
A Perturbation Approach to Filtering Hidden
States

Ivana Komunjer and Natalia Sizova

UCSD and Rice University

2015 NBER-NSF Time Series Conference, Vienna



Motivation:

Dynamic stochastic choice models are a signature tool in
Economics:

growth models in macroeconomics
portfolio choice models in finance

Hidden states (more generally, incomplete information over the
model states) are an increasingly common feature in these
models.



Motivation:

With incomplete information over states, optimal decision rules
depend on the decision maker’s posterior distribution over the
hidden states given the observed history

control theory: Striebel (1965), Rhenius (1974),
Yuschkevich (1976), Bertsekas and Shreve (1978)
economics: Hansen and Sargent (2005, 2007)

Consequence:
models with incomplete information have infinite
dimensional state vectors
solving and analyzing such models is a challenge



This Paper:

We use the perturbation method to derive an approximate filter
for models in which the hidden state follows a linear transition
equation, but the observation equation is possibly nonlinear.

Leading example: dynamic stochastic choice models with
stochastic volatility.
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Stochastic Growth Model with Stochastic Volatility

A simple neoclassical growth model with stochastic volatility
(Caldara, Fernández-Villaverde, Guerrń)

A representative consumer chooses c0, c1, . . . so as to maximize

E

[
∞

∑
t=0

βtu(ct)

]

subject to:

kt+1 = (exp zt)kα
t + (1− δ)kt − ct

zt+1 = ρzt + (exp σt)εt+1

σt+1 = (1− λ)σ̄ + λσt + ηωt+1



Stochastic Growth Model with Stochastic Volatility

States of the model:

kt, zt

observed states

, σt

hidden state

Decision sequence:
t = 0, the initial values k0, z0 and the density p0 for σ0 are
known, and c0(k0, z0, p0) is chosen
system moves stochastically from (kt, zt, σt) to
(kt+1, zt+1, σt+1)

observed kt+1, zt+1 are added to the time t + 1 information
vector:

it+1 = (k0, z0, p0, k1, z1, . . . , kt+1, zt+1)

the decision maker chooses ct+1(it+1)



Stochastic Growth Model with Stochastic Volatility

Even though the state (kt, zt, σt) follows a Markov process, the
optimal policy ct is not Markov. It depends on the entire
information vector it.

Problem: we can no longer limit ourselves to Markov policies
only

Solution: reformulate the decision problem as a problem with
perfectly observed state that has the Markov property



Stochastic Growth Model with Stochastic Volatility

Denote by

pt(σ) the conditional density of σt given it

Then, pt satisfies a recursive relation of the form:

pt+1 = φ(zt+1, zt, pt)

where the function φ is known.

Specifically:

pt+1(σt+1) =

∫
R

1
η pω

(
σ1+1−σ̄

η − λ σ−σ̄
η

)
1

exp σ pε

(
zt+1−ρzt

exp σ

)
pt(σ)dσ∫

R
1

exp σ pε

(
zt+1−ρzt

exp σ

)
pt(σ)dσ

,



Stochastic Growth Model with Stochastic Volatility

Value function:

v(k0, z0, p0) = sup E

[
∞

∑
t=0

βtu(ct)
∣∣k0, z0, p0

]

Bellman equation:

v(k, z, p) = sup
c∈C

{
u(c) + β

∫
R2

v
(
k′, z′, φ(z′, z, p)

)
pε(ε

′)p(σ)dε′dσ

}
,

where

k′ = (exp z)kα + (1− δ)k− c
z′ = ρz + (exp σ)ε′



Stochastic Growth Model with Stochastic Volatility

Optimal policy:
c(k, z, p)

Euler equation:

u′(ct) = β
∫

R2

[
α(exp zt+1)kα−1

t+1 + (1− δ)
]

u′(ct+1)pε(εt+1)pt(σt)dεt+1dσt,

Problem: the state pt is infinite dimensional!

Our solution: approximate pt by a finite number of sufficient
statistics using the perturbation method
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Main Result

Transition equation:

zt+1 = ρzt + (exp σt)εt+1

σt+1 = (1− λ)σ̄ + λσt + ηωt+1

with εt is iid with a density fε on R satisfying E(εt) = 0 and
E(ε2

t ) = 1, ωt is iid Gaussian with E(ωt) = 0 and E(ω2
t ) = 1, εt

and ωt are independent.



Main Result

Perturbation Approach:

zt+1 = ρzt + Λ(exp σt)εt+1

σt+1 = (1− λ)σ̄ + λσt + Ληωt+1

Idea: approximate pt around Λ = 0 (noninformative case,
σt = σ̄)

Literature:
control: Fleming (1971), Bensoussan (1988)
economics: Judd (1996)



Main Result

First-order approximation for pt

pt(σt) =
exp

(
− (σt−σ̄)2

2η2σ2
0

)
√

2πη2σ2
0

{
1 + A1,t (σt − σ̄) + o(‖η‖, ‖σt − σ̄‖)

}
,

where σ2
0 = (1− λ2)−1, and

A1,t+1 = λ

[
A1,t − ψ1

(
zt+1 − ρzt

exp σ̄

)]
,

with ψ1(y) ≡ 1 + yf ′ε (y)/fε(y).

One sufficient statistic A1,t in the first order approximation.
Higher orders are possible; more sufficient statistics appear.



1 Statement of the Problem

2 Example

3 Perturbation Filter

4 Monte Carlos

5 Conclusion



How to compare different volatility filters?

Since
exp(2σt) = E

[
(zt+1 − ρzt)

2|zt

]
,

we have
E
[
(zt+1 − ρzt)

2 − exp(2σt)
]
= 0.

So we can compare the accuracy of different volatility filters σ̂t
by looking at MSE loss:

MSE(σ̂) = E
[
(zt+1 − ρzt)

2 − exp(2σ̂t)
2
]

.



How to compare different volatility filters?

In simulations, the true value of σt is known, so then we can
also look at how far the filtered volatility is from the true
volatility by calculating

L(σ̂) = E
[
(σt − σ̂t)

2
]

.



Some Simulation results

T = 500, we compare the following filters: particle filter
(M = 100000) σ̂P, with approximation filters: first order σ̂1,
second order σ̂2, third order σ̂3

MSE L RMSE
σ 142.4261 0 1
σ̂P 143.4061 0.0185 1.0069
σ̂1 144.2345 0.0194 1.0127
σ̂2 144.2345 0.0194 1.0127
σ̂3 143.0395 0.0186 1.0043
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Conclusion

In this paper, we use regular perturbations à la Fleming (1971),
Bensoussan (1988), and Judd (1996), to derive an approximate
filter for the conditional distribution of the hidden state.

The key features of the filter are:
1 it requires linear dynamics of the hidden state, but allows

for nonlinear observation equation
2 it approximates the information in the hidden state

distributions by a finite number of sufficient statistics
whose dynamics are again linear

3 implementation of the filter is straightforward unlike in
particle filtering methods
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