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Introduction

Introduction

Econometric models for large datasets widely used in applied econometrics literature

A large information set helps in structural analysis:

Large datasets better reflect the information set of central banks and the

private sector

Large models allow to study the effect of shocks on a wide range of variables

A large information set helps in improving forecast accuracy

Two main approaches to deal with overparameterization: factor models and BVARs
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Introduction

Factor models

Large scale: Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002)

Often two step approach (estimate factors, then treat them as known), though full
ML possible, e.g. Doz, Giannone, and Reichlin (2006)

Relies on N diverging for consistent estimation

Conditions on the idiosyncratic and common component are required

Complex to identify economically the factors, e.g. Bai and Ng (2006, 2010), though
structural FAVAR is a solution, e.g. Forni et al. (2009), Gambetti and Forni (2010)
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Introduction

BVARs

Large Bayesian VARs offer an alternative to factor models. Feasible with a
conjugate prior (Banbura, Giannone, Reichlin (2010))

BVARs perform well in forecasting

In a large system it can be diffi cult to identify some shocks

A structural shock is modelled as a shock to one particular variable

The choice of a specific data series to represent a general economic concept

(e.g. “real activity”) is often arbitrary to some degree
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Introduction

Multivariate Autoregressive Index (MAI) models

MAI models proposed by Reinsel (1983) bridge VARs and factor models by
imposing a rank reduction on a VAR

Reduced rank regressions have been considered in Anderson (1951) and Geweke

(1996). The proposed way to impose rank reduction in MAI models differs from
these approaches in two respects:

Makes the MAI similar to a factor model

Allows to give the factors an economic interpretation which facilitates

structural analysis

Moreover, MAI models

Do not rely on N diverging for consistency

Do not require conditions on the idiosyncratic and common component

We review estimation via ML and study the case of N large, provide an MCMC
algorithm for Bayesian estimation, and show how MAI models can be used for

structural analysis
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Specification

Multivariate Autoregressive Index model

Consider a VAR for a N-dimensional vector Yt = (y1,t , y2,t , ..., yN ,t )′:

Yt = Φ(L)Yt + εt , (1)

where Φ(L) = Φ1L+ ....+ΦpLp and εt are i.i.d. N(0,Σ)

Assume Φ(L) = A(L)B0, where A(L) = A1L+ ....+ ApLp , each Au is N × r , B0 is
r ×N with rank r . Then:

Yt =
p

∑
u=1

AuB0Yt−u + εt (2)

If r much smaller than N , the MAI has much fewer parameters than the VAR. For

example, if N = 20, p = 13, and r = 3, there are N2p = 5200 parameters in the
VAR and Nr (p + 1) = 840 in the MAI

Reinsel (1983) studied ML estimation of this model
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Specification

MAI models and factors

Recall the model:

Yt = A(L)B0Yt =
p

∑
u=1

AuB0Yt−u + εt (3)

Defining:

Ft = B0Yt (4)

we have:

Yt = A(L)Ft + εt =
p

∑
u=1

AuFt−u + εt (5)

As in factor models, the loadings Au and the factor weights B0 are not uniquely
identified, we set B0 = (Ir , B̃0)

Importantly, restrictions on B̃0 can be easily imposed
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Specification

Data and restrictions on B

Variable FRED code F1 F2 F3
Employees on nonfarm payroll PAYEMS 1 0 0

Average hourly earnings AHETPI b1,2 0 0

Personal income A229RX0 b1,3 0 0

Real Consumption PCE÷PCEPI b1,4 0 0

Industrial Production Index INDPRO b1,5 0 0

Capacity Utilization TCU b1,6 0 0

Unemployment rate UNRATE b1,7 0 0

Housing starts HOUST b1,8 0 0

CPI all items CPIAUCSL 0 1 0

Producer Price Index (finished goods) PPIFGS 0 b2,10 0

Implicit price deflator for personal consumption expenditures PCEPI 0 b2,11 0

PPI ex food and energy PPILFE 0 b2,12 0

Federal Funds, effective FEDFUNDS 0 0 1

M1 money stock M1SL 0 0 b3,14
M2 money stock M2SL 0 0 b3,15
Total reserves of depository institutions TOTRESNS 0 0 b3,16
Nonborrowed reserves of depository institutions NONBORRES 0 0 b3,17
S&P’s common stock price index S&P 0 0 b3,18
Interest rate on treasury bills, 10 year constant maturity GS10 0 0 b3,19
Effective Echange rate CCRETT01USM661N 0 0 b3,20
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Specification

