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1. Introduction

Dimension reduction is very important in vector time series because the
number of parameters in a model grows with the square of the dimension m of
the vector of time series.

Simplifying structures or factors reduce the number of parameters to model the
series. Two related approaches:

1. Linear combinations with interesting properties:

Brillinger (1981), DPC; maximun/minimun predictabiliy-canonical analysis
(Box and Tiao, 1977); Stationary combinations in nonstationary time series
(Granger and Engle, 1987), the scalar component models, SCM, Tiao and Tsay
(1989); white noise with stationary data (Ash and Reinsel, 1990), among
others.

2. Dynamic Factor Models : Geweke, 1977, Engle and Watson, 1981, Pefna
and Box, 1987, Stock and Watson, 1988, West et al, 1999, Forni et al,
2000,2005, Bai and Ng,2002, 2006, Lam and Yao0,2012, Tsai and Tsay, 2015,
and many others.

Sy = =
>\ Universidad

") Carlos Il de Madrid

S /. www.uc3m.es




Brillinger Dynamic Principal Components

Brillinger (1981) addressed the reconstruction problem as follows. Suppose
zero mean m dimensional stationary process {z;}, —0o < t < oo0. The dynamic
principal components are defined by searching for m x 1 vectors ¢, —00 < h < o
and 3;, —oo < j < 00, so that if we consider as first principal component the linear

combination

Z ChZi—h, (1)

h=—o0

(¢ — Z&fu(zé Zﬁfm- (2)

j=—00 j=—00

then

is minimum. Brillinger elegantly solved this problem by showing that c; is the
inverse Fourier transform of the principal components of the cross spectral matrices
for each frequency, and 3; is the inverse Fourier transform of the conjugates of the

same principal components. See Brillinger (1981) and Shumway and Stoffer (2000)
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Limitation of Brillinger DPC:
1. They are noly justifed under stationarity.

2. They are not easy to robustify.
3. They are not reliable when m, the number of time series is large
and the ratio T/m is small because the covariance matrices and the spectral matrices

are estimated with low precision and so are there eigenvalues.

Qur procedure gives an optimal reconstruction of the vector of time series

from a finite number of lags:
| the solution can be easily computed even if m 15 large.

1
2) 11 does not require stationarity.

3) It does not assume that the DPC 1s a linear combination of the series.
4)

(4) 1t can be easily made robust by changing in the minimization criterion
of the squared function by a bounded function.
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2. Generalized Dynamic Principal Components
(GDPC)

Suppose that we observe zj ., 1 <73 =m,1 =< ¢t =< T, and consider two
integer numbers &y = 0 and & = D "I."I.e can define the first dynamic principal
component with & = ki + k2 lags (first DPCp) as a vector

F = (ficks Fokan - foo Fr oo foo Foas o s Fra oo frka—10 fTska)

so that the reconstruction of the series from f is optimal
Given T, the m = (k1 + k2) matrix of coefficients.

e S = N
= Il___“-"'_i'.'t]]ijim.—kl-l—]iti.‘.:gn

and
a = (o1, ..., Q|

are used to reconstruct the values z;; as

ka

~ e g _ 5
zi+(F. 85, a;) = E Biifewi + ;.

:!:=—F:1

where 5; 15 the 3-th row of 5.
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We can always assume one side lags

ko
Z Bjifevi + .

1=—k1
Let & = k; + ko and put
fi=fick 1 <t < T+ k, = Bk 0 <h <k
Also define
f:* p— f?;—k“ l - ;l: g t E .T.. J;c*h = _ j:k—h-f 0 S h S llf (‘3)

then, the reconstructed series can also be obtained as

k k

= Z i ftiphy T 05 = Z b Jeen 0G5 = Z Bindion Ty

.J_,'_:_k_l h=0 h=0

For this reason in the remaining of the paper we will assume without loss of general-

ity k; = 0 and we will use k& to denote the number of forward leads. Once obtained
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Consider the loss function

MSE(f,5,0) = — ZZ[aj.t — 2;4(£, 85, 05))°

:—ZZ :jt_zﬁjz+1fr—'_ﬂ,?] . (”

=1 t=1

The values of f = (f1, ..., fr4x)' ., 6 = (5;4) and a = (a1, ...amm ) which mimmize
the mean square error, are

