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General form of DFM

General form of the Large-Dimensional Dynamic Factor Model

xit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+

ciq(L)

diq(L)
uqt + ξit , i ∈ N, (1)

where

cif (L) = cif ,0+cif ,1L+. . .+cif ,s1L
s1 and dif (L) = dif ,0+dif ,1L+. . .+dif ,s2L

s2 ,

ut = (u1t u2t · · · uqt )
′ is a q-dimensional white noise, the variables ξit

are idiosyncratic components.
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Finite dimension
If the common components

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+

ciq(L)

diq(L)
uqt , i ∈ N,

span a finite-dimensional vector space, then (1) can be rewritten in
the static form

xit = λi1F1t + λi2F2t + · · ·+ λir Frt + ξit . (2)

For example, if

χit =
ai1

1− αL
u1t + ai2u2t + ai3u2,t−1, (3)

then the model has a static representation with r = 3,

λij = aij , F1t = (1− αL)−1u1t , F2t = u2t , F3t = u2,t−1.
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Finite dimension

xit = λi1F1t + λi2F2t + · · ·+ λir Frt + ξit . (2)

The finite-dimension assumption or, equivalently, the existence of the
static representation (2), has been almost universally adopted in the
recent literature (see in particular Stock and Watson, 2002a,b, Bai
and Ng, 2002).
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Finite dimension

Under the finite-dimension assumption, the factors Fjt and the
loadings λij can be consistently estimated, as the number of variables
and the number of observations for each variable tend to infinity, by
means of the principal components of the observables xit . The
estimated factors are then used as predictors in forecasting the
variables xit .
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Infinite dimension

A motivation for studying the general model (1), without restrictions on
the dimension of the factor space, as argued in FHLZ (2015), is that
the finite-dimension assumption (2) rules out models as simple as

xit =
ai

1− αiL
ut + ξit , (4)

i.e.
xit = ai (ut + αiut−1 + α2

i ut−2 + · · · ) + ξit ,

for i ∈ N, where ut is a scalar white noise and the coefficients αi are
drawn from, say, the uniform distribution between −0.8 and 0.8. For,
unless αi takes a finite number of values as i ∈ N, the stochastic
variables χit = ai (1− αiL)−1ut span an infinite-dimensional space.
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Infinite dimension
On the other hand, as pointed out in Forni et al. (2015a, Journal of
Econometrics), when a dataset is given, with finite n (number of
variables) and T (number of observazions), the static method might
perform well even under misspecification, i.e. even if the data
were generated by a model not fulfilling the finite-dimension
assumption.
In Forni et al. (2015b) the static and the dynamic methods have been
applied to simulated data in several Monte Carlo experiments. A very
short summary of the results is that (i) when the data are generated
by infinite-dimensional models which generalize (4), the estimation of
impulse-response functions and predictions obtained by the dynamic
method are by far better than those obtained by the static method;
(ii) when the data are generated by (2), still the dynamic method
performs slightly better.
THE PRESENT PAPER COMPARES THESE METHODS USING
MONTHLY MACROECONOMIC US DATA 1959-2014 (THE
STOCK-WATSON DATASET).



Introduction
Prediction. Finite-dimensional factor space

Prediction.Infinite-dimensional factor space (frequency domain)
Empirical results

Previous literature comparing different factor models

—Boivin and Ng (2005), International Journal of Central Banking
—D’Agostino and Giannone (2012) Oxford Bulletin of Economics and
Statistics
—Schumacher (2007), Journal of Forecasting
—Luciani (2014), International Journal of Forecasting
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SW (time domain)
FHLR (frequency domain)

Prediction: Stock and Watson

Starting with (2) the forecasting equation is obtained projecting x1,t+1
on the space spanned by

Ft , Ft−1, . . . ; x1t , x1,t−1, . . .

Thus
x1,t+1|t = ααα(L)Ft + β(L)x1t , (5)

where lagged vales of x1t account for possible autocorrelation
(predictability) of the idiosyncratic component. Equation (5) is often
used without lags for Ft or without the term including x1,t :

x1,t+1|t = αααFt + β(L)x1t , x1,t+1|t = αααFt .

We refer to this predictor as SW, from Stock and Watson (2002).
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SW (time domain)
FHLR (frequency domain)

Prediction: FHLR

FHLR. (i)The procedure starts with the estimation of the spectral
density matrix of the x ’s, call it ΣΣΣx (θ).
(ii) q is determined by the Hallin and Liska Criterion.
(iii) The spectral density of the common components is estimated
using the first q Brillinger principal components of the x ’s (by means
of the frequency domain eigenvectors of ΣΣΣx (θ)), call it ΣΣΣχ(θ). (iv)
ΣΣΣχ(θ) and Σξ(θ) are used to compute the autocovariance matrices of
the common and idiosyncratic components:

ΓΓΓχk , ΓΓΓξk , k ∈ Z,

ΓΓΓχk =

∫ π

−π
eikθΣΣΣχ(θ) dθ, ΓΓΓξk =

∫ π

−π
eikθΣΣΣξ(θ) dθ
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SW (time domain)
FHLR (frequency domain)

Prediction: FHLR

(iv) Under the finite-dimension assumption, the covariances ΓΓΓχ0
and ΓΓΓξ0 are employed to estimate a basis in the factor space by means
of generalized principal components (the estimated variance of the
idiosyncratic is taken into account):

G1t , G2t , . . . , Grt .

