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1 INTRODUCTION

1. introduction

1.1. Classical PCA and Its Applications

• Principal component analysis (PCA) is one of the most popular and

oldest techniques for multivariate analysis.

1. Pearson (1901, Philosophical Magazine)

2. Hotelling (1933, J. Educ. Psych.)

• PCA is a dimension reduction technique that seeks a parsimonious

representation of the multivariate structure of the data.
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1.1 Classical PCA and Its Applications 1 INTRODUCTION

• PCA is widely used in macroeconomics and finance.

1. Litterman and Scheinkman (1991): three-factor (level, slope, and

curvature) structure of the term structure of yields

2. Egloff, Leippold, and Wu (2010): two-factor (long-run and short-

run) volatility term structure

3. Stock and Watson (1999): Chicago Fed National Activity Index

4. Baker and Wurgler (2006): sentiment measure

5. Baker, Bloom, and Davis (2013): policy uncertainty index
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1.2 Statistical Inference on Classical PCA 1 INTRODUCTION

1.2. Statistical Inference on Classical PCA

• Estimating eigenvalues of the sample covariance matrix is the key step

towards PCA.

• Anderson (1963, AOS) studies the statistical inference problem of the

eigenvalues, and find that

√
n(λ̂− λ)

d→ N
(

0, 2Diag
(
λ2

1, λ
2
2, . . . , λ

2
d

))
.

where λ̂ and λ are the vectors of eigenvalues of the sample and pop-

ulation covariance matrices. λ is simple.

• When eigenvalues are repeated, the asymptotic theory is rather com-

plicated to use.
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1.3 Drawbacks and Limitations of the Classical PCA 1 INTRODUCTION

1.3. Drawbacks and Limitations of the Classical PCA

• i.i.d. and multivariate normality

– Extensions to non-normality or time-series data is possible, but

typically more assumptions are needed, e.g. a parametric factor

model, stationarity.

• the curse of dimensionality

– It is well known that when n/d→ C ≥ 1,

λ̂1
a.s.−→ (1 + C−1/2)2

where the true eigenvalue is 1.
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1.3 Drawbacks and Limitations of the Classical PCA 1 INTRODUCTION

• linear restriction

– The identified “factors” are linear combinations of the data.

• static representation

– The factor loadings are constants determined by the entire sample.

These drawbacks hinder the application of the PCA with financial data.

• Stock returns exhibit time-varying volatility and heavy tails, which

deviate from i.i.d. normality to a great extent.
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1.4 Main Contribution of the Paper 1 INTRODUCTION

• The covariance matrix of 30 stocks has 465 parameters, if no additional
structure is imposed. Years of daily data are required, raising the
issue of survivorship bias, potential non-stationarity, and parameter
constancy.

• Option returns are nonlinear functions of the underlying factors, stock
prices, volatility, etc.

• Moreover, the factor loadings are time-varying.

1.4. Main Contribution of the Paper

• We define the concept of (realized) PCA for data sampled from a
continuous-time stochastic process within a fixed time window.

7



1.5 Literature 1 INTRODUCTION

• We propose asymptotic theory for spectral functions, eigenvalues,

eigenvectors, and principal components, under general nonparametric

models, using intraday data.

• Empirically, we use this new technique to analyze constituents of S&P

100 Index nonparametrically.

1.5. Literature

PCA and Factor Models
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1.5 Literature 1 INTRODUCTION

• Applications in Finance and Macro: Ross (1976, JET), Stock and

Watson (2002, JBES), Litterman and Scheinkman (1991, J Fixed In-

come)

• Classic PCA and Factor Analysis: Hotelling (1933, J. Educ. Psych.),

Thomson (1934, J. Educ. Psych.), Anderson and Amemiya (1988,

AOS).

• Large d Setting: Chamberlain and Rothschild (1983, ECMA), Connor

and Korajczyk (1998, JFE), Stock and Watson (2002, JASA), Bai and

NG (2002, ECMA), Bai (2003, ECMA).