Factor dynamics

The factors Ft = B0Yt have closed form VAR(p) representation, obtained by
pre-multiplying (5) by B0:

Ft = B0
p

∑
u=1

AuFt−u + B0εt = C (L)Ft + ut (6)

where

C (L) = B0A1L+ B0A2L
2 + ....+ B0ApL

p , (7)

and
ut = B0εt ; ut ∼ i .i .d .N(0,Ω); Ω = B0ΣB ′0. (8)

Note both factors and data follow a VAR. This does not happen in factor models
(Dufour and Stevanovic, 2010)

Carriero, Kapetanios, Marcellino () Structural Analysis with MAI models September 25, 2015 9 / 35



Specification

MA representation (1)

The factors have the following MA representation:

Ft = (I − C (L))−1ut = (I − B0A(L))−1B0εt (9)

Therefore the moving average representation of Yt = A(L)Ft + εt is:

Yt = (A(L)(I − B0A(L))−1B0 + I )εt . (10)

Representation (10) is similar to the one used in the BVAR literature. There are as

many shocks as variables (N)
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Specification

MA representation (2)

Define the matrix B0⊥ as the (N − r )×N full row rank matrix orthogonal to B0.

Then, consider the following decomposition (Centoni and Cubadda 2003):

ΣB ′0(B0ΣB ′0)
−1B0 + B

′
0⊥(B0⊥Σ−1B ′0⊥)

−1B0⊥Σ−1 = IN . (11)

This key identity can now be inserted into the Wold representation in (10) to yield:

Yt = (ΣB ′0Ω−1 + A(L)(I − B0A(L))−1)ut + B ′0⊥(B0⊥Σ−1B ′0⊥)
−1ξt , (12)

where ut = B0εt , ξt = B0⊥Σ−1εt , and Ω = B0ΣB ′0.

The representation in (12) shows that each element of Yt is driven by a set of r
common errors, the ut that are the drivers of the factors Ft , and by linear
combinations of ξt . Since

E (ut ξ
′
t ) = E (B0εt ε

′
tΣ
−1B

′
0⊥) = 0, (13)

E (ut−i ξ
′
t ) = 0, E (ut ξ

′
t−i ) = 0, i > 0, (14)

ut and ξt are uncorrelated at all leads and lags.
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Specification

Relation with factor models

In summary, the MAI is close to the generalized dynamic factor model of Forni,
Hallin, Lippi, and Reichlin (2000) and Stock and Watson (2002a, 2002b), and even

more to the parametric versions of these models in the FAVAR literature, e.g.
Bernanke et al. (2005) and Kose et al. (2005))

Can answer questions similar to those considered by Forni et al. (2009), Forni and

Gambetti (2010) using structural factor models

But also possibly relevant differences
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Specification

Relation with factor models

Imposing economically meaningful restrictions on the factors Ft , such as equality of

one factor to a specific economic variable, or group of variables, can be much
simpler in the MAI context

In the factor literature factors are unobservable and can be consistently estimated

only when N diverges. Within an MAI context it is possible to consistently estimate
the factors with N finite

In the factor literature consistency requires conditions on the common and
idiosyncratic components. For the MAI standard ML results apply
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Specification

Relation with multivariate regressions

Reduced rank regressions have been considered in Anderson (1951), Velu et al.
(1986), and Geweke (1996). Consider, again:

Yt = Φ(L)Yt + εt , (15)

Assume Φ(L) = A1B(L), where B(L) = B0L+ B1L2 + ....+ Bp−1Lp , A1 is N × r ,
each Bv is r ×N . Defining Xt = (Y

′
t−1 ,...,Y

′
t−p )

′, the resulting model can be

written as:
Yt
N×1

= A1
N×r

[B0, ...,Bp−1 ]
r×Np

Xt
Np×1

+ εt
N×1

, (16)

It is useful to compare (16) with the MAI model:

Yt
N×1

= [A1, ...,Ap ]
N×rp

(Ip ⊗ B
′
0)
′

rp×Np
Xt
Np×1

+ εt
N×1

. (17)

Estimation of (16) is easier than estimation of the MAI model, but the MAI model
allows to derive a finite order VAR representations for a set of r factors.
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Estimation

