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Motivation:

Dynamic stochastic choice models are a signature tool in
Economics:

e growth models in macroeconomics

@ portfolio choice models in finance

Hidden states (more generally, incomplete information over the
model states) are an increasingly common feature in these
models.



Motivation:

With incomplete information over states, optimal decision rules
depend on the decision maker’s posterior distribution over the
hidden states given the observed history

@ control theory: Striebel (1965), Rhenius (1974),
Yuschkevich (1976), Bertsekas and Shreve (1978)

@ economics: Hansen and Sargent (2005, 2007)

Consequence:

@ models with incomplete information have infinite
dimensional state vectors

@ solving and analyzing such models is a challenge



This Paper:

We use the perturbation method to derive an approximate filter
for models in which the hidden state follows a linear transition
equation, but the observation equation is possibly nonlinear.

Leading example: dynamic stochastic choice models with
stochastic volatility.
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Example
(2 ) p



Stochastic Growth Model with Stochastic Volatility

A simple neoclassical growth model with stochastic volatility
(Caldara, Fernandez-Villaverde, Guerrn)

A representative consumer chooses ¢y, c1, . . . 0 as to maximize

E [i ﬁtu(ct)]
t=0
subject to:

kiv1 = (expzi)ki + (1 —0)kt — ¢
Ze41 = Pzt + (exp 01)€ri1
01 = (1= A)0 + Aot + i



Stochastic Growth Model with Stochastic Volatility

States of the model:

ki, ze Ot
| M| L
observed states hidden state
Decision sequence:
o t = 0, the initial values ko, z9p and the density pg for oy are
known, and ¢y (ko, zo, po) is chosen
@ system moves stochastically from (k, z, 07) to
(kt11,2t41,0141)
@ observed ki, 1,2z:11 are added to the time t + 1 information
vector:
iry1 = (ko,zo,po k1,21, - - ki1, Ze1)

@ the decision maker chooses c¢;41 (i¢+1)



Stochastic Growth Model with Stochastic Volatility

Even though the state (k, z;, 0;) follows a Markov process, the
optimal policy c; is not Markov. It depends on the entire
information vector i;.

Problem: we can no longer limit ourselves to Markov policies
only

Solution: reformulate the decision problem as a problem with
perfectly observed state that has the Markov property



Stochastic Growth Model with Stochastic Volatility

Denote by
pt(0) the conditional density of o} given i;
Then, p; satisfies a recursive relation of the form:
Pi+1 = ¢(Ze41, 2t Pt)
where the function ¢ is known.

Specifically:

f]R Ly <¢71+1 [ }\H) ex;gpe (%) pe(o)do
fIR exi)ape (Zt;l(ngt) pf( )d(T

pig1(0i1) =

7




Stochastic Growth Model with Stochastic Volatility

Value function:

v(ko, zo, po) = sup E [Z Blu(ct) kolzofpol

t=0
Bellman equation:
o(k,z,p) =sup{ Q) +p [0 (KZ zp))m(e')p(a)de'do—},
ceC
where

K = (expz)k*+ (1—6)k—c
Z' = pz+ (expo)e



Stochastic Growth Model with Stochastic Volatility

Optimal policy:
c(k,z,p)

Euler equation:

"(ct) 5/ w(exp zi11) t+11 +(1— 5)} u'(cri1)pe(ers1)pi(or)desaday,
Problem: the state p; is infinite dimensional!

Our solution: approximate p; by a finite number of sufficient
statistics using the perturbation method



@ Perturbation Filter



Main Result

Transition equation:

zi11 = pzt + (exp 01)€r1
Ot41 = (1 — /\)(_T + )\Ut + NWwt+1

with ¢; is iid with a density f. on R satisfying E(e;) = 0 and
E(€?) = 1, w; is iid Gaussian with E(w;) = 0 and E(w?) = 1, &
and w; are independent.



Main Result

Perturbation Approach:

241 = pz¢ + A(exp 01)€r1
Ot1 = (1 = A)T + Aoy + Awiiq

Idea: approximate p; around A = 0 (noninformative case,
o =0 )

Literature:
@ control: Fleming (1971), Bensoussan (1988)
@ economics: Judd (1996)



Main Result

First-order approximation for p;

(0i—0)?
exp | —522
pi(or) = ( 2 ) {1 +Avt (0 =) +o([|n], llot —‘7H)}/

\/ 20}

where 03 = (1 —A%)"!, and

Alpp1 = [Au U (Ztﬂ__pztﬂ ,

exp o

with 1 (y) =1+ yf (y) /fe(y)-

One sufficient statistic A1 in the first order approximation.
Higher orders are possible; more sufficient statistics appear.



© Monte Carlos



How to compare different volatility filters?

Since
exp(20;) = E [(Zt+1 - PZt)2|Zt] ,

we have
E |:(Zt+1 — pz¢)? — exp(2¢7t)} =0.

So we can compare the accuracy of different volatility filters 0;
by looking at MSE loss:

MSE() = E [(th — pz)? — exp(zm)ﬂ .



How to compare different volatility filters?

In simulations, the true value of ¢; is known, so then we can
also look at how far the filtered volatility is from the true
volatility by calculating

L(o) =E [(at - aq)ﬂ .



Some Simulation results

T = 500, we compare the following filters: particle filter
(M = 100000) op, with approximation filters: first order ¢,
second order &>, third order 03

[ ] MSE [ L [RMSE]
o [1424261] 0 1

Op | 143.4061 | 0.0185 | 1.0069
01 | 144.2345 | 0.0194 | 1.0127
07 | 144.2345 | 0.0194 | 1.0127
03 | 143.0395 | 0.0186 | 1.0043




© Conclusion



Conclusion

In this paper, we use regular perturbations a la Fleming (1971),
Bensoussan (1988), and Judd (1996), to derive an approximate
filter for the conditional distribution of the hidden state.

The key features of the filter are:
© it requires linear dynamics of the hidden state, but allows
for nonlinear observation equation
@ it approximates the information in the hidden state
distributions by a finite number of sufficient statistics
whose dynamics are again linear

@ implementation of the filter is straightforward unlike in
particle filtering methods
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