Our model consists of Itô semimartingales, and is fully nonparametric with-

out any assumptions on the existence of a factor structure
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1.5 Literature 1 INTRODUCTION

Other Related HF Papers

• Fixed T, Fixed d, Small ∆: Eigenvalue Related Problems

– Test of Rank: Jacod, Lejay, and Talay (2008, Bernoulli), Jacod

and Podolskij (2013, AOS).

• Fixed T, Large d, Small ∆:

– Sparse Covariance Matrix Estimation: Wang and Zou (2010, JASA),

Tao, Wang, and Zhou (2013, AOS), Tao, Wang, and Chen (2013,

ET), and Tao, Wang, Yao, and Zou (2011, JASA).

– Continuous-Time Factor Model for High-Frequency Panel: Fan,

Furger, and Xiu (2015, JBES) and Äıt-Sahalia and Xiu (2015).
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2 MAIN THEORY

2. Main Theory

2.1. Review of Classical PCA

Suppose R is a d-dimensional vector-valued random variable. The first

component is a linear combination of R, γ
ᵀ
1R, which maximize its variation.

The weight γ1 satisfies the following optimization problem:

max
γ1

γ
ᵀ
1cγ1, subject to γ

ᵀ
1γ1 = 1

where c = cov(R). Using the Lagrange multiplier, the problem is to

maximize

γ
ᵀ
1cγ1 − λ1(γ

ᵀ
1γ1 − 1)

which yields cγ1 = λ1γ1, and var(γ
ᵀ
1R) = γ

ᵀ
1cγ1 = λ1.
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2.1 Review of Classical PCA 2 MAIN THEORY

• Therefore, λ1 is the largest eigenvalue of the population covariance

matrix c, and γ1 is the corresponding eigenvector.

• The second principal component solves the following optimization

problem:

max
γ2

γ
ᵀ
2cγ2, subject to γ

ᵀ
2γ2 = 1, and cov(γ

ᵀ
1R, γ

ᵀ
2R) = 0.

It turns out that the solution γ2 corresponds to the second eigenvalue

λ2.

• One can keep doing this, regardless of whether the eigenvalues are

simple or repeated.
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2.2 Continuous-Time Factor Model 2 MAIN THEORY

2.2. Continuous-Time Factor Model

We consider a d-dimensional Itô semimartingale, defined on a filtered space

(Ω,F , (Ft)t≥0,P) with the following representation:

Xt = X0 +
∫ t

0
bs ds+

∫ t
0
σsdWs + Jt,

and ct = (σσᵀ)t is another Itô semimartingale. Jt is of infinite activity and

finite variation.

2.3. Principal Component Analysis

How do we introduce PCA in this setting?
13



2.3 Principal Component Analysis 2 MAIN THEORY

• Instead of maximizing the variance, we maximize the continuous com-

ponent of the quadratic variation.

• Theorem: There exists a sequence of {λg,s, γg,s}, 1 ≤ g ≤ d, 0 ≤
s ≤ t, such that

csγg,s = λg,sγg,s, γᵀg,sγg,s = 1, and γ
ᵀ
h,scsγg,s = 0,

where λ1,s ≥ λ2,s ≥ . . . ≥ λd,s ≥ 0. Moreover, for any càdlàg

and vector-valued adapted process γs, such that γ
ᵀ
sγs = 1, and for

1 ≤ h ≤ g − 1,[∫ u

0

γᵀs−dXs,

∫ u

0

γᵀh,s−dXs

]c
= 0, and

∫ u

0

λg,sds ≥
[∫ u

0

γᵀs−dXs,

∫ u

0

γᵀs−dXs

]c
.
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2.4 Estimation Strategy 2 MAIN THEORY

2.4. Estimation Strategy

• The idea is simple.

1. Decompose the interval [0, t] into many subintervals

2. Estimate cs within each subinterval using sample covariance matrix.

3. Aggregate the eigenvalues of ĉs, λ(ĉs).

• Apparently, we need some idea about the derivatives of λ(·) with re-

spect to a matrix, as the estimation error depends on the smoothness

of λ(·).
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2.5 Spectral Functions 2 MAIN THEORY

• Lemma: The function λ :M+
d → R̄+

d is Lipchitz.