The covariances ΓΓΓχ1 and ΓΓΓξ1 are employed to project χ1,t+1 on the
factors:

χ1,t+1|t = γγγGt

(a dynamically more complex version, allowing for lags of the factors,
as in SW, can be obtained in the same way). Lastly, the idiosyncratic
component is predicted by means of a unvariate model. This
predictor is based on Forni, Hallin, Lippi and Reichlin (2000, 2005).
We refer to it as FHLR.
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FHLZ. Blockwise autoregressive representation and the static form

Prediction: FHLZ

Let us go back to model (1), reported here for convenience:

xit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+

ciq(L)

diq(L)
uqt + ξit , i ∈ N,

where

cif (L) = cif ,0+cif ,1L+. . .+cif ,s1L
s1 and dif (L) = dif ,0+dif ,1L+. . .+dif ,s2L

s2 ,

with common components

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+

ciq(L)

diq(L)
uqt .
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FHLZ. Blockwise autoregressive representation and the static form

Prediction: FHLZ. Preliminary

We start in the same way as in FHLR (2005), but now we have rates.
(i) We start with an estimated lag-window spectral density Σ̂x

n(θ). We
assume that

Σ̂x
ij (θ)→ Σx

ij (θ)

in probability for T →∞, uniformly in θ, i and j , with rate 1/
√
ρT ,

where ρT = T 2/3/ log T (see Wu and Zaffaroni, 2015). This is the
price paid to non parametric estimation of the spectrum of the x ’s.
(ii) Then we obtain an estimator for the spectral density of the χ’s,
Σ̂χ

n (θ) (principal components in the frequency domain), and prove that

Σ̂χ
ij,n(θ)→ Σχ

ij (θ)

as T and n tend to infinity, in probability at the rate max(n−1/2, ρ
−1/2
T ).
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FHLZ. Blockwise autoregressive representation and the static form

Prediction: FHLZ. Preliminary

(iii) Then we prove that

γ̂χjs,k,n =

∫ π

−π
σ̂χjs,n(θ)eikθdθ →

∫ π

−π
σχjs,n(θ)eikθdθ = γχjs,k

in probability as T and n tend to infinity, at the same rate as above.
Here we move away from FHLR in that we do not assume finite
dimension of the factor space.
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ. Autoregressive representation for the common
components

We have the vector

χχχt = (χ1t χ2t · · · χnt , · · · )′,

and we have estimated (we know) its spectral density and therefore
its covariance function.
In principle we can estimate a VAR for χχχt . You may object: but if you
could not estimate a VAR for xt because of the large dimension, how
do you think you can do it for χχχt?
The answer is: unlike xt , χχχt is a singular vector, a large dimensional
vector driven by a small number of shocks.
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ. Consequences of the singularity of χχχt

Singular vectors have special properties, recently studied by
Anderson and Deistler in a number of papers. An example. Let n = 2
and q = 1:

y1t = α1wt + β1wt−1
y2t = α2wt + β2wt−1

We see that
wt =

1
α1β2 − α2β1

(β2y1t − β1y2t ),

so that (
1− δβ1β2L δβ2

1L
−δβ2

2 1 + δβ1β2L

)(
y1t
y2t

)
=

(
α1
α2

)
wt

where δ = 1/(α1β2 − α2β1). Note that the autoregressive
representation exists if and only if α1β2 − α2β1 6= 0, thus generically.
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ. Consequences of the singularity of χχχt

Suppose now that the dimension of the vector is 4, with q = 1:

yit = αiwt + βiwt−1, i = 1,2,3,4

You see that this vector has, generically, the autoregressive
representation

1− a11L a12L 0 0
a21L 1− a22L 0 0
0 0 1− a31L a32L
0 0 a41L 1− a42L




y1t
y2t
y3t
y4t

 =


α1
α2
α3
α4

wt
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ: Additional assumption

A. Current and past values of any (q + 1)-tuple

(χi1,t χi2,t · · · χiq+1,t )

span the same space spanned by current and past values of all
the χit .
Let me illustrate this by an example. Assume q = 1 and

χ1t = ut−1
χ2t = ut−1
χjt = ut , for j ≥ 3

Then Assumption A does not hold. Thus (ii) rules out cases like this.
On the other hand, if

χit = αiut + βiut−1,

then generically A holds.
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ: AR representation for the common components

Assume for convenience that n = (q + 1)m. Under Assumptions (i)
and (ii) we obtain the representation

A1(L) 0 · · · 0
0 A2(L) · · · 0

. . .
0 0 · · · Am(L)




χχχ1
t

χχχ2
t

...
χχχm

t

 =


R1

R2

...
Rm

vt

An(L)χχχnt = Rnvt

where the vectors χχχk
t are non overlapping (q + 1)-dimensional

selections, the blocks Ak (L) are (q + 1)× (q + 1), the matrix Rn is
n × q and vt is a q dimensional white noise. The matrices Ak (L) are
minimum order.
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ: The model in static form
Start again with

An(L)χχχnt = Rnvt .

