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Abstract

This article introduces frequency domain minimum distance procedures for performing infer-

ence in general possibly non causal and/or noninvertible autoregressive moving average (ARMA)

models. We use information from higher order moments to achieve identification on the location

of the roots of the AR and MA polynomials for non-Gaussian time series. We study minimum

distance estimation that combines the information contained in second, third, and fourth mo-

ments. Contrary to existing estimators, the proposed estimator is consistent under general

assumptions, and can improve on the effi ciency of the estimates based on second order moments

only.

Keywords and Phrases: nonfundamentalness; higher-order moments; higher-order spectra;

noninvertible moving average; minimum phase.

1. INTRODUCTION

Estimation of autoregressive-moving average (ARMA) models is typically performed under causal-

ity and invertibility assumptions using second-order procedures, such as least squares or some vari-

ant of the Gaussian maximum likelihood (ML) estimator. Causality and invertibility are crucial

assumptions when using second-order estimation procedures since these cannot identify non-causal

or non-invertible representations. Hence, for estimation of Gaussian ARMA processes causality and

invertibility need to be imposed. For non-Gaussian ARMA models the causality and invertibility
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assumptions are not necessary and not always justified, and, in fact, non-causal or non-invertible

ARMA models have been employed in many areas such as economics, seismology, engineering or

astronomy; for some examples in economics see Alessi, Barigozzi, and Capasso (2011), Hansen and

Sargent (1980, 1991), Huang and Pawitan (2000), Leeper, Walter, and Yang (2013), and Montford

and Uhlig (2009).

The literature devoted to estimating general non-standard ARMA models can be classified ac-

cording to two criteria. The first criteria is whether the distribution for the innovations is assumed

to be known or unknown, so either Maximum likelihood or alternative approaches, such as those

based on methods of moments, are used. The second criteria is whether estimation is performed in

one or in two steps. Estimation in one step attempts to estimate the general possibly non-causal

non-invertible ARMA models irrespectively of whether the absolute values of the roots of AR and

MA polynomials are larger or smaller than one. Estimation in two steps consists of performing an

initial first step where a causal and invertible model is estimated using standard procedures, and

then, in a second step, an ARMA all-pass model, which is a model where all the roots of the AR

part are the inverse of the roots of the MA part, is fitted to the first-step white noise residuals.

Lii and Rosenblatt (1992) investigate the properties of a one-step approximate maximum likelihood

procedure for the possibly noninvertible moving average case where the exact distribution of the

innovations is known. Breidt, Davis and Trindade (2001) propose a two-step estimation where the

least absolute deviation (LAD) estimator is applied to the first step white noise all pass residuals.

This LAD estimator coincides with the maximum likelihood estimator for a Laplacian distribution

of the innovations. Andrews, Davis and Breidt (2007) extend the previous article to rank-estimators

so they can dispose of the Laplacian assumption. Using also a two step approach, Kumon (1992)

proposes estimates based on the extension to higher order spectral densities of the frequency domain

Whittle (1953) estimate first order conditions. In a spirit similar to Kumon, Ahn, Leonenko and

Sakhno (2007) propose estimates based on related estimating equations using weighted higher order

periodograms. Note that in both references, identification is achieved by introducing arbitrary

conditions on the sign of the higher order cumulants of the innovation (Kumon) or on some weighting

function that controls the sign of the cumulant (Ahn et al.). Lanne and Saikkonen (2011) employ a

two-step strategy for estimating general noncausal AR models by maximum likelihood.

ML procedures are subject to the usual arbitrariness criticism, whereas the two step approach

presents the obvious problem of independently estimating twice the same parameters, so it is unclear

the asymptotic properties of the final estimates recovered from these two steps. In addition, the

second step is only meaningful when the first step residuals are non-independent white noise, hence

an independence test should be implemented between the two steps, which is not typically considered.

These criticisms lead to the conclusion that, ideally, one would like to employ a one step estimation

2



procedure without restricting the distribution of the innovations.

