under the Bayesian approach, ii) the MAI under the classical approach, iii) an unrestricted BVAR

Monte Carlo evaluation - results

- We focus on the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) arising from estimation of the conditional mean parameters $\Phi_{1}, \ldots, \Phi_{p}$
- We evaluate the performance along various dimensions, considering different values for the total number of variables N, the number of observations T, and the system rank r
- Overall, the Monte Carlo experiments suggest that Bayesian estimation of the MAI model is systematically better than classical estimation
- The ranking of the MAI and full rank BVAR models is -as one would expectdependent on the true DGP

Table 1. MC results under the MAI DGP

PANEL $\mathrm{A}-\mathrm{r}=3$, increasing N and T

| $\mathrm{N}=5$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~T}=300$ | $\mathrm{~T}=460$ | $\mathrm{~T}=720$ | $\mathrm{~N}=10$ |
| $\mathrm{~T}=300$ | $\mathrm{~T}=460$ | $\mathrm{~T}=720$ | |

RMSE

Bayesian MAI	0.76	0.74	0.74	0.74	0.74	0.74
Classical MAI	6.23	4.75	3.64	4.69	3.56	2.70
BVAR (benchmark)	0.009	0.010	0.009	0.011	0.011	0.011

MAE

Bayesian MAI	0.90	0.89	0.88	0.84	0.84	0.84
Classical MAI	5.94	4.53	3.49	4.25	3.23	2.48
BVAR (benchmark)	0.008	0.008	0.008	0.009	0.009	0.009
	$\mathbf{N}=\mathbf{1 5}$			$\mathbf{N}=\mathbf{2 0}$		
	$\mathbf{T}=\mathbf{3 0 0}$	$\mathbf{T}=\mathbf{4 6 0}$	$\mathbf{T}=\mathbf{7 2 0}$	$\mathbf{T}=\mathbf{3 0 0}$	$\mathbf{T}=\mathbf{4 6 0}$	$\mathbf{T}=\mathbf{7 2 0}$

RMSE

Bayes Class MAE

Bayesian MAI	0.52	0.48	0.43	0.48	0.43	0.39
Classical MAI	4.47	3.30	2.55	3.86	2.63	1.88
BVAR (benchmark)	0.008	0.008	0.008	0.008	0.008	0.008

Table 2. MC results under the VAR DGP

PANEL A-r=3, increasing N and T

	$\mathrm{N}=5$			$\mathrm{N}=10$		
	$\mathrm{T}=300$	$\mathrm{T}=460$	$\mathrm{T}=720$	$\mathrm{T}=300$	$\mathrm{T}=460$	$\mathrm{T}=720$
RMSE						
Bayesian MAI	1.45	1.43	1.51	1.33	1.38	1.37
Classical MAI	4.84	3.86	3.22	4.57	3.51	2.82
BVAR (benchmark)	0.012	0.011	0.011	0.011	0.010	0.010
MAE						
Bayesian MAI	1.52	1.57	1.65	1.38	1.44	1.48
Classical MAI	4.48	3.65	3.14	4.22	3.33	2.74
BVAR (benchmark)	0.010	0.010	0.009	0.009	0.009	0.008
	$\mathrm{N}=15$			$\mathrm{N}=20$		
	T=300	$\mathrm{T}=460$	$\mathrm{T}=720$	$\mathrm{T}=300$	$\mathrm{T}=460$	$\mathrm{T}=720$
RMSE						
Bayesian MAI	1.21	1.22	1.19	1.19	1.17	1.16
Classical MAI	5.58	3.88	2.87	4.91	3.35	2.53
BVAR (benchmark)	0.010	0.010	0.010	0.010	0.010	0.009
MAE						
Bayesian MAI	1.25	1.30	1.29	1.24	1.26	1.27
Classical MAI	5.04	3.61	2.77	4.49	3.17	2.48
BVAR (benchmark)	0.009	0.008	0.008	0.008	0.008	0.008

