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Motivation

Dynamic factor models are used oftentimes for macroeconomic forecasting.

A key example is forecasting GDP growth.

Within principal components / dynamic factor models, many contributions

Forni, Hallin, Lippi and Reichlin (RESTAT 2000, JASA 2005)

Stock and Watson (JASA, JBES 2002)

Marcellino, Stock and Watson (EER, 2003)

Doz, Giannone and Reichlin (JEct 2011, RESTAT 2013)

Bańbura and Rünstler (IJF 2011), Bańbura and Modugno (JAE 2014)

Jungbacker, Koopman and van der Wel (JEDC 2014),
Jungbacker and Koopman (EctJ 2015),

Bräuning and Koopman (IJF 2014)

See also the forthcoming Volume 35 of ”Advances in Econometrics”,

Dynamic Factor Models, 2015, Eds. E.T. Hillebrand and S.J. Koopman.
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Literature is huge

The previous slide only had references from the 21st century, and then still
it is far, far from complete.

This audience, today in Vienna, has many representatives, both from 20th
and 21st centuries, but also :

Geweke, Engle, Watson, Tiao, Tsay, Peña, Proietti, Ahn, Reinsel, Velu,
West, Boivin, Connor, Quah, Fiorentini, Shumway, Stoffer, Diebold, Sims,
Rudebusch, Koop, Korobilis, Ng, Harvey, Frühwirth-Schnatter, Sentana,
McCausland, Bernanke, Aguilar, Sargent, McCracken, Bai, Chamberlain,
Rothschild, Korajczyk, etc. etc.

So let’s conclude, there is a huge interest, in many different fields, in

dynamic factor models
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What we do

We recognize earlier dynamic factor analysis and forecastig developments
while considering the forecasting of GDP growth.

Two issues arise :

Much effort is devoted to the modelling of so many time series,
big N, while in the end we only want to forecast a few key variables.
How should we address this notion to our forecasting model ?

Mixed-frequency data issues are always present in large data sets;
they become even more important when the key variable has a
different frequency.

We discuss both of theses issues in this paper.

Our study is related to the paper by Marcellino, Carriero & Clark (2014).

We propose a model-based mixed-frequency dynamic factor state space
time series analysis for forecasting and nowcasting.
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Principal components

Let yt be the time series of interest, the key variable, and let xt be a very
large column vector representing the many ”instrumental” variables that
are used to improve the forecasting of yt .

Stock and Watson (2002) advocate to construct principal components
series Ft from large data base of xt variables. Then a parsimonious way to
use xt for the h-steps ahead forecasting of yt is via the dynamic regression

yt+h = φ(L)yt + β(L)Ft + εt ,

where φ(L) = φ0 + φ1L + φ2L
2 + . . . and β(L) = β0 + β1L + β2L

2 + . . ..

Many contributions in the literature has focussed on the appropriate
choice of dimension for xt and, most notably, for Ft .

Many variants of this approach has also appeared in the literature.
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Dynamic factor model

The dynamic factor model for the joint analysis of yt and xt is given by(
yt
xt

)
=

[
Λy

Λx

]
ft + ut ,

where ut can be assumed to be IID noise but it may also be decomposed
into an idiosyncratic dynamic process and IID noise.

The underlying, unobserved vector of dynamic factors ft can be modelled
by the vector autoregressive process

ft = Φ1ft−1 + . . .Φpft−p + ηt ,

where ηt is typically IID noise, mutually independent of ut .

The two equations constitute a linear state space model.
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Maximum likelihood estimation, quasi-MLE

The number of unknown parameters in the DFM(
yt
xt

)
=

[
Λy

Λx

]
ft + ut , ft = Φ1ft−1 + . . .Φpft−p + ηt ,

is increasing quickly when the dimension of xt becomes larger and larger.
Some options for maximum likelihood estimation (MLE) :

Jungbacker and Koopman (2015) : MLE, as done before; direct
maximization of loglik wrt all unknown parameters, is feasible with
fast loglik evaluation via Kalman filter, after data transformation.

Doz, Giannone and Reichlin (2011) : two steps – first, replace ft by
Ft and apply regression to both equations; second, replace parameters
by these estimates and continue analysis based on Kalman filter.