– R̄+
d is the subset of ordered nonnegative numbers of Rd.

– M+
d is the space of non-negative matrices.

• Moreover, λg, if simple, is a C∞-function. So is its corresponding

eigenvector γg, which is unique up to a sign.

2.5. Spectral Functions

• It turns out we should consider estimating an even more general quan-

tity
∫ t
0 F (cs)ds.
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2.5 Spectral Functions 2 MAIN THEORY

• A spectral function is a function of non-negative matrices, which sat-

isfies, F (c) = F (OᵀcO), for any orthogonal matrix O.

• In other words, a spectral function depends on the matrix only through

its eigenvalues.

• Therefore, we can write F (c) = (f ◦ λ)(c).

• F is spectral ⇐⇒ f is symmetric, i.e. f(Px) = f(x), for any vector

x ∈ R̄+
d , where P is a permutation matrix.

• Lemma: The symmetric function f is kth continuously differentiable
at a point λ(c) ∈ R̄+

d if and only if the spectral function F = f ◦
17



2.5 Spectral Functions 2 MAIN THEORY

λ is kth continuously differentiable at the point c ∈ M+
d , for k =

0, 1, 2, . . . ,∞. The gradient and the Hessian matrix are given below:

∂jk(f ◦ λ)(A) =

d∑
p=1

Opj∂pf(λ(A))Opk,

∂2
jk,lm(f ◦ λ)(A) =

d∑
p,q=1

∂2
pqf(λ(A))OplOpmOqjOqk +

d∑
p,q=1

Afpq(λ(A))OplOpjOqkOqm,

where O is any orthogonal matrix that satisfies A = OᵀDiag (λ(A))O.

Moreover, f is convex if and only if F is.

Examples

• f(x) =
∑d
j=1 xj =⇒ F (c) = Tr(c).
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2.5 Spectral Functions 2 MAIN THEORY

• f(x) =
∏d
j=1 xj =⇒ F (c) = det(c)

• f(x) = the k-th largest entry in x =: x̄k.

– F (c) = the k-th eigenvalue of c and it is simple.

– This function is only differentiable when xk−1 > xk > xk+1.

• f(x) = 1
gl−gl−1

∑gl
j=gl−1+1 x̄j.

– F (c) = the k-th eigenvalue of c, and it is repeated.

– This function is differentiable when xgl−1 > xgl−1+1 ≥ . . . ≥ xgl >
xgl+1.
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2.5 Spectral Functions 2 MAIN THEORY

• Many spectral functions are only differentiable at certain points of the
matrix space, because of the potential repeated eigenvalues.

• We need a more careful analysis of the topology of the set of differen-
tiable matrices.

Topology of Sets of Differentiable Matrices

• Lemma For any 1 ≤ g1 < g2 < . . . < gr ≤ d, the set

M(g1, g2, . . . , gr)

={A ∈M++
d | λgl(A) > λgl+1(A), for any l = 1, 2, . . . , r − 1}

is dense and open in M++
d . In particular, the set of positive-definite

matrices with distinct eigenvalues, i.e., M(1, 2, . . . , d), is dense and
open in M++

d .
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2.6 Asymptotic Theory 2 MAIN THEORY

2.6. Asymptotic Theory

2.6.1. Estimator

1. Denote the distance between adjacent observations by ∆n. We form
blocks of length kn. At each ikn∆n, we can estimate cikn∆n by

ĉikn∆n =
1

kn∆n

kn∑
j=1

(
∆n
ikn+jX

)ᵀ (
∆n
ikn+jX

)
1{∥∥∥∆n

ikn+jX
∥∥∥≤un}.

where un = α∆$
n , and ∆n

l X = Xl∆n −X(l−1)∆n
.

2. Our estimator of
∫ t
0 F (cs)ds is

V (∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

f
(
λ̂ikn∆n

)
,
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2.6 Asymptotic Theory 2 MAIN THEORY

where λ̂ikn∆n := λ(ĉikn∆n).