Estimation

For estimation, we compactly rewrite the MAI as:

Yt = AZt−1 + εt , (18)

where:

Z ′t−1 = (F ′t−1, ...,F
′
t−p ) = (Y

′
t−1B

′
0, ...,Y

′
t−pB

′
0) = (Y

′
t−1, ...,Y

′
t−p )(Ip ⊗ B

′
0)

B0 = (Ir , B̃0)

A = (A1, ...,Ap )
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Estimation

Estimation via Maximum Likelihood

The likelihood function is:

−0.5T log |Σ| − 0.5∑T
t=1(Yt − AZt−1)

′Σ−1(Yt − AZt−1), (19)

where Z ′t−1 = (Y
′
t−1 ,...,Y

′
t−p )(Ip ⊗ B

′
0) and B0 = (Ir , B̃0)

Reinsel (1983) studies this model extensively. He provides the FOCs and updating
rule for the gradient of the ML estimator for this case

ML estimates can also be obtained by iterating over the first order conditions of the
maximization problem with respect to A , B̃0, and Σ

In the paper, we extend the consistency proof to the case of N diverging
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Estimation

Estimation via Markov Chain Monte Carlo

Recall the model:
Yt = AZt−1 + εt , (20)

where Z ′t−1 = (Y
′
t−1 ,...,Y

′
t−p )(Ip ⊗ B

′
0) and B0 = (Ir , B̃0)

The model contains three sets of parameters, in the matrices A, B̃0, and Σ. The
joint posterior distribution p(A′, B̃0,Σ|Y ) has not a known form, but it can be
simulated by drawing in turn from:

p(A′,Σ|B̃0,Y ) (21)

p(B̃0 |A′,Σ,Y ) (22)

Draws from (21) can be obtained using p(Σ|B̃0,Y ) and p(A′|Σ, B̃0,Y ), which are
both available given a suitable choice of the prior (conjugate)

Conjugate N-IW prior

Draws from (22) can be obtained via a RW-Metropolis step

Prior based on auxiliary model on pre-sample
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Estimation

Determining the rank of the system - Classical

Two main approaches: information criteria or sequential testing

Standard info criteria can be used. An attractive feature is that both the rank r and
the number of lags p can be jointly determined

Sequential testing: starting with the null hypothesis of r = 1, a sequence of tests is

performed. If the null hypothesis is rejected, r is augmented by one and the test is
repeated until the null cannot be rejected
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Estimation

Determining the rank of the system - Bayesian

Compute the marginal data density pr (Y ) as a function of the chosen r . The
optimal rank can be obtained as:

r ∗ = arg max
r
pr (Y ), (23)

note r ∗ corresponds to the posterior mode of r under a prior assigning equal

probabilities to each candidate rank

The density pr (Y ) can be effi ciently approximated numerically by using
Rao-Blackwellization and the harmonic mean estimator, as in Fuentes-Albero and

Melosi (2013).

The lag length can be chosen similarly
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Monte Carlo evaluation

Monte Carlo evaluation

We produce artificial data from two alternative DGPs. Recall:

Yt =
p

∑
u=1

ΦuYt−u + εt , εt ∼ i .i .d .N(0,Σ). (24)

DGP1 is an unrestricted VAR, so it uses (24) without imposing any further
restriction

DGP2 is the MAI, so it imposes the rank reduction restriction:

Φu = AuB0, u = 1, ..., p. (25)

For each DGPs we estimate i) the MAI under the Bayesian approach, ii) the MAI
under the classical approach, iii) an unrestricted BVAR
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Monte Carlo evaluation

Monte Carlo evaluation - results

We focus on the Root Mean Squared Error (RMSE ) and Mean Absolute Error

(MAE ) arising from estimation of the conditional mean parameters Φ1, ...,Φp

We evaluate the performance along various dimensions, considering different values
for the total number of variables N , the number of observations T , and the system

rank r

Overall, the Monte Carlo experiments suggest that Bayesian estimation of the MAI
model is systematically better than classical estimation

The ranking of the MAI and full rank BVAR models is -as one would expect-
dependent on the true DGP
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Table&1.&MC&results&under&the&MAI&DGP