Bräuning and Koopman (2014) : replace xt by Ft and set Λx = I ;
MLE for remaining coefficients and use this model also for analysis
and forecasting:

yt = Λy ft + uy ,t , Ft = ft + uf ,t .
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DFM and MLE

In contributions such as Doz, Giannone and Reichlin (2011, 2013),
Bańbura and Rünstler (2011), Bańbura and Modugno (2014), Jungbacker,
Koopman and van der Wel (2014), Jungbacker and Koopman (2015) and
Bräuning and Koopman (2014), state space model and Kalman filter are
adopted for estimation, analysis and forecasting.

All estimation procedures above are likelihood-based.

However, dynamic factor model is likely to be misspecified... hence we
refer to it as quasi-MLE.

But quasi-MLE does not address the different roles of yt and xt :
yt being the key variable and xt being the large vector of instruments.
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DFM and MLE

For the DFM(
yt
xt

)
=

[
Λy

Λx

]
ft + ut , ft = Φ1ft−1 + . . .Φpft−p + ηt ,

we collect all unknown parameters in vector ψ.

The loglikelihood function is given by

L(ψ, f1) := log p(y , x ;ψ) = log p(y |x ;ψ) + log p(x ;ψ).

All series have equal importance in this loglikelihood function.

But we are only interested in forecasting yt accurately...

Instead of maximizing ` = p(y , x ;ψ) = p(y |x ;ψ)× p(x ;ψ), perhaps we
should maximize

`(w) = p(y |x ;ψ)w × p(x ;ψ)(2−w), 1 ≤ w < 2.
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Weighted maximum likelihood estimation

The main idea of the weighted loglikelihood function is to replace

L(ψ, f1) := log p(y , x ;ψ) = log p(y |x ;ψ) + log p(x ;ψ),

by
LW (ψ, f1) := W log p(y |x ;ψ) + log p(x ;ψ),

with W > 1.

The value of W can be pre-fixed or it can be determined by another
criterion, for example the minimization of the out-of-sample MSFE,
(mean squared forecast error), in a cross-validation setting.

Note : as W becomes larger, the contribution of x becomes negligible for
the estimation of ψ BUT x remains to take full part in the forecasting of y .

Despite this ad-hoc nature, the weighted ML (WML) parameter estimates
have the usual asymptotic properties of existence, consistency and
asymptotic normality, also when the DFM is misspecified.
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Weighted maximum likelihood : asymptotic results

properties of the weighted maximum likelihood estimator are derived
in the paper: for any choice of weight w := W−1 ∈ [0, 1];

when the model is correctly specified, then the WML estimator
ψ̂T (w) is consistent and asymptotically normal for the true parameter
vector ψ0 ∈ Ψ.

when the model is misspecified, we show that ψ̂T (w) is consistent
and asymptotically normal for a pseudo-true parameter ψ∗0(w) ∈ Ψ
that minimizes a transformed Kullback–Leibler (KL) divergence
between the true probability measure of the data and the measure
implied by the model.

we show that the transformed KL divergence takes the form of a
pseudo-metric that gives more weight to fitting the conditional
density of yt when W > 1 or 0 < w < 1.

for special case w = 1, we obtain the classical pseudo-true parameter
ψ∗0(1) ∈ Ψ of the ML estimator that minimizes the KL divergence.
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Weighted maximum likelihood : Monte Carlo study

DGP 1 for zt = (yt , x
′
t)
′ :

zt = βz ft + ut + εt , ετ ∼ NID
(
0, σ2ε I

)
,

where both ft and ut are AR(1)’s with φ = 0.8. Factor loadings in βz for y
is unity and for the ith x variable i−1. The variance of the AR(1)
disturbances is set to 0.25 and σ2ε = 0.5.

DGP 2 for zt = (yt , x
′
t)
′ :

zt = Φzt−1 + εt , ετ ∼ NID
(
0, σ2ε I

)
,

with diagonal values of Φ equal to 0.80 and off-diagonals are randomly
generated [−0.5, 0.5] st zt is stationary. Diagonal variance matrix for
VAR(1) disturbances with variances set to 0.25 and σ2ε = 0.5.
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Weighted maximum likelihood : Monte Carlo study

Scenario 1 ”underspecification” : DGP 1 but we consider DFM that has
only common dynamic factors, NOT the idiosyncratic dynamic factors ut ,
that is

zt = βz ft + εt , ετ ∼ NID
(
0, σ2ε

)
.