Empirical application

- Dataset of 20 U.S. macroeconomic variables
- Monthly data from January 1974 to December 2013 (first 7 years used as pre-sample)
- By searching over 455 specifications, we set the system rank to 3 and the lag length to 13
- We identify an output factor, a price factor, and a financial/monetary factor by imposing restrictions on the matrix B_{0}

Responses to monetary policy shock

- The impulse responses are based on the representation:

$$
\begin{equation*}
Y_{t}=\left\{A(L)\left[I-B_{0} A(L)\right]^{-1} B_{0}+I\right\} \Lambda^{-1} \epsilon_{t}^{*}, \tag{26}
\end{equation*}
$$

where $\epsilon_{t}^{*}=\Lambda \epsilon_{t}$ are structural shocks and Λ^{-1} is the Cholesky factor of the variance of the reduced form shocks $\epsilon_{t}(\Sigma)$

- We shock the element of ϵ_{t}^{*} corresponding to the Fed Funds rate
- We also compute the impulse responses using ML point estimates

CPI
PPI
PCE DEFLATOR

FEDFUNDS
M1
M2
RESERVES TOT

RESERVES NONBOR
S\&P 500
10 YR T-BOND
ex rate

Figure 2: Baysian vs Classical MAI. Responses to a permanent shock to the Federal Funds rate. Red solid line and green dashed lines are the median and $16 \%-84 \%$ quantiles of the Bayesian MAI impulse responses. The solid black line represents the responses computed using maximum likelihood estimation.

INDUSTRIAL PRODUCTION
CAPACITY UTILIZATION
UNEMP. RATE
HOUSING STARTS

CPI

FEDFUNDS

RESERVES NONBOR

PPI

PCE DEFLATOR

PPI EX FOOD AND ENERGY

EX RATE

M1

10 YR T-BOND

M2

S\&P 500

Figure 3: Bayesian MAI vs BVAR. Responses to a permanent shock to the Federal Funds rate. Red solid line and green dashed lines are the median and $16 \%-84 \%$ quantiles of the Bayesian MAI impulse responses. The solid blue line represents the responses computed using the unrestricted BVAR.

Shocks to factors

- The impulse responses are based on the representation:

$$
\begin{equation*}
Y_{t}=\left(\Sigma B_{0}^{\prime} \Omega^{-1}+A(L)\left(I-B_{0} A(L)\right)^{-1}\right) P^{-1} v_{t}+B_{0 \perp}^{\prime}\left(B_{0 \perp} \Sigma^{-1} B_{0 \perp}^{\prime}\right)^{-1} \xi_{t} \tag{27}
\end{equation*}
$$

where $v_{t}=P u_{t}$ are structural shocks and P^{-1} is the Cholesky factor of the variance of the reduced form shocks $u_{t}(\Omega)$

- We shock the element of v_{t} corresponding to the real activity or prices factors

EMPLOYEES NONFARM

INDUSTRIAL PRODUCTION

CPI

FEDFUNDS

RESERVES NONBOR

AVG HOURLY EARNINGS

CAPACITY UTILIZATION

PPI

M 1

S\&P 500

10 YR T-BOND
PERSONAL INCOME

UNEMP. RATE

PCE DEFLATOR

M2

CONSUMPTION

HOUSING STARTS
 PPI EX FOOD AND ENERGY

RESERVES TOT

EX RATE

Figure 4: Demand Shock. Responses to a permanent shock to factor 1. Red solid line and green dashed lines are the median and $16 \%-84 \%$ quantiles of the Bayesian MAI impulse responses.