2.6.2. Assumptions

• Suppose F is a vector-valued spectral function, and f is the corre-

sponding vector-valued symmetric function such that F = f ◦ λ. f is

a continuous function, and satisfies ‖f(x)‖ ≤ K(1 + ‖x‖ζ), for some

ζ > 0.

• There exists some open and convex set C, such that C̄ ⊂ M(g1, g2, . . . , gr),

where 1 ≤ g1 < g2 < . . . < gr ≤ d, and that for any 0 ≤ s ≤ t,
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2.6 Asymptotic Theory 2 MAIN THEORY

cs ∈ C ∩M∗(g1, g2, . . . , gr). Moreover, f is C3 on D(g1, g2, . . . , gr).

where D(g1, g2, . . . , gr) = λ(M(g1, g2, . . . , gr)), and

M∗(g1, g2, . . . , gr)

=
{
A ∈M++

d | λ1(A) = . . . = λg1(A) > λg1+1(A) = . . .

= λg2(A) > . . . λgr−1(A) > λgr−1+1(A) = . . . = λgr(A)
}
.

• If one is only interested in spectral functions that depends on a simple

eigenvalue, then the assumption can be weakened:

There exists some open and convex set C, such that C̄ ⊂ M(g), for

some g = 1, 2, . . . , d, and that for any 0 ≤ s ≤ t, cs ∈ C. Moreover,

f is C3 on D(g).
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2.6 Asymptotic Theory 2 MAIN THEORY

2.6.3. Consistency and Failure of CLT

• Theorem: Suppose either ζ ≤ 1 or ζ > 1 and $ ∈ [
ζ−1)
2ζ−γ ,

1
2). Then

our estimator is consistent: as kn →∞ and kn∆n → 0,

V (∆n, X;F )
p−→

∫ t
0
F (cs)ds.

• Theorem: Suppose kn � ∆−ςn and un � ∆$
n for some ς ∈ (γ2 ,

1
2) and

$ ∈ [ 1−ς
2−γ ,

1
2). As ∆n → 0,

kn

(
V (∆n, X;F )−

∫ t
0
F (cs)ds

)
p−→

1

2

d∑
j,k,l,m=1

∫ t
0
∂2
jk,lmF (cs)

(
cjl,sckm,s + cjm,sckl,s

)
ds.
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2.6 Asymptotic Theory 2 MAIN THEORY

2.6.4. The Bias-Corrected Estimator and its CLT

• The Bias-Corrected Estimator:

Ṽ (∆n, X;F ) = kn∆n

[t/(kn∆n)]∑
i=0

{
F (ĉikn∆n)−

1

2kn
×

d∑
j,k,l,m=1

∂2
jk,lmF (ĉikn∆n)

(
ĉjl,ikn∆nĉkm,ikn∆n + ĉjm,ikn∆nĉkl,ikn∆n

) }
.

• Theorem (CLT): kn � ∆−ςn and un � ∆$
n for some ς ∈ (γ2 ,

1
2) and

$ ∈ [1−ς
2−r,

1
2). As ∆n → 0, we have,

1√
∆n

(
Ṽ (∆n, X;F )−

∫ t
0
F (cs)ds

)
L−s−→Wt.
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2.6 Asymptotic Theory 2 MAIN THEORY

2.6.5. Return to the Integrated Eigenvalues

• Previous assumption implies that eigenvalues maintain the following
structure:

λ1(cs) = . . . = λg1
(cs) > λg1+1(cs) = . . . = λg2

(cs) > . . . λgr−1
(cs)

> λgr−1+1(cs) = . . . = λgr(cs) > 0.

Moreover, their structure, i.e. {g1, g2, . . . , gr}, does not vary over

[0, t]. Not needed for consistency. Moreover, if we only care about

one eigenvalue block, say, the largest, then this assumption can be

weakened to λg1(cs) > λg1+1(cs).