Scenario 2 ”misspecification” : DGP 2 but we consider DFM with common
dynamic factors only, NOT the idiosyncratic dynamic factors ut , that is

zt = βz ft + εt , ετ ∼ NID
(
0, σ2ε

)
.

Scenario 3 ”correct specification” : DGP 1 and we consider the same
model

zt = βz ft + ut + εt , ετ ∼ NID
(
0, σ2ε I

)
.

14 / 40



Monte Carlo results : average MSE for y

Sc 1 – underspec Sc 2 – misspec Sc 3 – c

W k = 2 k = 5 k = 10 k = 2 k = 5 k = 10 k = 2

1 1.000 1.000 1.000 1.000 1.000 1.000 1.0000
2 0.983 0.962 0.931 0.977 0.890 0.952 0.9996
3 0.974 0.947 0.889 0.973 0.737 0.891 0.9994
5 0.970 0.938 0.865 0.973 0.592 0.812 0.9992

10 0.968 0.928 0.844 0.972 0.509 0.718 0.9990
25 0.966 0.920 0.831 0.969 0.476 0.705 0.9988

1000 0.965 0.914 0.809 0.965 0.442 0.685 0.9986
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Monte Carlo results : Sc 1, average MSE
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Monte Carlo results : Sc 2, average MSE
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Low-frequency representation

Example is a monthly time series xmτ for a variable x that is observed on a
monthly basis (m) with monthly time index τ .

The monthly time series can be vectorized into a quarterly process for the
3× 1 observed vector xqt with quarterly time index t and for

xqt =

 xqt,1
xqt,2
xqt,3

 ≡
 xm3(t−1)+1

xm3(t−1)+2

xm3(t−1)+3

 ,

where xqt,i is i-th element of xqt and with i being ith month of quarter t.

We further have

t = 1, . . . , n, i = 1, 2, 3, τ = 1, . . . , 3n.

We can also represent monthly or quarterly series into yearly vector series.
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Low-frequency representation: AR(1)

Consider the monthly AR(1) process

xmτ = φxmτ−1 + εmτ

= φ2xmτ−2 + φεmτ−1 + εmτ

= φ3xmτ−3 + φ2εmτ−2 + φεmτ−1 + εmτ ,

where εmτ ∼ NID
(
0, σ2ε

)
.

The model representation for quarterly vector

xqt = (xm3(t−1)+1, x
m
3(t−1)+2, x

m
3(t−1)+3)′

is the VAR(1) process xqt = Txqt−1 + Rεqt where

T =

 0 0 φ
0 0 φ2

0 0 φ3

 , R =

 1 0 0
φ 1 0
φ2 φ 1

 ,

and εqt = (εm3(t−1)+1, ε
m
3(t−1)+2, ε

m
3(t−1)+3)′.
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Low-frequency representation: AR(3)

Consider the monthly AR(3) process

xmτ = φ1x
m
τ−1 + φ2x

m
τ−2 + φ3x

m
τ−3 + εmτ ,

where εmτ ∼ NID
(
0, σ2ε

)
.

Then model representation for quarterly vector xqt is the VAR(1) process
xqt = Txqt−1 + Rεqt where

T =

 φ3 φ2 φ1
φ1φ3 φ1φ2 + φ3 φ21 + φ2

φ21φ3 + φ2φ3 φ21φ2 + φ1φ3 + φ22 φ31 + 2φ1φ2 + φ3

 ,

R =

 1 0 0
φ1 1 0

φ21 + φ2 φ1 1

 ,

and εqt = (εm3(t−1)+1, ε
m
3(t−1)+2, ε

m
3(t−1)+3)′.
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Low-frequency representation: AR(p)

Similar representations are available for the monthly AR(p) process

xmτ = φ1x
m
τ−1 + φ2x

m
τ−2 + . . .+ φpx

m
τ−p + εmτ ,

where εmτ ∼ NID
(
0, σ2ε

)
.

For p > 3, we require the linear state space representation xqt = Zαt +Hεt
and αt+1 = Tαt + Rηt where dimension of state vector is p × 1.