{f§ a) =arg min MSE(f, 5, o).
' f.8,a

Clearly 1t f 15 optimal, vf+6 15 optimal too. Then we can choose f so that

and
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Note that the first DPC of order 0 corresponds to the first regular principal
component of the data.
Moreover the matrnx § contains the coefficients to be used to reconstruct

the m *':.EI‘]'ES from f in an optimal way.
Given f R
3. N NP
( b ): (F(f) F(_f]) F(f) 219,
aj

and given EJ and a; we have
m
f=D(f3)") Cf.a)3

The coefficients 5; and a; 1 < 7 < m can be obtaned using the least squares
estimator, where z'Y) = (2 1,..., zj7)" and F(f) 1s the T x (k + 2) matrix with
t-th row (fi, fro1s.ees ftoks 1}.
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lterative algorithm:

step 1 Define _Sj-h and -:\-, ") by

AlR) _
3! - ' 1 .

( " )= (FE™) FE™)) FE™)'2
k-

J

step 2 Then f(*+1) can be defined by
£+ — D(flh}? _3[31]"? ﬂ_{h]]—jc(f[h}? _3[31}? ﬂ)i_}[h}

and

£+ = (T4r) (8 —T) /|8 =T .

The initial value £(°) can be chosen equal to the standard (non dynamic)

first principal component, completed with £ zeros.
The second S -DPC 1s defined as the first S-DPC of the residuals r;:(f, 3).

Higher order S-DPC are defined 1n a stmilar manner.
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Note:
D(A) is (T + K)Xx(T +k),and C(a) 1s (T +k)x(k +1)
F(f) is the Tx(k + 2)

Remark 1. Note that the dimension of the matrices to be inverted to compute
fih) .,.-'j’(h), a™) are independent of the number of time series and therefore we can
deal with large number of variables.

Remark 2. Note also that there are no restrictions on the values f and in
particular we do not assume, as in Brillinger, that they must be linear combinations
of the series. In this way the values of f can be adapted to the nonstationarity

character of the time series.
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3 Dynamic Principal Components when £ =1

To 1llustrate the computation of the first DPC, let us CﬁﬂaldEr the simplest case
of Kk = 1. Then, we search for 3 and f= [f1 m_fg-_ " such that

(jf 3 Z z% <3t T j,]ft - .'Sj,ﬂff—'l JE

=1 J—]

It can be shown that with 0<c<1

- .l [?ﬁ- f b . -|
ZElZSJ]ZC q:_,q+ J_.EZ | ql J.g— 'JJ
=1 J=1
+ R;,
where H; — 0 except for £ close to 1 or close to T

The DPC 15 computed as a weighted average of the observations by a two
side moving average. For f; the maximum weight 1s given to z;, a_:nr:l Zjs -
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Suppose now that z; is stationary, then except in both ends f; can be ap-
proximated by the stationary process

- oo

] T m
Jt = o E B E ¢ Zjq T 5.2 = “3,9—1
j:'[ j:'[

The DPC 1s approximated as linear combinations of the geometrically and
symmetrically filtered series

and

o0
) ir. A 1 = &
Zjt—1 T E c (fﬁj__t—1+z' T /fj:r—j—z'): l<7<m
i=1

This series give the largest weight to the periods t and f — 1 respectively and
the weilghts decrease geometrically when we move away of these values.

We conjecture that in the case of the first DPC of order k, a similar ap-
proximation outside both ends ot fg by an stationary process can be obtained.
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Monte Carlo results

We perform a Monte Carlo study using as vector series z; = (214, 224, -y Zmt)

1 <t <T generated as follows:

2ip = 10sin(2pi(i/m)) fi+10 cos(2pi(i/m)) fr—1+10(i/m) fr—otuip, 1 <i <m, 1 <t < T,
(12)

where f;, =2 <t < T and u;y, <t <7, 1< <mareiid. random variables with

distribution N(0,1). We compute three different principal components: (i) The

ordinary principal component used in a dynamic way with k& lags to reconstruct

the original series (OPCy) (ii) the dynamic principal component (DPCy) proposed

here, (iii) Brillinger dynamic principal components (BDPCy) adapted for finite

samples as follows:
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m T OPCy DPCy BDPCy
200100 5253 091 0.94