• Choose the spectral function F accordingly:

F λ(·) =

 1

g1

g1∑
j=1

λj(·),
1

g2 − g1

g2∑
j=g1+1

λj(·), . . . ,
1

gr − gr−1

gr∑
j=gr−1+1

λj(·)

ᵀ

.
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2.6 Asymptotic Theory 2 MAIN THEORY

2.6.6. The CLT of Eigenvalues

• Corollary: The bias-corrected estimator takes on the following form:

Ṽ (∆n, X;F λ
p ) =

∆n

gp − gp−1

[t/(kn∆n)]∑
i=0

gp∑
h=gp−1+1{

λ̂h,ikn∆n
−

1

kn
Tr
(

(λ̂h,ikn∆n
I− ĉikn∆n

)+ĉikn∆n

)
λ̂h,ikn∆n

}
.

The asymptotic covariance matrix is given by

E(Wλ
t (Wλ

t )ᵀ|F) =


2
g1

∫ t
0
λ2
g1,sds

2
g2−g1

∫ t
0
λ2
g2,sds

. . .
2

gr−gr−1

∫ t
0
λ2
gr,sds

 .
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2.6 Asymptotic Theory 2 MAIN THEORY

2.6.7. Eigenvectors

Suppose γg,s is a vector-valued function that corresponds to the eigenvec-
tor of cs with respect to a simple λg,s, for each s ∈ [0, t]. We have

1√
∆n

∆n

[t/(kn∆n)]∑
i=0

γ̂g,ikn∆n
+

1

2kn

∑
p 6=g

λ̂g,ikn∆n
λ̂p,ikn∆n

(λ̂g,ikn∆n
− λ̂p,ikn∆n

)2
γ̂g,ikn∆n

− ∫ t

0

γg,sds


L−s−→W γ

t ,

where the covariance matrix is given by

E(Wγ
t (Wγ

t )ᵀ|F) =

∫ t

0

λg,s
(
(λg,sI− cs)+cs(λg,sI− cs)+

)
ds.
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2.7 PCA on Integrated Covariance? 2 MAIN THEORY

2.6.8. Principal Components

• Suppose γg,s is a vector-valued function that corresponds to the eigen-
vector of cs with respect to a simple root λg,s, for each s ∈ [0, t]. We
have

[t/(kn∆n)]−1∑
i=1

γ̂ᵀ
g,(i−1)kn∆n

(X(i+1)kn∆n
−Xikn∆n

)
p−→
∫ t

0

γᵀg,s−dXs.

• So far, we have estimated
∫ t
0 λ(cs)ds,

∫ t
0 γ

ᵀ
g,s−dXs, and

∫ t
0 γg,sds.

2.7. PCA on Integrated Covariance?

Why not apply the usual PCA technique to the integrated covariance ma-
trix

∫ t
0 csds?
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2.7 PCA on Integrated Covariance? 2 MAIN THEORY

• The “eigenvalues” and “principal components” do not have the usual

interpretations, i.e. the first eigenvalue λ1(
∫ t
0 csds) is not the “vari-

ance(in any sense)” of the first principal component γ
ᵀ
1(Xt−X0). By

contrast: ∫ t
0
λ1,sds =

[∫ t
0
γ
ᵀ
1,sdXs,

∫ t
0
γ
ᵀ
1,sdXs

]c
.
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3 SIMULATIONS AND EMPIRICAL WORK

3. Simulations and Empirical Work

3.1. Simulation Results

The cross-section of log stock prices X in continuous-time follows a factor

model:

dXt = βtdFt + dZt,

where F is unknown, and Z is a idiosyncratic component, orthogonal to

Y . Y follows a three-factor model with stochastic volatility and jumps,

whereas Z is a Brownian motion with jumps.

31



3.1 Simulation Results 3 SIMULATIONS AND EMPIRICAL WORK

• We simulate intraday returns of up to 100 stocks at 5-second frequency

spanning 1 week.

• There are 3 distinct eigenvalues which reflect the local factor structure

of the simulated data.