These state space representations are straightforward and not used in
econometrics... but these representations are known and used in the
engineering and time series literature.

However, it turns out that exact likelihood evaluation for monthly AR
models with larger p, is also computed faster when AR process is
represented in quarterly state space representation !

Note : for quarterly series, less frequent updating necessary than for
monthly series !
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Low-frequency updating is computationally more efficient

Computing times (in seconds) State dim

Monthly Quarterly Yearly M Q Y
p (n = 12K) (n = 4K) (n = 1K)

1 10 13 61 1 3 12
2 11 16 67 2 3 12
3 26 18 76 3 3 12
4 41 27 85 4 4 12
5 59 40 92 5 5 12
6 83 56 100 6 6 12
7 106 73 108 7 7 12
8 129 90 116 8 8 12
9 154 111 124 9 9 12

10 191 137 133 10 10 12
11 226 162 139 11 11 12
12 265 190 146 12 12 12
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Mixed-frequency time series analysis

Mixed-frequency – dynamic factor model – forecasting/nowcasting

Much work is done on these topics :

Bridge models : Baffigi, Golinelli and Parigi (2004)

MIDAS : Ghysels, Foroni, Marcellino and Schumacher (2012)

MF-DFM : Mariano & Murasawa (2004), Marcellino, Carriero and
Clark (2014) Aruoba, Diebold & Scotti (2008), etc.

Forecasting/nowcasting : Bañbura et al. (2013), Bräuning and
Koopman (2014), Hindrayanto et al. (2014)
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Mixed-Frequency Model in Low-Frequency representation

Consider

monthly observed variable xmτ is modeled as the AR(1) process
xmτ+1 = φxx

m
τ + εmτ ;

quarterly observed variable yt is modeled by the AR(1) process
yt+1 = φyyt + ξt ;

We combine the two series into a quarterly vector process
yt+1

xqt+1,1

xqt+1,2

xqt+1,3

 =


φy 0 0 0
0 0 0 φx
0 0 0 φ2x
0 0 0 φ3x




yt
xqt,1
xqt,2
xqt,3



+


1 0 0 0
0 1 0 0
0 φx 1 0
0 φ2x φx 1




ξt
εqt,1
εqt,2
εqt,3

 ,

Here the time series are seemingly unrelated.
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Mixed Frequency Dynamic Factor Model: matrix notation

In matrix notation, we have
yt
xqt,1
xqt,2
xqt,3

 =


βy βy βy
βx 0 0
0 βx 0
0 0 βx


 f qt,1

f qt,2
f qt,3

+


ξt
εqt,1
εqt,2
εqt,3

 ,

with the vector autoregressive process for f qt given by

f qt+1 = Tf f
q
t + Rf η

q
t ,

It is straightforward to generalize the model further:

loading matrix structure;

higher or lower lag loadings on monthly factor;

dynamic specification for monthly factor;

covariance structure for disturbances.
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High-frequency representation with ”missing” values

Mariano and Murasawa (2003) approach : treat all series in high-frequency
(monthly); insert missings for low-frequency (quarterly), that is[

· · y3 · · y6 · . . . y3n
x1 x2 x3 x4 x5 x6 x7 . . . x3n

]
,

with model (
ỹmτ
xτ

)
=

(
βyg (fτ )
βx fτ

)
+

(
ξτ
ετ

)
where

g(aτ ) =
1

3
aτ +

2

3
aτ−1 + aτ−2 +

2

3
aτ−3 +

1

3
aτ−4.

and factor fτ follows and AR process.

26 / 40



Low-frequency solution by averaging monthly into quarterly

We average the monthly series into a quarterly series and we model the
low frequency only.

We have (
yt
x̄t

)
=

[
βy
βx

] (
ft
)

+

(
ξt
ε̄t

)
,
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Mixed Frequency Dynamic Factor Model : monthly factors

In matrix notation, MF dynamic factor model with k monthly variables
and with a monthly factor is given by

yt

x
q,(1)
t,1

x
q,(1)
t,2

x
q,(1)
t,3

...

x
q,(k)
t,1

x
q,(k)
t,2

x
q,(k)
t,3


=



βy βy βy

β
(1)
x 0 0

0 β
(1)
x 0

0 0 β
(1)
x

...