PANEL&A:&r=3,&increasing&N&and&T
N=5 && & N=10 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 0.76 0.74 0.74 0.74 0.74 0.74
Classical(MAI 6.23 4.75 3.64 4.69 3.56 2.70
BVAR((benchmark) 0.009 0.010 0.009 0.011 0.011 0.011

MAE
Bayesian(MAI 0.90 0.89 0.88 0.84 0.84 0.84
Classical(MAI 5.94 4.53 3.49 4.25 3.23 2.48
BVAR((benchmark) 0.008 0.008 0.008 0.009 0.009 0.009

N=15 && & N=20 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 0.53 0.48 0.43 0.49 0.44 0.39
Classical(MAI 4.99 3.64 2.80 4.28 2.89 2.08
BVAR((benchmark) 0.010 0.010 0.010 0.010 0.010 0.010

MAE
Bayesian(MAI 0.52 0.48 0.43 0.48 0.43 0.39
Classical(MAI 4.47 3.30 2.55 3.86 2.63 1.88
BVAR((benchmark) 0.008 0.008 0.008 0.008 0.008 0.008

PANEL&B:&N=20,&T=460,&increasing&r
& &

r=1 r=2 r=3 r=4 r=5
RMSE
Bayesian(MAI 0.50 0.41 0.43 0.47 0.51
Classical(MAI 0.87 2.10 2.93 3.41 3.38
BVAR((benchmark) 0.012 0.010 0.010 0.010 0.012

MAE
Bayesian(MAI 0.47 0.40 0.43 0.45 0.49
Classical(MAI 0.77 1.90 2.65 3.11 3.03
BVAR((benchmark) 0.010 0.008 0.008 0.009 0.010

!
For!the!Bayesian!and!Classical!MAI!the!entries!show!the!RMSE!and!MAE!relative!
to!the!BVAR!(i.e.!ratios).!The!BVAR!entries!are!the!RMSE!and!MAE!(levels).!
!



Table&2.&MC&results&under&the&VAR&DGP

PANEL&A;&r=3,&increasing&N&and&T
N=5 && & N=10 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 1.45 1.43 1.51 1.33 1.38 1.37
Classical(MAI 4.84 3.86 3.22 4.57 3.51 2.82
BVAR((benchmark) 0.012 0.011 0.011 0.011 0.010 0.010

MAE
Bayesian(MAI 1.52 1.57 1.65 1.38 1.44 1.48
Classical(MAI 4.48 3.65 3.14 4.22 3.33 2.74
BVAR((benchmark) 0.010 0.010 0.009 0.009 0.009 0.008

N=15 && & N=20 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 1.21 1.22 1.19 1.19 1.17 1.16
Classical(MAI 5.58 3.88 2.87 4.91 3.35 2.53
BVAR((benchmark) 0.010 0.010 0.010 0.010 0.010 0.009

MAE
Bayesian(MAI 1.25 1.30 1.29 1.24 1.26 1.27
Classical(MAI 5.04 3.61 2.77 4.49 3.17 2.48
BVAR((benchmark) 0.009 0.008 0.008 0.008 0.008 0.008

PANEL&B;&N=20,&T=460,&increasing&r
& &

r=1 r=2 r=3 r=4 r=5
RMSE
Bayesian(MAI 0.98 1.08 1.16 1.23 1.20
Classical(MAI 2.10 2.74 3.35 4.12 4.43
BVAR((benchmark) 0.010 0.010 0.010 0.010 0.010

MAE
Bayesian(MAI 1.13 1.18 1.24 1.30 1.29
Classical(MAI 1.97 2.59 3.16 3.89 4.18
BVAR((benchmark) 0.008 0.008 0.008 0.008 0.008

For!the!Bayesian!and!Classical!MAI!the!entries!show!the!RMSE!and!MAE!relative!
to!the!BVAR!(i.e.!ratios).!The!BVAR!entries!are!the!RMSE!and!MAE!(levels).!
 