• The remaining 97 population eigenvalues are identical, due to idiosyn-

cratic variations.

d[X,X]ct
dt

= βt
d[Y, Y ]ct
dt

β
ᵀ
t︸ ︷︷ ︸

Rank=3

+
d[Z,Z]ct
dt︸ ︷︷ ︸

Diagonal Full Rank

• We fix kn = θ∆
−1/2
n

√
log(d), with θ = 0.05 − 0.25 and d is the

dimension of X.
32



3.1 Simulation Results 3 SIMULATIONS AND EMPIRICAL WORK

We estimate 3 simple integrated eigenvalues as well as the average of the

remaining identical eigenvalues.
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3.1 Simulation Results 3 SIMULATIONS AND EMPIRICAL WORK

1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.4686 -0.0001 0.0075 0.4703 0.0007 0.0152
10 0.6489 0.0001 0.0110 0.6552 -0.0014 0.0223
15 0.8927 -0.0004 0.0149 0.8975 -0.0011 0.0296
20 1.3044 0.0003 0.0225 1.3148 -0.0018 0.0424
30 2.1003 -0.0002 0.0356 2.1134 -0.0033 0.0688
50 2.9863 0.0002 0.0514 3.0104 -0.0054 0.1002

100 6.6270 -0.0004 0.1141 6.6732 -0.0127 0.2179
1 Week, 5 Minutes 1 Month, 5 Minutes

5 0.4879 0.0107 0.0452 0.5642 0.0006 0.0247
10 0.6839 0.0084 0.0574 0.7143 -0.0024 0.0258
15 0.9397 0.0128 0.0724 1.0167 -0.0024 0.0382
20 1.3765 0.0130 0.1076 1.3882 -0.0041 0.0503
30 2.2157 0.0210 0.1670 2.2383 -0.0073 0.0806
50 3.1554 0.0267 0.2410 3.1518 -0.0125 0.1155

100 7.0000 0.0552 0.5314 6.9632 -0.0270 0.2451

Table 1: 1st Eigenvalue Estimation
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3.1 Simulation Results 3 SIMULATIONS AND EMPIRICAL WORK

1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.3145 0.00004 0.0051 0.3173 0.0003 0.0110
10 0.4268 -0.0001 0.0071 0.4289 0.0006 0.0146
15 0.5531 -0.0003 0.0086 0.5572 0.0004 0.0188
20 0.6517 -0.0008 0.0103 0.6556 -0.0006 0.0215
30 0.9186 -0.0015 0.0144 0.9251 -0.0017 0.0305
50 1.2993 -0.0017 0.0205 1.3080 -0.0026 0.0458

100 2.3273 -0.0041 0.0361 2.3441 -0.0065 0.0766
1 Week, 5 Minutes 1 Month, 5 Minutes

# Stocks True Bias Stdev True Bias Stdev
5 0.3255 0.0020 0.0269 0.3639 -0.0003 0.0189

10 0.4384 0.0028 0.0379 0.4469 -0.0003 0.0186
15 0.5751 0.0014 0.0427 0.6524 -0.0017 0.0257
20 0.6758 0.0046 0.0535 0.7779 -0.0021 0.0297
30 0.9586 0.0017 0.0725 1.1365 -0.0036 0.0438
50 1.3508 -0.0022 0.1046 1.5630 -0.0064 0.0683

100 2.4312 -0.0084 0.1787 2.9148 -0.0136 0.1113

Table 2: 2nd Eigenvalue Estimation
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3.1 Simulation Results 3 SIMULATIONS AND EMPIRICAL WORK

1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.1338 0.0001 0.0022 0.1345 0.0003 0.0044
10 0.2132 0.0001 0.0035 0.2149 0.0002 0.0070
15 0.2941 0.0002 0.0046 0.2954 0.0002 0.0093
20 0.3212 0.0001 0.0052 0.3242 0.0000 0.0105
30 0.4825 0.0005 0.0078 0.4853 0.0001 0.0153
50 0.6943 0.0001 0.0113 0.7016 -0.0005 0.0226

100 1.3808 0.0004 0.0221 1.3935 -0.0013 0.0438
1 Week, 5 Minutes 1 Month, 5 Minutes