Using xnt = χχχnt + ξξξnt ,

An(L)(xnt − ξξξnt ) = Rnvt ,

that is:

An(L)xnt = znt = Rnvt + An(L)ξξξnt ,

znt = Rnvt + ΞΞΞnt .

Under mild assumptions we can prove that ΞΞΞnt is idiosyncratic. Thus
the original dynamic model has been transformed into a static one.
We use the spectral density of the χ’s to obtain the matrices An(L),
thus znt . Then use the static model to estimate vt .



Introduction
Prediction. Finite-dimensional factor space

Prediction.Infinite-dimensional factor space (frequency domain)
Empirical results

FHLZ. Blockwise autoregressive representation and the static form

FHLZ: The forecasting equation

Inverting the autoregressive equation

Ak (L)χχχk
t = Rk vt

we get
χk

t = [Ak (L)]−1Rk vt = Bk
0 vt + Bk

1 vt−1 + · · ·

This is used to predict χk
t+h:

χk
t+h|t = Bk

h vt + Bk
h+1vt−1 + · · ·
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ: Reordering the panel

Under our assumptions, the particular grouping into
(q + 1)-dimensional subvectors of χχχnt does not matter in population.
However, in practice the grouping makes a difference. We deal
with this problem by randomizing the groupings and averaging over
the results.
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FHLZ. Blockwise autoregressive representation and the static form

FHLZ. Forecasting equation

SW: x1,t+h|t = ααα(L)Ft + β(L)x1t , x1,t+h|t = αααFt

FHLR: x1,t+h|t = ααα(L)Gt + β(L)x1t , x1,t+h|t = αααGt

FHLZ: We use Âk (L) and ût :

χχχ1
t+h|t = Âk (L)−1R̂k E [v̂t+h] = B̂hv̂t + B̂h+1v̂t−1 + · · ·
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DATA

The dataset consists of 115 U.S. macroeconomic and financial time
series observed at monthly frequency between January 1959 and
September 2014. See the paper for details and the transformations
necessary to achieve stationarity. We concentrate on inflation
(1− L12)CPIt and industrial production IPt .
We use the subsample up to December 1984 to calibrate the
forecasting equations, the remaining sample for the comparison.
Estimation and pseudo out-of-sample forecasting are based on a
ten-years rolling window.
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Parameters. Calibration

SW: (i) Number of static factors,
(ii) Include lagged factors in the forecasting equation or not,
(iii) Include lagged x in the forecasting equation or not.

FHLR: (i), (ii), (iii), plus
(a) Number of dynamic factors,
(b) Window and kernel in the spectral estimation.

FHLZ: (a) and (b), plus
(α) Degree of the polynomials Ak (L),
(β) Number of permutations of the panel.
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Average results

IP
h FHLZ FHLR SW AR

1 0.949 0.910 0.926 1.000
3 1.048 0.944 0.902 1.000
6 0.981 0.893 1.020 1.000

12 0.906 0.840 0.987 1.000

CPI
FHLZ FHLR SW AR

0.958 1.066 1.085 1.000
0.891 1.001 1.066 1.000
0.887 1.013 1.146 1.000
0.972 1.120 0.985 1.000
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Testing the relative forecasting performance

We use the test by Giacomini and Rossi to test the Null of equal
performance at each point in time of two forecast methods, whose
prediction errors are denoted by ε̂t+h and η̂t+h:

Ft,m =
1

σ̂m1/2

 t+m/2∑
j=t−m/2

ε̂2j+h −
t+m/2∑

j=t−m/2

η̂2
j+h


where between brackets we have the difference between squared
prediction errors smoothed over a rolling window of size m + 1. This
is normalized using m and σ̂ is a Heterosketasticity and
Autocorrelation Consistent estimator of the variance of ε2 − η2. G.
and R. compute critical values that, if crossed, signal that one method
outperforms the other.
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FHLZ vs SW
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FHLR vs SW
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Conclusion

Good results of frequency-domain methods as compared to time
domain. In particular, FHLZ very good with nominal variables; FHLR
very good with real variables.
Potential for improving on FHLZ: we obtain many predictors by
reordering the variables. We averaged over them and also made
some attempts with LASSO etc., with some good results. Still to be
explored systematically.
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