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Large VARs

Vector autoregressions (VARs) is an important tool in applied
macroeconomics since Sims (1980)
Recently, many researchers define large VARs involving dozens of
dependent variables
E.g. Banbura, Giannone and Reichlin (2010); Carriero, Kapetanios
and Marcellino (2009); Koop and Korobilis (2013); Korobilis
(2013); Giannone, Lenza, Momferatou and Onorante (2014)
Typically these large models have many more parameters than
observations
And typical solution is to use shrinkage methods: PCA;
Minnesota (Bayes) priors; LASSO etc
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What we do in this paper

We build on ideas from the machine learning literature and
develop a VAR model in the form of a “compressed regression”
Compressed sensing/compressive sampling are methods for
shrinking large dimensional data
In the machine learning literature this would involve millions of
data (not so common in economics)
We focus on forecasting macro VARs→ e.g. Banbura et al (2010)
estimate 132-variable VARs with 13 lags (200,000 parameters)
Unlike Principal Component Analysis, the compressed regression
methods we use are “supervised” (will explain this in due course)
First such modelling attempt in economics, preliminary results
show good forecasting performance in BVARs
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Random Projection

The main idea we build upon is that of “Random Projection” (RP)
High-dimensional data is projected onto a low-dimensional
subspace using a random matrix, whose columns have unit length
“loadings” (projection) matrix is not estimated from data, rather
generated randomly, e.g. N(0,1)
There exist theoretical results supporting that RP preserves for
example volumes and affine distances, or the structure of data
(e.g., clustering)
The central idea of RP is based on the Johnson-Lindenstrauss
lemma
Lemma implies that if we perform an orthogonal projection of n
points in a vector space onto a selected lower-dimensional
subspace, then distances between points are preserved
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Comparison with other methods

RP is a projection method similar to Principal Component
Analysis (PCA)
Unlike PCA, RP does not depend on a particular training data set
Unlike Discrete Cosine Transform (DCT) or Discrete Fourier
Transform (DFT) its basis vectors do not exhibit particular
frequency or phase properties
RP doesn’t compute a low-dimensional subspace by optimizing
certain criteria, thus is data independent
Sometimes mentioned as a “Data Oblivious” method
Inexpensive in terms of time/space, and can be generated without
even seeing the data
Therefore, computationally simple method which can be used in
“big-data”
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Intuition behind RPs 1

With orthogonal RPs distances between two points of the original
data are preserved
Assume a large matrix of data x, and a projection matrix R (but do
NOT think of a parametric model yet, such as DFM, VAR etc).
The Euclidean distance of two points in the original space is

‖xi − xj‖, while in the projected space this is
√

d
k‖Rxi − Rxj‖,

where d is the original & k reduced dimensionality of data.
To get a first idea, the next figure plots the error from the distance
‖Rxi − Rxj‖ compared to the original distance ‖xi − xj‖
The matrix x has 119 columns (macro variables) for 600+ monthly
obs, and we take the average distances of all possible
combinations of pairs xi, xj from this matrix
We compare two methods, i) R is generated randomly; ii) R is
estimated optimally using PCA
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PCA vs RP
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VAR Methodology

VAR(p) for M× 1 vector of dependent variables is :

yt = α0 +
p

∑
j=1

Ajyt−j + εt, εt ∼ N(0, Σ) (1)

This model can be written compactly

yt = A
′
Xt + εt (2)

Xt is K× 1, and K can be large
E.g. A VAR with M = 100 variables and p = 12 lags has
K = 120, 000+
While there are so many methods for high-dimensional data,
motivation of our approach is based on computational
considerations
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Methods to estimate large VARs

large VARs have large X and possibly large y
Two major solutions for dealing with large VARs:

1 Specify large VAR for y and X and shrink coefficients (e.g. LASSO,
MCMC variable selection)

2 Shrink either y and/or X and estimate smaller system (e.g. PCA,
reduced rank VAR)

In solution 1, (X′X)−1 can be slow to compute, especially
repeatedly (e.g. MCMC, Monte Carlo, Bootstrap)
Therefore, methods that shrink parameters have, in general,
limitations (e.g. M < 40− 50)
Subjective Minnesota prior using analytical results is one
exception (Banbura, Giannone, Reichlin 2010, JAE)
Alternative is solution 2: project data to lower dimensions
We may lose ability to unfold structural economic relationships
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Our approach: incorporate RPs in the VAR