2000 5586 0.92 0.95
100 100 54.89  0.95 0.99

200 57.65 097 099
500 100 53.56  0.96 1.00

200 57.14  0.98 1.00
1000 100 5488 096 -
200 59.09 1.0 -

Table 1: MSE of the Reconstructed Series for the Stationary Model with one Factor
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Figure 1: Loadings for one Replication of the Stationary Model with T=200 and

m=1000
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In this case we consider a VARI(1, 1) m—dimensional vector series z; generated
as follows. Consider an stationary VAR(1) model x;, = Ax;_1 +u;, 1 <t < T,
where the ws are i.i.d. m-dimensional vectors with distribution N,,,(0,I) and let
z; = Z;_1 +X;. We consider 1000 replications and in each replication we generate a
new matrix A of the form A = VAV’, where V' is an orthogonal matrix generated at
random with uniform distribution and A is a diagonal matrix, where the diagonal

elements are independent with uniform distribution in the interval [0, 0.9].

m  OPC;y DPCyy BDPCyg

20 67 83 55
100 67 86 62
200 69 86 62

Table 2: Percentage of Explained Variance in the VARI(1,1) Model
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Example 1(1)

4.1 Example 1

S1x series of Industrial Production Index of France, Germany, Italy, Umted
Kingdom, USA and Japan
Monthly data from January 1991 to December 2012

The series shows a break in 2008
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Figure 1: Industral production Index of six countries 1991-2012
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Example 1 (II)

Table 1. Explained variability of the OPC (EV ) and DPC (EVy ;) for the
[P1 seres with cifferent number of lags for the IPIT data using DPC and OPC

k EVor EVig
EV,= Ordinary 0 ; '

(static) principal 63.07 ES'DT Adding lags:
components L 66.19  82.47 Small improvements
EV,=Dynamic 52 T76.66 90.05 in OPC but large in
principal 10 77.98 94.81 DPC

components 12 80.00 96.67
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PC | PC(0) | PC(1) | DPC(0) | DPC(1)
“0.456 | -0.456 | -0.001 | -3.951 | 3.965 | FR
0285 | -0.275 | -0.034 | -1.509 | 1492 | GE
0.719 | -0.750 | 0.099 | -6.548 | 6577 | IT

0293 | -0.269 | -0.092 | -2.114 | 2111 UK
0.241 | -0.198 | -0.138 | -0.787 | 0.760 | US
0212 | -0.212 | -0.001 | -1.885 | 1.804 | JP

Table 1: Coefficients of the six countries in the Ordinary (OPC) and Dynamic
Principal Components

PC | PC(0) | DPC(0)

63 | 61 60 FR
10 |37 23 GE
100 | 100 | 100 IT

i1 | 36 32 UK
33 | 26 12 US
30 | 28 29 JP

Table 2: Relative coefficients of the six countries in the Ordinary (OPC) and
Dynamic Principal Components



Example 1 (lII)

For the ordinary PC the coefficients 1n the first column 1n Table 1 coincide
with the weights given to each country for the definition ot the OPC.

The first OPC gives the largest weight to Italy and then France, because of
the strong seasonahty of these series which have the largest vanability.

The second and third columns show that for reconstructing the original
variables including the lag of the OPC 1s practically 1rrelevant.

The fourth and fifth columns show that the DPC with one lag 15 almost
equivalent to using the first difference ot the DPC 1n the reconstruction of the

series.
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1gure 3: Boxplots of the Absolute Values of the Errors of the Reconstructed IPI
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Summary of the example:

E EVor EVig
0 63.07 63.07
1 66.19 8247
52 T76.66 90.05
10 77.95 9481
12 80.00 96.67

« Original data 264 x 6=1584 values

e DPC with 12 lags = 264+12+12 x 6=348 values
 Represent 348/1584=0,22 of the data

« With 22% of the data, 96,7% of the information
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4.2 Example 2.

Data: The main components of the IBEX (general index of the Madrid stock
market) 31 daily stock prices in the stock market in Madrid corresponding to

the 251 trading days of the year 2004.