β
(k)
x 0 0

0 β
(k)
x 0

0 0 β
(k)
x



 f qt,1
f qt,2
f qt,3

+



ξt

ε
q,(1)
t,1

ε
q,(1)
t,2

ε
q,(1)
t,3
...

ε
q,(k)
t,1

ε
q,(k)
t,2

ε
q,(k)
t,3


,

with the vector autoregressive process for f qt given by

f qt+1 = Tf f
q
t + Rf η

q
t ,

representing monthly dynamics for the factors.
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Mixed Frequency Dynamic Factor Model : quarterly factors

In matrix notation, MF dynamic factor model with k monthly variables
and with a quarterly factor is given by

yt

x
q,(1)
t,1

x
q,(1)
t,2

x
q,(1)
t,3

...

x
q,(k)
t,1

x
q,(k)
t,2

x
q,(k)
t,3


=



βy

β
(1)
x

β
(1)
x

β
(1)
x
...

β
(k)
x

β
(k)
x

β
(k)
x


ft +



ξt

ε
q,(1)
t,1

ε
q,(1)
t,2

ε
q,(1)
t,3
...

ε
q,(k)
t,1

ε
q,(k)
t,2

ε
q,(k)
t,3


,

with an quarterly autoregressive process for ft .
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Empirical study: revisiting Mariano & Murasawa (2003)

Indicator Description

Quarterly
GDP Real GDP (billions of chained 1996 $, SA, AR)

Monthly
EMP Employees on non-agricultural payrolls (thousands, SA)
INC Personal income less transf.paym (bns chained 1996 $, SA, AR)
IIP Index of industrial production (1992 = 100, SA)
SLS Manufacturing and trade sales (mns chained $, SA)

Original data set : January 1959 upto December 2000.

Extended data set : January 1960 upto December 2009.
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Parameter estimates MFI, MM data

MFI Model

Parameter ∆ ln GDP ∆ ln EMP ∆ ln INC ∆ ln IIP ∆ ln SLS

β 1.00 0.49 0.81 2.14 1.74
(0.04) (0.06) (0.13) (0.11)

φF 0.56
(0.05)

σ2F 0.08
(0.01)

φu,1 -0.04 0.10 -0.05 -0.05 -0.41
(0.08) (0.04) (0.04) (0.07) (0.05)

φu,2 -0.83 0.45 0.03 -0.06 -0.20
(0.07) (0.05) (0.05) (0.06) (0.05)

σ2u,2 0.19 0.02 0.09 0.25 0.61

(0.04) (0.00) (0.01) (0.02) (0.04)

31 / 40



Parameter estimates MFS-M, MM data

MFS-M Model

Parameter ∆ ln GDP ∆ ln EMP ∆ ln INC ∆ ln IIP ∆ ln SLS

β 1.00 0.57 0.90 2.30 1.83
(0.04) (0.06) (0.13) (0.12)

φF 0.59
(0.04)

σ2F 0.06
(0.01)

φu,1 -0.40 0.07 -0.08 -0.01 -0.38
(0.09) (0.05) (0.05) (0.05) (0.05)

φu,2 -0.21 0.43 0.01 -0.05 -0.17
(0.16) (0.06) (0.07) (0.07) (0.07)

σ2u,2 0.27 0.02 0.09 0.27 0.64

(0.04) (0.00) (0.01) (0.03) (0.05)
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Parameter estimates MFS-Q, MM data

MFS-Q Model

Parameter ∆ ln GDP ∆ ln EMP ∆ ln INC ∆ ln IIP ∆ ln SLS

β 1.00 0.25 0.33 0.72 0.60
(0.02) (0.02) (0.04) (0.04)

φF 0.69
(0.06)

σ2F 0.25
(0.04)

φu,1 -0.30 0.11 0.10 -0.10 -0.37
(0.09) (0.05) (0.04) (0.05) (0.04)

φu,2 -0.13 0.24 -0.06 -0.11 -0.20
(0.13) (0.07) (0.05) (0.06) (0.06)

σ2u,2 0.24 0.03 0.10 0.34 0.74

(0.03) (0.00) (0.01) (0.02) (0.05)
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Parameter estimates MFA, MM data