Conclusions

- We have proposed a way to impose reduced rank reduction on a VAR which considerably helps in structural analysis
- We have discussed classical and Bayesian estimation and rank determination
- We have illustrated the model trough a MC
- We have implemented an empirical application on the effects of a demand, supply, and monetary policy shocks
- Overall the method looks general, simple, and flexible. Promising for empirical analyses with large datasets

Estimation via Maximum Likelihood - details

- Given A and \tilde{B}_{0} the maximization with respect to Σ yields:

$$
\begin{equation*}
\hat{\Sigma}=\sum_{t=1}^{T}\left(Y_{t}-A Z_{t-1}\right)\left(Y_{t}-A Z_{t-1}\right)^{\prime} / T \tag{28}
\end{equation*}
$$

- The FOC with respect to A (given \tilde{B}_{0} and Σ) is:

$$
\begin{equation*}
\frac{\partial I}{\partial v e c\left(A^{\prime}\right)}=\sum_{t=1}^{T}\left(I_{N} \otimes Z_{t-1}^{\prime}\right) \Sigma^{-1}\left\{Y_{t}-\left(I_{N} \otimes Z_{t-1}^{\prime}\right) \operatorname{vec}\left(A^{\prime}\right)\right\}=0 \tag{29}
\end{equation*}
$$

- The FOC with respect to \tilde{B}_{0} (given A and Ω) is:

$$
\begin{equation*}
\frac{\partial I}{\partial \operatorname{vec}\left(\tilde{B}_{0}\right)}=\sum_{t=1}^{T} U_{t-1} A^{\prime} \Sigma^{-1}\left\{Y_{t}-\left(I_{N} \otimes Z_{t-1}^{\prime}\right) \operatorname{vec}\left(A^{\prime}\right)\right\}=0 \tag{30}
\end{equation*}
$$

where $U_{t-1}=\left(I_{r} \otimes Y_{2, t-1}, \ldots, I_{r} \otimes Y_{2, t-p}\right)$ and $Y_{2, t}^{\prime}$ comes from partitioning Y_{t}^{\prime} in the first r and last $N-r$ components: $Y_{t}^{\prime}=\left(Y_{1, t}^{\prime}, Y_{2, t}^{\prime}\right)$

- Reinsel (1983) shows that an iterating scheme solving in turn equations (28), (29) and (30) provides the ML estimates

Priors

- Assume a Normal-Inverse Wishart prior for A and Σ :

$$
\begin{equation*}
A^{\prime} \mid \Sigma \sim N\left(A_{0}, \Sigma \otimes V_{0}\right), \Sigma \sim I W\left(S_{0}, v_{0}\right) \tag{31}
\end{equation*}
$$

with:

$$
\begin{align*}
& A_{0}=0, \quad V_{0}=\tau D \tag{32}\\
& S_{0}=S_{A R}, \quad v_{0}=N+2 \tag{33}
\end{align*}
$$

where $S_{A R}$ is a diagonal matrix of residual sum of squares from univariate regressions on a pre-sample and where $\sqrt{\tau}$ is selected via maximization of the marginal data density

- The prior variance features a Kronecker structure with D reflecting a Minnesota-style prior
- We use a moderately informative prior on \widetilde{B}_{0} based on an auxiliary model estimated on a pre-sample

Estimation via Markov Chain Monte Carlo - drawing A

- Under the knowledge of \widetilde{B}_{0} and Y the variable Z_{t-1} is known, and (20) is a simple multivariate regression model as in Zellner (1973). Then the conditional posterior distributions are:

$$
\begin{equation*}
A^{\prime}\left|\Sigma, \widetilde{B}_{0}, Y \sim N\left(\bar{A}, \Sigma \otimes V_{1}\right), \Sigma\right| \widetilde{B}_{0}, Y \sim I W(\bar{S}, \bar{v}) . \tag{34}
\end{equation*}
$$

with:

$$
\begin{aligned}
V_{1} & =\left(V_{0}^{-1}+Z^{\prime} Z\right)^{-1} \\
\bar{A} & =V_{1}\left(V_{0}^{-1} A_{0}+Z^{\prime} Y\right) \\
\bar{S} & =S_{0}+Y^{\prime} Y+A_{0}^{\prime} V_{0}^{-1} A_{0}-\bar{A}^{\prime} V_{1}^{-1} \bar{A} \\
\bar{V} & =V_{0}+T
\end{aligned}
$$