In this example the data set is composed of 30 daily stock prices in the stock market
in Madrid corresponding to the 251 trading days of the year 2004. The source of
the data is the Ministry of Economy, Spain. In Table 5 we show the percentage of
the variance explained by the different procedures using the OPC,.DPC, BDPCy

proce dures.

L OPC, DPC, BDPC,

0 6O 60 -
1 60 82 -
5 61 87 -
10 62 38 60

Table 5: Explained variability of the OPC and DPC for the stock prices series with

different number of lags
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Figure 4: Percentage of the Variance Explained by the DPCy5 Against the Percent-

age Explained by the OPCj5; Procedure.
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Summary of the example:

k | EVor | EVix
0 0.598 0.598
1 0.602 0.822
5 0610 0873
10 | 0.620 0.881

Table 2: Explained variabihty of the OPC and DPC for the 1stock prices series
with different number of lags

 Oiriginal data 251 x 31 =7781

« DPC with 5lags = 251+5+5 x 31=411
 Represent 411/7781=0,05 of the data

* With 5% of the data, 87,3% of the information
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4.2.1 Robust Dynamic Principal Components

The DPC are not robust. In fact a very small fraction of outhers may have an
unbounded influence on (f, a, 3).

For this reason we are going to study a robust alternative. One of the
standard procedures to obtain robust estimates for many statistical models 1s
to replace the minimization of the mean square scale for a the mimmimization of
a robust M-scale.

The estimators defined by means of a robust M-scale are called S-estimators.
In this section we extend the S-estimators for the case of the DPC.

In the case of time series with strong seasonality, a special care 15 required.
The reason 1s that the values corresponding to a season very different to the
other may be taken by the robust procedures as outhers. and theretore down-
weighted. As a consequence, the reconstruction of these observations may
be affected by large errors. Thus the procedure we present here assumes that
the series have been adjusted by seasonality and therefore this problem 1s not
present.
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We can define the first S-DPC as follows Let £ 3 and a as before. For
1<j<m,let rj(f,ﬁj:&j] = (r5:(f,8;,0;))1<t<T, Where

ke
?‘ir[f? -3;:'~ aj) =zjt — Z Ojift+i — .
i=0

Define

SRS(f,8,a) =) S*(r;(f,5;,0;)) (4)
j=1

(f,3,a) =arg nglﬁn SRS(f, 3, )
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Algorithm for Robust DPC:

Then to define the algorithm 1s enough to describe how to compute [f{h_” NN S{h_”)

once (f(" 5" sP)) is known. This is done in the following four steps:

stepl Compute

(h)

£* = D[f{m..ﬁ’[h]ﬂ(h}‘s ]_16*(f[h},5’w.a{h*]s{h’]]ﬁ“ﬂ

step 2 Put £f+D= (T+k)"2(f* —1)/||f* - T

stepd Compute the j-th row
3(h+1} (h+1)y/ h) h) (Rh) _(h) (h41) -1 (h+1) (F (h) _(h (h }
2 + . a(h) (h (h alh /
ey | = (F(_f YW (£®) 5" oM MR (s }) F(£ "YW (£ 510 oM s(M))/50)
"J

tor 1 <7 <m.

step4d Compute S;-h-l_l} = 5‘(rj-(f”1+”. G,ap11)).
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6 Example

We will use the data of example 2 to 1llustrate the performance of the robust
DPC. This dataset was modified as follows .

Each of the 7781 values composing the dataset was modified with 5% prob-
ability adding 20 to the true value.

The Table include MSE 1n the reconstruction of the series with the DPC.

However since the MSE 1s very sensitive to the presence of outhers, we also
include de criterion SRS

We also compute the robust S DPC and the corresponding SRS values are
included 1n the fourth column of Table.

k- MSE of the DPC, SRS of the DPC. SRS of the S-DPCy

1 18.81 6.05 0.84
5 17.75 6.64 0.50
10 16.90 7.63 0.48

Table 6: MSE and SRS of the DPCj and S DPCy, for the contaminated stock prices

series
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Conclusions

The GDPC we present are much more powerful for
reconstruction than the OPC and can be applied for non
stationary time series and very large data sets when
Brillinger DPC fall.

They can provide insights in the structure of the series
The robust GDPC are able to filter contaminated data
They can be applied in a broad range of problems.
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Thank you for your attention!
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