Empirical application

Empirical application

Dataset of 20 U.S. macroeconomic variables

Monthly data from January 1974 to December 2013 (first 7 years used as
pre-sample)

By searching over 455 specifications, we set the system rank to 3 and the lag length
to 13

We identify an output factor, a price factor, and a financial/monetary factor by
imposing restrictions on the matrix B0
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Empirical application
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Structural analysis

Responses to monetary policy shock

The impulse responses are based on the representation:

Yt = {A(L)[I − B0A(L)]−1B0 + I}Λ−1ε∗t , (26)

where ε∗t = Λεt are structural shocks and Λ−1 is the Cholesky factor of the
variance of the reduced form shocks εt (Σ)

We shock the element of ε∗t corresponding to the Fed Funds rate

We also compute the impulse responses using ML point estimates
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Figure 2: Baysian vs Classical MAI. Responses to a permanent shock to the Federal Funds rate.
Red solid line and green dashed lines are the median and 16%-84% quantiles of the Bayesian
MAI impulse responses. The solid black line represents the responses computed using maximum
likelihood estimation.



Figure 3: Bayesian MAI vs BVAR. Responses to a permanent shock to the Federal Funds rate.
Red solid line and green dashed lines are the median and 16%-84% quantiles of the Bayesian MAI
impulse responses. The solid blue line represents the responses computed using the unrestricted
BVAR.



Structural analysis

Shocks to factors

The impulse responses are based on the representation:

Yt = (ΣB ′0Ω−1 + A(L)(I − B0A(L))−1)P−1vt + B ′0⊥(B0⊥Σ−1B ′0⊥)
−1ξt , (27)

where vt = Put are structural shocks and P−1 is the Cholesky factor of the

variance of the reduced form shocks ut (Ω)

We shock the element of vt corresponding to the real activity or prices factors
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Figure 4: Demand Shock. Responses to a permanent shock to factor 1. Red solid line and green
dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses.



Figure 5: Supply shock. Responses to a permanent shock to factor 2. Red solid line and green
dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses.



Conclusions

Conclusions

We have proposed a way to impose reduced rank reduction on a VAR which

considerably helps in structural analysis

We have discussed classical and Bayesian estimation and rank determination

We have illustrated the model trough a MC

We have implemented an empirical application on the effects of a demand, supply,

and monetary policy shocks

Overall the method looks general, simple, and flexible. Promising for empirical

analyses with large datasets
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Appendix

Estimation via Maximum Likelihood - details

Given A and B̃0 the maximization with respect to Σ yields:

Σ̂ = ∑T
t=1(Yt − AZt−1)(Yt − AZt−1)

′/T (28)

The FOC with respect to A (given B̃0 and Σ) is:

∂l
∂vec(A′)

= ∑T
t=1(IN ⊗ Z

′
t−1)Σ

−1{Yt − (IN ⊗ Z ′t−1)vec(A′)} = 0 (29)

The FOC with respect to B̃0 (given A and Ω) is:

∂l
∂vec(B̃0)

= ∑T
t=1 Ut−1A

′Σ−1{Yt − (IN ⊗ Z ′t−1)vec(A′)} = 0 (30)

where Ut−1 = (Ir ⊗ Y2,t−1, ..., Ir ⊗ Y2,t−p ) and Y
′
2,t comes from partitioning Y

′
t in

the first r and last N − r components: Y ′t = (Y
′
1,t ,Y

′
2,t )

Reinsel (1983) shows that an iterating scheme solving in turn equations (28), (29)

and (30) provides the ML estimates
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Appendix

Priors

Assume a Normal-Inverse Wishart prior for A and Σ:

A′|Σ ∼ N(A0,Σ⊗ V0), Σ ∼ IW (S0, v0). (31)

with:

A0 = 0, V0 = τD , (32)

S0 = SAR , v0 = N + 2, (33)

where SAR is a diagonal matrix of residual sum of squares from univariate
regressions on a pre-sample and where

√
τ is selected via maximization of the

marginal data density

The prior variance features a Kronecker structure with D reflecting a
Minnesota-style prior

We use a moderately informative prior on B̃0 based on an auxiliary model estimated
on a pre-sample
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Appendix

Estimation via Markov Chain Monte Carlo - drawing A

Under the knowledge of B̃0 and Y the variable Zt−1 is known, and (20) is a simple

multivariate regression model as in Zellner (1973). Then the conditional posterior
distributions are:

A′|Σ, B̃0,Y ∼ N(Ā,Σ⊗ V1), Σ|B̃0,Y ∼ IW (S̄ , v̄ ). (34)

with:

V1 = (V
−1
0 + Z ′Z )−1

Ā = V1(V
−1
0 A0 + Z

′Y )