- Draws from $p\left(A^{\prime}, \Sigma \mid \widetilde{B}_{0}, Y\right)$ can be easily obtained by MC integration by generating a sequence of M draws from $\Sigma \mid \widetilde{B}_{0}, Y$ and then from $A^{\prime} \mid \widetilde{B}_{0}, \Sigma, Y$

Estimation via Markov Chain Monte Carlo - drawing B

- Drawing from $p\left(\widetilde{B}_{0} \mid A, \Sigma, Y\right)$ is less simple, as \widetilde{B}_{0} does not have a known conditional posterior. We use a sequence of RW Metropolis steps
- Let $\widetilde{B}_{0 j i}$ denote the element in row j and column i in the matrix \widetilde{B}_{0}, and let $\widetilde{B}_{0 j i-}$ denote the set of all the remaining elements of \widetilde{B}_{0}
- At iteration m, a candidate $\widetilde{B}_{0 j i}^{*}$ is drawn, conditional on A^{\prime}, Σ, and the remaining elements $\widetilde{B}_{0 j i^{-}}$, using a random walk proposal:

$$
\begin{equation*}
\widetilde{B}_{0 j i}^{*}=\widetilde{B}_{0 j i}^{m-1}+c \eta_{t}, \tag{35}
\end{equation*}
$$

where η_{t} is a standard Gaussian i.i.d. process and c is a scaling factor calibrated in order to have a rejection rate of about 65\%-70\%.

- The candidate draw is accepted with probability

$$
\begin{equation*}
\alpha_{k}=\min \left\{1, \frac{p\left(\widetilde{B}_{0 j i}^{*} \mid \widetilde{B}_{0 j i^{-}}, A^{\prime}, \Sigma, Y\right)}{p\left(\widetilde{B}_{0 j i}^{m-1} \mid \widetilde{B}_{0 j i^{-}}, A^{\prime}, \Sigma, Y\right)}\right\} \tag{36}
\end{equation*}
$$

General reduced rank VAR

- Assume $\Phi(L)=A(L) B(L)$, where $A(L)=A_{1} L+\ldots .+A_{p_{1}} L^{p_{1}}$, each A_{i} is $N \times r$, $B(L)=B_{0}+B_{1} L+\ldots .+B_{p_{2}} L^{p_{2}}$ and each B_{i} is $r \times N$, with $p_{1}+p_{2}=p, p_{1} \geq 1$, $p_{2} \geq 0$. Then

$$
\begin{equation*}
Y_{t}=A(L) B(L) Y_{t}+\epsilon_{t}=\sum_{u=1}^{p_{1}} \sum_{v=0}^{p_{2}} A_{u} B_{v} Y_{t-u-v}+\epsilon_{t} \tag{37}
\end{equation*}
$$

- Here we set $p_{1}=p$ and $p_{2}=0$ which gives:

$$
\begin{equation*}
Y_{t}=\sum_{u=1}^{p} A_{u} B_{0} Y_{t-u}+\epsilon_{t} \tag{38}
\end{equation*}
$$

- Geweke (1996) sets $p_{1}=1$ and $p_{2}=p-p_{1}$ which gives:

$$
\begin{equation*}
Y_{t}=\sum_{v=0}^{p-1} A_{1} B_{v} Y_{t-1-v}+\epsilon_{t} \tag{39}
\end{equation*}
$$

- If $p=1$ then the two models coincide

Comparison with Geweke (1996)