This article proposes a one-step estimator that does not rely on arbitrary distributional assump-

tions nor on arbitrary identification conditions. The only requisites we need for identification is that

some higher order cumulant (either the third or the fourth) is non zero and that the innovations are

independent up to this order. In particular, we follow the approach of Brillinger (1985), and propose

minimum distance (MD, hereinfater) procedures based on second and higher order information in

the frequency domain. Minimum distance procedures have also been employed in the time domain,

see Ramsey and Montenegro (1992), Amano and Lobato (2012) and Gospodinov and Ng (2012), but

these time-domain minimum distance estimators are ineffi cient since they only employ a finite num-

ber of moment conditions. An additional advantage of carrying out the analysis in the frequency

domain is the useful asymptotic properties of the frequency domain statistics when evaluated at

Fourier frequencies, see details in Section 2.

The first contribution of this article is to establish global identification of the parameters of

a possibly non-causal non-invertible ARMA model using higher order spectral densities as long

as some higher order cumulant of the innovations is not zero. This theorem motivates a general

minimum distance frequency domain objective function (OF, hereafter) that, similar to Brillinger

(1985) or Terdik (1999), employs the information in second, third and fourth moments. The second

contribution of this article is to establish the consistency and the asymptotic normality of estimators

based on this objective function for ARMA models irrespective of noncausality or noninvertibility.

Hence, for general ARMA models with no distributional assumptions, this article is the first one to

establish a one step estimation method with rigorously established statistical properties. Also note

that the proposed procedures overcome the need of using tests for causality or invertibility, tests for

independence, and our theory also cover all-pass models, both ignoring or using such configuration.

The general objective function studied in this paper weights the information coming from second,

third and fourth moments. The particular case of ignoring third and fourth moments leads to a

minimum distance estimator, based just on second moments, which is shown to be asymptotically

equivalent to the effi cient Whittle estimator, the Gaussian quasi ML estimator (QMLE). Using the

information contained in higher order moments does not only achieve identification, but also, under

certain conditions, may improve on the effi ciency with respect to the Whittle estimator.

Although the article focus on identification and estimation of ARMA models,we emphasize that

great part of the technical proofs for the asymptotic properties of parameter estimates are estab-

lished for general linear models where the parametric filter function is smooth enough. A technical

contribution of the article, of independent interest, is a central limit theorem (CLT) for martingales

where the leading term are centered powers of the innovations.

The article is structured as follows. Section 2 introduces the notation and the model, and recalls

3



the basics properties of the (higher-order) periodograms. Section 3 studies the identification of non-

causal/noninvertible ARMA models. Section 4 presents the proposed minimum distance estimator,

and establishes its asymptotic properties. Section 5 contains simulations, and Section 6 concludes.

Proofs and two auxiliary lemmas are contained in the appendices.

2. NOTATION, MODEL AND BASICS OF PERIODOGRAMS

2.1 Notation

Consider a stationary stochastic process {Yt}t∈Z with E[Y 2
t ] <∞ and call µ = E[Yt]. Define the

autocovariance of order j as

γj = Cov(Yt, Yt−j) = E[(Yt − µ)(Yt−j − µ)], for j = 0,±1, . . . ,

and the j-th order autocorrelation as ρj = γj/γ0. The spectral density, f(λ), is defined implicitly as

γj =

∫ π

−π
f(λ) exp(−ijλ)dλ.

The autocovariance sequence and the spectral density are measures of the dependence of the sto-

chastic process based on second moments, hence they are the objects of interest of usual time series

analysis. The dependence contained in higher order moments can also be described by the cumulants

which are defined in terms of higher order moments as

cum(Y1, . . . , Yk) =
∑

(−1)p−1(p− 1)!E(Πj∈ν1Yj) · · ·E(Πj∈νpYj), k = 1, 2, . . .

assuming E[|Yt|k] < ∞ and where ν1, . . . , νp is a partition of (1, 2, . . . , k) and the sum runs over

all these partitions, see Brillinger (1975) or Rosenblatt (1985, p. 34). Hence, the first and second

cumulants are the mean and the variance, respectively.