S̄ = S0 + Y
′Y + A′0V

−1
0 A0 − Ā′V −11 Ā

v̄ = v0 + T

Draws from p(A′,Σ|B̃0,Y ) can be easily obtained by MC integration by generating
a sequence of M draws from Σ|B̃0,Y and then from A′|B̃0,Σ,Y
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Appendix

Estimation via Markov Chain Monte Carlo - drawing B

Drawing from p(B̃0 |A,Σ,Y ) is less simple, as B̃0 does not have a known
conditional posterior. We use a sequence of RW Metropolis steps

Let B̃0ji denote the element in row j and column i in the matrix B̃0, and let B̃0ji−
denote the set of all the remaining elements of B̃0

At iteration m, a candidate B̃∗0ji is drawn, conditional on A
′,Σ, and the remaining

elements B̃0ji− , using a random walk proposal:

B̃∗0ji = B̃
m−1
0ji + cηt , (35)

where ηt is a standard Gaussian i.i.d. process and c is a scaling factor calibrated in
order to have a rejection rate of about 65%-70%.

The candidate draw is accepted with probability

αk = min

{
1,

p(B̃∗0ji |B̃0ji− ,A′,Σ,Y )
p(B̃m−10ji |B̃0ji− ,A′,Σ,Y )

}
. (36)
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Appendix

General reduced rank VAR

Assume Φ(L) = A(L)B(L), where A(L) = A1L+ ....+ Ap1L
p1 , each Ai is N × r ,

B(L) = B0 + B1L+ ....+ Bp2L
p2 and each Bi is r ×N , with p1 + p2 = p, p1 ≥ 1,

p2 ≥ 0. Then

Yt = A(L)B(L)Yt + εt =
p1

∑
u=1

p2

∑
v=0

AuBvYt−u−v + εt (37)

Here we set p1 = p and p2 = 0 which gives:

Yt =
p

∑
u=1

AuB0Yt−u + εt (38)

Geweke (1996) sets p1 = 1 and p2 = p − p1 which gives:

Yt =
p−1
∑
v=0

A1BvYt−1−v + εt (39)

If p = 1 then the two models coincide
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Appendix

Comparison with Geweke (1996)

Define Xt = (Y
′
t−1 ,...,Y

′
t−p )

′, of dimension np × 1. Geweke (1996) model:

Yt
n×1
− εt = A

n×r
Zt−1
r×1

= A
n×r

B
r×np

Xt
np×1

= A1
n×r
[B0 | ...| Bp−1 ]

r×np
Xt . (40)

which is a multivariate reduced rank regression model

This model:

Yt
n×1
− εt = A

n×rp
Zt−1
rp×1

= A
n×rp

B
rp×np

Xt
np×1

= [A1 |...|Ap ]
n×rp

(Ip ⊗ B
′
0)
′

rp×np
Xt . (41)

Geweke’s derivation of the conditional posterior of B0, ...,Bp−1 hinges on the use of
the (left) generalised inverse of the matrix A1. The generalised inverse can be
defined in this case as A1 has full column rank r which gives A+ = (A′1A1)

−1A′1
Here the matrix A in (41) is of dimension n× rp with (at most) rank n, so A′A is
singular and the left generalised inverse is not defined

Note Geweke (1996) does not allow to get a VAR for the factors via

pre-multiplication by B
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Appendix

Marginal data density

The density pr (Y ) can be effi ciently approximated numerically by using

Rao-Blackwellization and the harmonic mean estimator proposed by Gelfand and
Dey (1994), as suggested in Fuentes-Albero and Melosi (2013).

In particular, given M simulated posterior draws {B̃0}Mm=1, we have:

p̂r (Y ) =

[
1
M

M

∑
m=1

1

p(Y |B̃m0 )p(B̃m0 )
f (B̃m0 )

]−1
, (42)

where f (·) is a truncated multivariate normal distribution calibrated using the
moments of the simulated posterior draws (see Geweke 1999) and p(B̃m0 ) is the
prior distribution of B̃0 evaluated at the posterior draw B̃m0 .

The term p(Y |B̃m0 ) is the integrating constant of the conditional posterior
distribution p(A,Σ|Y , B̃0). Since conditionally on B̃m0 the model is a multivariate
regression with a naturally conjugate prior, p(Y |B̃m0 ) is available in closed form.
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Appendix

Convergence and mixing

40000 draws obtained with 2 parallel chains of 25000 draws each, removing 5000 for
burn-in.
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