MFA Model

Parameter ∆ ln GDP ∆ ln EMP ∆ ln INC ∆ ln IIP ∆ ln SLS

β 1.00 0.67 0.95 2.18 1.77
(0.06) (0.08) (0.12) (0.11)

φF 0.68
(0.06)

σ2F 0.26
(0.04)

φu,1 -0.27 0.69 -0.05 -0.14 -0.22
(0.09) (0.11) (0.08) (0.11) (0.08)

φu,2 -0.11 0.09 -0.03 -0.05 -0.19
(0.12) (0.11) (0.10) (0.14) (0.10)

σ2u,2 0.25 0.06 0.40 0.56 1.11

(0.03) (0.01) (0.05) (0.10) (0.13)
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Forecast comparison for US GDP growth 2000-2009

We compare the forecasts of the different mixed-frequency dynamic factor
model with the benchmark models ”Bridge model” and ”MIDAS
regressions”. Parameter estimates obtained by ML (unweighted).

h = 0 h = 1 h = 2 h = 3 h = 6

MFI 0.1779 0.1918 0.2340 0.3156 0.4023
MFS-M 0.1666 0.1730 0.2108 0.2935 0.3986
MFS-Q 0.1765 0.1909 0.2411 0.2989 0.3701
MFA 0.1693 0.2809 0.3754
BM 0.1833 0.2056 0.2455 0.3046 0.4180
MIDAS 0.1597 0.1658 0.2464 0.3635 0.4873
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In-sample accuracy using WML

MSEs of in-sample one-step ahead predictions for different W .
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Forecast comparison for US GDP with WML

W h = 0 h = 1 h = 2 h = 3 h = 6

1 0.1666 0.1730 0.2108 0.2935 0.3917
2 0.1600 0.1689 0.2049 0.2826 0.3708
3 0.1571 0.1674 0.2028 0.2783 0.3614
4 0.1556 0.1670 0.2013 0.2759 0.3534
5 0.1517 0.1703 0.2004 0.2745 0.3662
6 0.1513 0.1560 0.1914 0.2777 0.3733
7 0.1611 0.1668 0.2034 0.2773 0.3715
8 0.1608 0.1670 0.2033 0.2772 0.3699
9 0.1612 0.1682 0.2032 0.2775 0.3683

10 0.1614 0.1690 0.2033 0.2781 0.3662
11 0.1615 0.1698 0.2035 0.2786 0.3577
12 0.1617 0.1705 0.2037 0.2792 0.3572
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Forecast comparison for US GDP with WML W = 6

h = 0 h = 1 h = 2 h = 3 h = 6

MFI 0.1787 0.1885 0.2078 0.2841 0.3629
MFS-M 0.1513 0.1560 0.1914 0.2777 0.3733
MFS-Q 0.1630 0.1676 0.2249 0.2849 0.3670
MFA 0.1576 0.2809 0.3677
BM 0.1833 0.2056 0.2455 0.3046 0.4197
MIDAS 0.1597 0.1658 0.2464 0.3635 0.4873
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Forecast comparison for US GDP with optimal WML

Mean Square Error
h = 0 h = 1 h = 2 h = 3 h = 6

MFI 0.1687 0.1765 0.1966 0.2835 0.3559
MFS-M 0.1513 0.1560 0.1914 0.2745 0.3593
MFS-Q 0.1629 0.1670 0.2215 0.2835 0.3621
MFA 0.1576 0.2769 0.3566
BM 0.1833 0.2056 0.2455 0.3046 0.4197
MIDAS 0.1597 0.1658 0.2464 0.3635 0.4873

Optimal vale of W
h = 0 h = 1 h = 2 h = 3 h = 6

MFI 2 2 2 5 2
MFS-M 6 6 6 5 4
MFS-Q 7 8 3 3 2
MFA 6 2 8
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Conclusions

We have presented some further developments for the forecasting of
macroeconomic variables using mixed-frequency dynamic factor models:

estimate parameters by weighted maximum likelihood method;

base analysis on low-frequency representations of high-frequency
dynamics.

More further work can be considered:

use of low-frequency representations in other mixed-frequency
dynamic models;

carry out a more in-depth study into what type of misspecification
can be treated effectively by WML;

obtain more specific asymptotic results and analysis (under which
conditions do we obtain higher asymptotic precision with WML).
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