Following Guhaniyogi and Dunson (2015, JASA), we define the
following Compressed VAR

yt = B
′
(ΦXt) + εt (3)

Projection matrix Φ is m× K, m� K
We generate Φ randomly (explain schemes in next slide)
Conditional on knowing Φ, VAR above is trivial to estimate→ B
is of lower dimensions
Will explain now how we generate Φ, decide on m, and why the
method works
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Generation of Projection matrix

The matrix Φ can be generated quickly, e.g. using the scheme

Φ ∼ sign(U(−1, 1))× 1

We can also follow Achlioptas (2003) and use the sparse random
projection

Φij =


−
√

3 , with probability 1/6
0 , with probability 2/3√
3 , with probability 1/6

.

In this paper we adopt the scheme

Pr
(

Φij =
1√
ϕ

)
= ϕ2

Pr
(
Φij = 0

)
= 2 (1− ϕ) ϕ

Pr
(

Φij = − 1√
ϕ

)
= (1− ϕ)2

, (4)

where ϕ ∼ (0, 1) (or for computational stability ϕ ∼ (0.1, 0.7))
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Estimation of compressed VAR

We are interested in large systems, conditionally on a known
(generated) Φ

yt = B
′
(ΦXt) + εt = B

′
X̃t + εt (5)

so we use analytical Bayesian results instead of MCMC. In particular
we define the standard natural conjugate prior:

vec (B) ∼ N
(

β, Σ⊗V
)

Σ ∼ IW (ν, Σ)

and posterior location and scale parameters for B, Σ are available
analytically.

→ I won’t elaborate on this, this is a standard setup for large
dimensions; see Koop and Korobilis (2010), Banbura et al (2010, JAE),
Giannone et al (2015, RESTAT)
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Uncertainty about random projection

Φ is not estimated from data, and we also don’t know its
dimensions
In practice we generate many random Φ(r), r = 1, ..., R of different
dimensions, then use BMA

First, we compute model r BIC as

BIC(r) = ln
(∣∣∣Σ(r)

∣∣∣)+ ln (T)
T

m (6)

Then posterior model probability is defined as

Pr
(

M(r)|y
)
≈

exp
(
− 1

2 Ω(r)
)

∑R
ς=1 exp

(
− 1

2 Ω(ς)
) , (7)

where Ω(r) = BIC(r) −min BIC and min BIC is the lowest of the
marginal likelihoods; see Kapetanios et al. (2008, JBES).

13



Prediction

Our final aim is forecasting.
In that respect, similarly to the issue of factor identification in
PCA or likelihood-based analysis (e.g. Lopes and West, 2004,
Statistica Sinica), we don’t care about optimizing on the projection
or recovering the “original” large VAR coefficients
We also care about multi-step predictive densities (12 horizons):
computationally intensive to use predictive simulation
Instead, we work with posterior means (modes), and forecast
using

E (yt+h) = ∑h−1
i=0 Bic + Bhyt−1

var (yt+h) = ∑h−1
i=0 BiΣ

(
Bi)′ (8)

where all matrices here are in bold because they refer to writing
the VAR in typical companion (VAR(1)) form (in cases with more
than one lag); see Lutkepohl (2005).
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Extension of the basic framework: Compressing the
VAR covariance matrix

In a large VAR the autoregressive coefficients can be hundreds of
thousand
The covariance matrix can also be large and have several
thousand elements
So a reasonable extension would be to compress Σ
In order to achieve this, we specify a “triangular/structural VAR”
or SVAR
Consider the Choleski decomposition of Σ

Σ = D−1H(HD−1)′ (9)

where D is a lower unitriangular matrix of covariances, and H a
diagonal matrix of stdevs
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Extension of the basic framework: Compressing the
VAR covariance matrix

The VAR can be transformed as

yt = A
′
Xt + εt ⇒ (10)

yt = A
′
Xt + D−1Hut ⇒ (11)

Dyt = DA
′
Xt + Hut ⇒ (12)

(I + D̃)yt = DA
′
Xt + Hut ⇒ (13)

yt = Ã
′
Xt − D̃yt + Hut (14)

where D has been decomposed into the identiy matrix, and a lower
triangular matrix D with zeros on the diagonal.