We also define the k-th order cumulant spectral density k = 2, 3, . . . , which is the Fourier transform

of the k-th order cumulant, as

fk(λ) = fk(λ1, . . . , λk−1) =
1

(2π)
k−1

∞∑
j1,...,jk−1=−∞

cum(Yt, Yt+j1 , . . . , Yt+jk−1) exp

(
−
k−1∑
s=1

ijsλs

)
,

(1)

introducing for simplicity, when there is no ambiguity, the notation λ = (λ1, . . . , λk−1). Note that

the usual spectral density is then recovered for k = 2, while fk can be complex valued for k > 2,

unlike f = f2 which is always real valued.

From a sample of size T, one can consistently estimate the higher order moments and cumulants

by their sample analogs. In order to address estimation of the higher order spectral densities, first

we recall the definitions of the finite Fourier transform as

w(λ) =

T∑
t=1

Yt exp(−itλ),
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and of the standard second order periodogram

I(λ) =
1

2πT
w(λ)w(−λ) =

1

2πT
|w(λ)|2 . (2)

Expression (2) can be easily extended to define the higher order periodogram of order k as

Ik(λ) = Ik(λ1, . . . , λk−1) =
1

(2π)
k−1

T

k−1∏
j=1

w(λj)w(−
k−1∑
i=1

λi), (3)

where we use the notation in (1). In particular, the statistic I3(λ1, λ2) is called the biperiodogram,

which is the natural (although inconsistent) estimator of the bispectral density, f3(λ1, λ2), and the

triperiodogram, I4(λ1, λ2, λ3) that is the natural estimator of the trispectral density, f4(λ1, λ2, λ3).

Similar to the periodogram, both biperiodogram and triperiodogram are asymptotically unbiased

estimators but inconsistent. In particular, we have that, under Assumption 1 below, the following

properties hold for fixed frequencies λ, k = 2, 3, . . . ,

E [Ik(λ)] = fk(λ) + o(1), (4)

and when λ 6= 0mod 2π,

Var [Ik(λ)] = T k−2 ((k − 1)!f(λ1)f(λ2) · · · f(λk−1)f(λ1 + λ2 + · · ·+ λk−1) + o(1)) (5)

as T → ∞. Note that these properties hold under a variety of weak dependence conditions, for

instance, mixing or summability of cumulants, see Brillinger (1975), Rosenblatt (1985, p. 172-173)

or Alekseev (1993). Note also that by tapering these variances can be reduced, see Alekseev (1993).

In this article, as it is common in time series analysis, we are going to evaluate the statistics at the

Fourier frequencies defined as λj = 2πj
T , for j = 1, . . . , T −1. The main reason is that when evaluated

at (different) Fourier frequencies (λ 6= λ′) the higher order spectra are asymptotically uncorrelated,

that is

Cov(Ik(λ), I`(λ
′)) = o

(
T (k+`−4)/2

)
, k, ` = 2, . . . (6)

as T tends to infinity for almost all λ and λ′ (not satisfying some particular linear restrictions),

where we use the notation in (1), see for instance Lemma 1 in p. 172 in Rosenblatt (1985), and

Theorems 2 and 4 in Alekseev (1993).