- Define $X_{t}=\left(Y_{t-1}^{\prime}, \ldots, Y_{t-p}^{\prime}\right)^{\prime}$, of dimension $n p \times 1$. Geweke (1996) model:

$$
\begin{equation*}
\underset{n \times 1}{Y_{t}}-\epsilon_{t}=\underset{n \times r}{A} Z_{t-1}=\underset{n \times 1}{A} \underset{n \times r r \times n p_{n p \times 1}}{B} \underset{n \times r}{X_{t}}=\underset{n \times r}{A_{1}}\left[B_{0} \mid \underset{r \times n p}{\ldots \mid} B_{p-1}\right] X_{t} . \tag{40}
\end{equation*}
$$

which is a multivariate reduced rank regression model

- This model:

$$
\begin{equation*}
\underset{n \times 1}{Y_{t}}-\epsilon_{t}=\underset{n \times r p}{A} Z_{r p \times 1} Z_{t-1}=\underset{n \times r p r p \times n p_{n p \times 1}}{A} \underset{t}{B} \underset{n \times r p}{X_{t}}=\left[A_{1}|\ldots| A_{p}\right]\left(I_{p} \otimes B_{r p \times n p}^{\prime}\right)^{\prime} X_{t} \tag{41}
\end{equation*}
$$

- Geweke's derivation of the conditional posterior of B_{0}, \ldots, B_{p-1} hinges on the use of the (left) generalised inverse of the matrix A_{1}. The generalised inverse can be defined in this case as A_{1} has full column rank r which gives $A^{+}=\left(A_{1}^{\prime} A_{1}\right)^{-1} A_{1}^{\prime}$
- Here the matrix A in (41) is of dimension $n \times r p$ with (at most) rank n, so $A^{\prime} A$ is singular and the left generalised inverse is not defined
- Note Geweke (1996) does not allow to get a VAR for the factors via pre-multiplication by B

Marginal data density

- The density $p_{r}(Y)$ can be efficiently approximated numerically by using Rao-Blackwellization and the harmonic mean estimator proposed by Gelfand and Dey (1994), as suggested in Fuentes-Albero and Melosi (2013).
- In particular, given M simulated posterior draws $\left\{\widetilde{B}_{0}\right\}_{m=1}^{M}$, we have:

$$
\begin{equation*}
\hat{p}_{r}(Y)=\left[\frac{1}{M} \sum_{m=1}^{M} \frac{1}{p\left(Y \mid \widetilde{B}_{0}^{m}\right) p\left(\widetilde{B}_{0}^{m}\right)} f\left(\widetilde{B}_{0}^{m}\right)\right]^{-1} \tag{42}
\end{equation*}
$$

where $f(\cdot)$ is a truncated multivariate normal distribution calibrated using the moments of the simulated posterior draws (see Geweke 1999) and $p\left(\widetilde{B}_{0}^{m}\right)$ is the prior distribution of \tilde{B}_{0} evaluated at the posterior draw \widetilde{B}_{0}^{m}.

- The term $p\left(Y \mid \widetilde{B}_{0}^{m}\right)$ is the integrating constant of the conditional posterior distribution $p\left(A, \Sigma \mid Y, \widetilde{B}_{0}\right)$. Since conditionally on \widetilde{B}_{0}^{m} the model is a multivariate regression with a naturally conjugate prior, $p\left(Y \mid \widetilde{B}_{0}^{m}\right)$ is available in closed form.

Convergence and mixing

40000 draws obtained with 2 parallel chains of 25000 draws each, removing 5000 for burn-in.

Table 7: Inefficiency Factors and Potential Scale Reduction Factors

	B		A		A-B	
	IF	PSRF	IF	PSRF	IF	PSRF
mean	7.614	1.000	0.898	1.000	1.128	1.000
median	5.649	1.000	0.826	1.000	0.918	1.000
10\% quan:	2.810	1.000	0.460	1.000	0.491	1.000
90\% quan:	11.235	1.001	1.436	1.000	1.851	1.000
min	2.336	1.000	0.177	1.000	0.151	1.000
\max	31.694	1.001	2.334	1.000	13.397	1.000