We now have the covariances of the original VAR as regressors,
and we can compress D̃
yt in the RHS, but system estimated eq-by-eq (D̃ triangular)
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Empirics

We collect a “Stock-and-Watson” type dataset, i.e. 130 monthly
macroeconomic variables from FRED
We use the ones that Michael McCracken has collected in database
called “FRED-MD”
https://research.stlouisfed.org/econ/mccracken/fred-
databases/
Series stationary using same transformation codes as McCracken
and Ng (2015)
Final sample is 1960M1 - 2014M12
We are interested in forecasting employment (PAYEMS), inflation
(CPIAUCSL), and interest rate (FEDFUNDS)
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VAR sizes

We have four sets of VARs: a SMALL, a MEDIUM, a LARGE, and
a HUGE
SMALL VAR has only the three variables of interest (employment,
interest, inflation)
MEDIUM VAR has 19 variables
LARGE VAR has 48 variables
HUGE VAR has 119 variables
All VARs can give forecasts of variables of interest, but imply
different information sets
Important note: I will focus in this presentation on MEDIUM &
LARGE VAR results (work is in progress)
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Evaluation of forecasts

Initial estimation based on 50% of the sample
We forecast h = 1 to 12 months ahead
Then add one observation at the end of the sample, and repeat
until obs T− h
We evaluate forecasts using mean squared forecast error (MSFE)
and average (log) predictive likelihoods (APLs)
These are averages over the squared forecast errors and PLs over
the last 50% of the sample
Competing methods are BVAR with Minnesota prior exactly as in
Banbura et al (2010, JAE), and FAVAR using PCA as in Bernanke
et al (2005, QJE) with selection of lags and factors using BIC
Reduced Rank VAR is in Carriero + co-authors? Not yet
incorporated, we need MCMC which can be costly

19



Relative MSFE results, MEDIUM VAR

Employment
BVARMINN BCVAR BCTRVAR

h=1 1.03 1.11 1.19
h=3 0.92 1.13 1.20
h=6 1.04 1.04 1.08
h=12 1.09 1.01 1.03

Inflation
BVARMINN BCVAR BCTRVAR

h=1 0.97 1.08 1.08
h=3 1.05 0.99 1.00
h=6 0.99 0.99 0.98
h=12 0.99 1.00 1.00

Interest Rate
BVARMINN BCVAR BCTRVAR

h=1 1.89 0.74 0.70
h=3 1.65 0.94 0.92
h=6 1.27 1.13 1.10
h=12 1.07 1.01 1.00
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Relative MSFE results, LARGE VAR

Employment
BVARMINN BCVAR BCTRVAR

h=1 1.47 1.19 1.28
h=3 1.10 1.01 1.10
h=6 1.06 0.93 0.99
h=12 1.05 0.91 1.01

Inflation
BVARMINN BCVAR BCTRVAR

h=1 0.96 1.05 1.06
h=3 1.02 0.96 0.99
h=6 1.01 0.95 0.97
h=12 0.99 0.96 0.98

Interest Rate
BVARMINN BCVAR BCTRVAR

h=1 1.71 0.81 0.87
h=3 1.34 0.84 1.08
h=6 1.10 1.02 1.34
h=12 1.00 0.93 1.05
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Cumulative Sum of log PLs
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Comments

Results look promising, especially on the predictive density side
Compressed VAR computationally much faster than Minnesota,
but less efficient than FAVAR with PCA+OLS
For computational (stability) issues we have forecasted with
differenced data
It is in our “to do” list to examine data in log-levels (as in Banbura
et al, 2010, JAE)
After all for log level data the Minnesota/sum of coefficients prior
would be much harder to beat
We have also attempted to leave intercepts and AR(1) coeffs
“un-compressed”, but no impact in forecasting
Interesting to examine alternative compressed VAR formulations,
e.g. FAVAR using RPs
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Experiments with Random Projections

Consider the 119 macro variables (will explain those later) and
define AR models of the form

xi,t = φ1x−i,t−1 + ... + φ12x−i,t−12 + ε (15)

where x−i,t denotes the vector xt with its i-th column removed.
Thus, the RHS matrix zt = (x

′
−i,t−1, ..., x

′
−i,t−12) has

12× 118 = 1416 elements
I project w = zR, and use w as RHS, where R is replaced by RP, or
PCA (reduced-rank regression case)
compare with AR(2) for xi,t, as well as diffusion index forecasting
using PCA (1 & 3 factors)
Latter takes ft = Lx−i,t, then uses as RHS ft−1, ..., ft−12
Compare in-sample and out-of-sample MSE as a function of the
projection dimension
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Thank You!
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