2.2 Model

We assume that Yt is given by

Yt = µ+

∞∑
j=−∞

ψjεt−j , (7)

where εt is iid(0, κ2) with bounded moments of order k ≥ 3 and
∑∞
j=−∞ ψ2

j <∞ (see Assumptions

1 and 2 below).
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A model establishes a structure on the ψ′js in terms of some parameter vector θ ∈ R :

ψj = ψj(θ),

and the target is the estimation of θ. This article focuses on ARMA(p, q) models where

α(L)Yt = β(L)εt (8)

where the polynomials α(L) = 1 −
∑p
j=1 αjL and β(L) = 1 +

∑q
j=1 βjL are of order p and q

respectively, have all their roots away the unit circle, inside or outside, and do not have any common

roots. Denote the model parameters by θ = (α1, . . . , αp, β1, . . . , βq)
′ ∈ Γp,q = {θ ∈ Rp+q : α(z) 6=

0, β(z) 6= 0 for |z| = 1, αp 6= 0, βq 6= 0}. Since θ can be expressed as a continuous function

θ (ϕ) , ϕ =(a1, . . . , ap, b1, . . . , bq)
′ of the zeroes a1, . . . , ap of α(·) and b1, . . . , bq of β(·), the parameter

set Γp,q is the image under θ (·) of the set

Ap,q =

 ϕ =(a1, . . . , ap, b1, . . . , bq)
′ ∈
bp/2c+bq/2c
∪
r=0

(
Rp+q−2r ∪ C2r

∗
)

:

|ai| 6= 0, 1, |bj | 6= 0, 1, ai 6= bj , i = 1, . . . , p, j = 1, . . . , q

 ,

where C2
∗ =

{
(a, b) ∈ C2 : b = ā

}
denotes the space of pairs of complex conjugate numbers to

guarantee that θ is real.

Model (7) establishes that f(λ) = f(θ, κ2;λ) where

f(θ, κ2;λ) =
κ2

2π
φ2(θ;λ),

and we employ κj to denote the j-th order marginal cumulant of εt, so that κ2 is its variance, with

φ2(θ;λ) = φ(θ;λ)φ(θ;−λ),

where we denote the transfer function of the filter
{
ψj
}∞
j=−∞ by

φ(θ;λ) =

∞∑
j=−∞

ψj(θ) exp(−ijλ).

For instance, for the ARMA model (8)

φ(θ;λ) =
1 +

∑q
j=1 βj exp(−ijλ)

1−
∑p
j=1 αj exp(−ijλ)

. (9)

In addition, model (7) establishes that fk(λ) = fk(θ, κk;λ) where

fk(θ, κk;λ) =
κk

(2π)k−1
φk(θ;λ), (10)

where

φk(θ;λ) = φ(θ;λ1) · · ·φ(θ;λk−1)φ(θ;−λ1 − · · · − λk−1).
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Then, it is simple to show the following relation that will be used later for understanding the role

that higher order terms have in our final OF,

|fk(θ, κk;λ)|2 =
ν2
k

(2π)
k−2

f(θ, κ2;λ1) · · · f(θ, κ2;λk−1)f(θ, κ2;λ1 + · · ·+ λk−1), (11)

where

ν2
k =

κ2
k

κk2

is the square of the standardized cumulant of order k, in particular ν3 and ν4 are the skewness and

kurtosis coeffi cients, respectively.

3. IDENTIFICATION OF NONCAUSAL/NONINVERTIBLE ARMA MODELS

USING HIGHER ORDER SPECTRA

Although the standard spectral density f = f2, based on second moments, cannot identify the

parameters in the noninvertible/noncausal case, identification can be achieved by using the infor-

mation about these parameters contained in the higher order spectral densities. The next theorem

shows that the L2 distance of the higher order spectral density identifies the correct values of the

parameters for an ARMA model, defined in (8). Denote Π = [−π, π] and dλ = dλ1 · · · dλk−1.

assumption A(p, q) : The polynomials α(L) and β(L) of order p and q respectively have roots

ϕ ∈ Ap,q (η) for some η > 0, where

Ap,q (η) =

 ϕ =(a1, . . . , ap, b1, . . . , bq)
′ ∈
bp/2c+bq/2c
∪
r=0

(
Rp+q−2r ∪ C2r

∗
)

:

min {|ai| , |bj | , ||ai| − 1| , ||bj | − 1| , |ai − bj |} ≥ η > 0, i = 1, . . . , p, j = 1, . . . , q

 .