# Stocks True Bias Stdev True Bias Stdev
5 0.1364 0.0041 0.0124 0.1404 0.0006 0.0054

10 0.2199 0.0033 0.0183 0.2367 -0.0001 0.0091
15 0.3018 0.0056 0.0264 0.3396 0.0009 0.0131
20 0.3324 0.0037 0.0294 0.3546 0.0003 0.0132
30 0.4971 0.0055 0.0409 0.5686 0.0006 0.0211
50 0.7216 0.0028 0.0577 0.8051 -0.0010 0.0306

100 1.4302 -0.0016 0.1119 1.6278 -0.0028 0.0612

Table 3: 3rd Eigenvalue Estimation
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3.1 Simulation Results 3 SIMULATIONS AND EMPIRICAL WORK

1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

5 0.0596 0.0002 0.0007 0.0597 0.0005 0.0015
10 0.0596 0.0001 0.0004 0.0597 0.0003 0.0008
15 0.0596 0.0001 0.0003 0.0597 0.0004 0.0006
20 0.0596 0.0001 0.0002 0.0597 0.0004 0.0005
30 0.0596 0.0001 0.0002 0.0597 0.0004 0.0004
50 0.0596 0.0001 0.0001 0.0597 0.0004 0.0003

100 0.0596 0.0001 0.0001 0.0597 0.0004 0.0002
1 Week, 5 Minutes 1 Month, 5 Minutes

# Stocks True Bias Stdev True Bias Stdev
5 0.0595 0.0026 0.0041 0.0595 0.0006 0.0017

10 0.0595 0.0029 0.0029 0.0595 0.0006 0.0009
15 0.0595 0.0027 0.0024 0.0595 0.0006 0.0007
20 0.0595 0.0028 0.0021 0.0595 0.0006 0.0006
30 0.0595 0.0030 0.0020 0.0595 0.0007 0.0005
50 0.0595 0.0029 0.0018 0.0595 0.0006 0.0004

100 0.0595 0.0031 0.0016 0.0595 0.0006 0.0003

Table 4: Repeated Eigenvalue Estimation: 4th and Beyond
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1 Week, 5 Seconds 1 Week, 1 Minute
# Stocks True Bias Stdev True Bias Stdev

0.2457 -0.0002 0.0173 0.2475 0.0074 0.1559
0.8987 0.0028 0.0261 0.8963 0.0174 0.2135

5 0.0566 0.0013 0.0235 0.0536 -0.0018 0.1281
0.0633 0.0001 0.0119 0.0639 0.0037 0.0786
0.3110 0.0017 0.0202 0.3086 0.0042 0.0645
0.0506 0.0004 0.0049 0.0495 0.0029 0.0266
0.3444 0.0006 0.0087 0.3452 0.0080 0.0691
0.4632 0.0011 0.0129 0.4619 0.0121 0.0966
0.1422 0.0008 0.0137 0.1422 0.0094 0.0990

10 0.4166 0.0004 0.0220 0.4164 0.0045 0.1562
0.0864 0.0008 0.0158 0.0863 0.0089 0.1117
0.3460 0.0008 0.0088 0.3440 0.0101 0.0600
0.1268 0.0005 0.0076 0.1259 0.0066 0.0451
0.3409 0.0005 0.0174 0.3415 0.0046 0.1268
0.4262 0.0007 0.0112 0.4271 0.0099 0.0942

Table 5: 1st Eigenvector Estimation

38



3.2 Empirical Findings 3 SIMULATIONS AND EMPIRICAL WORK

3.2. Empirical Findings

• We collect intraday returns of S&P 100 constituents over 2003 - 2012 periods from
TAQ database.

• There are in total 158 different symbols as the constituents may have changed over
time.

• We select the most liquid exchange for each ticker on each day.

• These stocks have superior liquidity, avoiding the issue of Microstructure noise and
asynchronous trading.

• Data are sampled at 1-min frequency, and grouped by weeks.

• We remove 10 least liquid stocks.
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