Consider a positive weighting function g (θ;λ) , possibly depending on θ, which is uniformly

bounded away from zero and from above for all λ ∈ Πk−1and θ ∈ Θ.

Theorem 1: Consider an ARMA( p, q) model (8) with true roots ϕ0 satisfying Assumption A(p, q)

and κ0
k 6= 0 for some k ≥ 3. Then for all θ ∈ Θ ⊂ Γp,q, Θ compact, and all η > 0 there exists an

ε > 0 such that

inf
θ∈Θ:‖θ−θ0‖>η,κk∈R

∫
Πk−1

∣∣fk(θ, κk;λ)− fk(θ0, κ
0
k;λ)

∣∣2 g (θ;λ) dλ ≥ ε > 0. (12)

The weighting function g (θ;λ) could be for instance |φk(θ;λ)|−2 to allow for periodogram optimal

normalization, since MA unit roots are excluded in the definition of Θ, as is proposed in Terdik (1999,

equation (4.3)). The identification provided in Theorem 1 relies on the next lemma, which will be

proved for k = 3 only, the extension to k ≥ 4 is straightforward. Denote by S the discrete set of

all potential roots obtained by inversion of the elements of ϕ0 (whose cardinality is 2n − 1 where

n = p+q−r and r is the number of pairs of complex roots determined by ϕ0) so that complex roots
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always appear in conjugate pairs and S ⊆ Ap,q. Then fk(θ (ϕ) , κk;λ) is the spectral density of order

k of the ARMA process (8) calculated from (9) and (10) expressed in terms of ϕ, the roots of the

AR and MA polynomials, rather than in terms of the parameters θ. Note that θ (ϕ) is a continuous

function ϕ ∈ Ap,q.

Lemma 1: Consider an ARMA( p, q) model (8) with true roots ϕ0 satisfying Assumption A(p, q)

and κ0
k 6= 0 for some k ≥ 3. Then

inf
ϕ∈S,κk∈R

∫
Πk−1

∣∣fk(θ (ϕ) , κk;λ)− fk(θ (ϕ0) , κ0
k;λ)

∣∣2 g (θ;λ) dλ > 0.

Proofs and technical results are contained in the Appendices A and B. Lemma 1 shows that for

any ϕ 6= ϕ0 that belongs to the set S, the resulting spectral density is different of fk(θ (ϕ0) , κ0
k;λ)

for all λ ∈ Πk−1 whatever choice of κk if k ≥ 3. The proof relies on the fact that it is not possible to

choose κk so that both the real and imaginary parts of fk(θ (ϕ) , κk;λ) match simultaneously those

of fk(θ (ϕ0) , κ0
k;λ). Note, however, that this is indeed possible for k = 2 because f = f2 is real and

it is always possible for any ϕ ∈ S to find a value κ2 that satisfies f2(θ (ϕ) , κ2;λ) = f2(θ (ϕ0) , κ0
2;λ)

for all λ ∈ Π. This result holds also when allowing for unit roots in the MA polynomial, since this

fact will not affect the integrability of fk, noting that in case of real unit roots (i.e. ±1) the inversion

leads to the same solution, so this case should be excluded from S. Then, in order to prove Theorem

1 only remains to consider elements ϕ outside S, which can not replicate the transfer function φ(θ;λ)

under the identification of the orders (p, q) in Assumption A(p, q) .

In particular, for k = 3 Theorem 1 shows that, when the third order cumulant κ3 is different from

0, the bispectral density can be used to identify the parameters of an noninvertible linear model. By

a similar reasoning, the trispectral density, f4, can be used for identification when the fourth order

cumulant is different from 0.

4. MINIMUM DISTANCE ESTIMATION

4.1 Minimum distance approach

In order to make inference on the parameter vector θ, we propose to employ minimum distance

estimators based on the normalized distance between the data, reflected in the higher-order peri-

odogram, Ik(λ), and the model, reflected in the parameterization of the spectral density of order k,

fk(θ, κk;λ). In particular, using (4) and (5) we employ

Lk(θ, κk) =

∫
E |Ik(λ)− fk(θ, κk;λ)|2

T k−2f(λ1) · · · f(λk−1)f(λ1 + λ2 + · · ·+ λk−1)
dλ.

Note that in the k = 2 case the modulus is not needed since both the periodogram and the spectral

density are real. However, for k > 2, both Ik(λ) and fk(θ, κk;λ) are complex. Note also that using
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(11), Lk(θ, κk) can be written as

Lk(θ, κk) =
ν2
k

(2π)
k−2

∫
E |Ik(λ)− fk(θ, κk;λ)|2

T k−2 |fk(λ)|2
dλ,

this expression is relevant to show the role played by the higher order cumulants when adding up

the sample analogues of Lk(θ, κk) in Subsection 4.3.

Then, the L2 distance estimator of θ is based on minimizing the empirical analogue of Lk(θ, κk),

scaling each periodogram ordinate by its variance, which can also be interpreted in terms of data

standardization to make comparable Lk for different k. Note that the scaling is well defined when unit

roots and long memory are excluded in the parameter space, so that 0 < f(λ) <∞ for all λ. Since

the denominator depends on the true unknown spectral density, we propose to employ the traditional

Whittle estimators under invertibility and causality identification as preliminary estimators of θ and

κ2, denoted by θT and κ2T so that f(θT , κ2T ;λj1) is invariant if the roots implied by θ are inverted

and κ2 is adjusted accordingly. Then, the objective function based on fk(θ, κk;λ) is

LkT (θ, κk) =
1

T

T−1∑
j=1

|Ik(λj)− fk(θ, κk;λj)|2

T k−2f(θT , κ2T ;λj1) · · · f(θT , κ2T ;λjk−1)f(θT , κ2T ;λj1 + λj2 + · · ·+ λjk−1)
,

(13)

where we have simplified the notation by introducing the general k-dimensional vector of Fourier

frequencies λj = (λj1 , . . . , λjk−1) and by writing
∑T−1

j=1 =
∑T−1
j1=1 · · ·

∑T−1
jk−1=1 where we discard all

combinations of frequencies such that λja + λjb = T, a 6= b. This avoids referring in the notation

to specific sets of λj ∈ Πk−1 where the periodogram can be defined uniquely, see the discussion in

Aleeksev (1993) and Appendix B. The normalization by preliminary estimates of f does not affect

asymptotic properties of parameter estimates and greatly simplifies the analysis when compared to

the case where scaling is simultaneously estimated, cf. Section 4 in Terdik (1999).

4.2 Concentrating the Cumulants out of the Objective Function

Note that in the minimization of the previous objective function (13), the cumulant κk is a nuisance

parameter that only appears in LkT , hence, although eventually the final objective function is a

weighted average of the LkT’s, we can focus on LkT to concentrate out κk. Also note that κ2T is

only a scaling factor in LkT (θ, κk), but it is needed to make comparisons among different k′s. First,

recalling (11), then (13) can be written as

LkT (θ, κk) =
(2π)

k

κk2T

1

T

T−1∑
j=1

|Ik(λj)− fk(θ, κk;λj)|2

T k−2
∣∣φk(θT ;λj)

∣∣2 .
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Considering the FOC of minimizing LkT (θ, κk) respect to κk, after straightforward algebra, it is

simple to concentrate out κk, and define

κkT (θ) = (2π)
k−1

T−1∑
j=1

|φk(θ;λj)|2
|φk(θ̄T ;λj)|2

−1
T−1∑
j=1

Re (Ik(λj)φk(θ;−λj))
|φk(θ̄T ;λj)|2

.

The fact that |φk(θ̄T ;λj)|2 is a consistent estimator for |φk(θ;λj)|2 up to scale, even if obtained

from Whittle estimation under (possibly wrong) invertibility and causality assumptions, motivates

the simpler estimate

κ†kT (θ) =

(
2π

T

)k−1 T−1∑
j=1

Re

(
Ik(λj)

φk(θ;λj)

)
. (14)

So, a consistent estimator for κk is obtained by plugging in a consistent estimator of θ into (14) for

k = 2, 3, 4, and the concentrated objective function is defined as

L̃kT (θ) = LkT (θ, κ†kT (θ)).

4.3 Weighted Objective Function

In principle, frequency domain minimum distance estimators would combine the information con-

tained in f2, f3 and f4, but higher order fk could be considered when κ3 = κ4 = 0. Hence, general

minimum distance estimators are based on minimizing the weighted sum

w̃2L̃2T (θ) + w̃3L̃3T (θ) + w̃4L̃4T (θ)

where (w̃2, w̃3, w̃4) are some positive weights that can give more emphasis to information from

a particular moment or cumulant. In Subsection 4.5 we address the issue of optimally selecting

the weights. Note that the individual objective functions lead to first order conditions that are

correlated, despite the individual (scaled) periodograms are uncorrelated, leading to contributions

in the asymptotic variance of the estimates using simultaneously more than one L̃kT (θ).

An additional insight for this objective function can be gained by calling ṽ2
kT = κ̃2

kT /κ̄
k
2 where

κ̃kT = κ†kT (θ̃T ) and θ̃T is a preliminary consistent estimate of θ, and defining

L̃0
kT (θ) =

(2π)
k−2

ṽ2
kT

L̃kT (θ) =
1

T k−1

T−1∑
j=1

∣∣∣Ik(λj)− f†k(θ;λj)
∣∣∣2∣∣fk(θ̄, κ̃kT ;λj)

∣∣2 ,

so that

L̃kT (θ) = (2π)
2−k

ṽ2
kT L̃

0
kT (θ), (15)

then we define the general family of minimum distance frequency domain estimators

θT = arg min
θ∈Θ

L̃wT (θ),
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where we rewrite the loss function as

L̃wT (θ) = w2L̃
0
2T (θ) + w3ṽ

2
3T L̃

0
3T (θ) + w4ṽ

2
4T L̃

0
4T (θ), (16)

noting that ṽ2
kT L̃

0
kT (θ) does not depend on κ̃2

kT , while the factors (2π)
k−2 are absorbed by the

constants w3 and w4. This version of the objective function makes evident that the role played by

the higher order cumulant spectral densities is larger the larger are the skewness and the kurtosis

for fixed (w1, w2, w3), because the second derivative of L̃0
kT (θ) evaluated at θ0 converges to the same

scale free constant matrix for all k = 2, 3, . . . up to a scalar factor that depends only on k. Further,

the variance of the score of L̃0
kT (θ0) varies inversely with ν2

k for k > 2.

4.4 Asymptotic Theory

Given the linear nature of the model, the dependence condition we employ is just based on restrict-

ing the moments of εt together with an i.i.d. assumption, whereas conditions on the summability of

the ψ′s are directly implied by the ARMA parametrization since unit roots are excluded.

We introduce Assumption 1 on the parameter space for identification and Assumption 2 on the

innovations.

assumption 1: Yt follows an ARMA( p, q) model (8) with true roots ϕ0 satisfying Assumption

A(p, q) with Θ ⊂ Γp,q compact.

assumption 2: The process εt is an i.i.d. sequence with zero mean, variance κ2 > 0, κ0
k 6= 0 for

k = 3, 4, and E
[
ε8
t

]
<∞.

Under these conditions the results (4) and (5) hold because the ARMA model implies smooth

spectral densities. The next two theorems establish the asymptotic properties of the estimator of θ

that minimizes (16).

Theorem 2: Under Assumptions 1 and 2, as T →∞

θT →p θ0,

and for k = 2, 3, 4,

κ†kT (θT )→p κk.

In addition to consistency, the next theorem establishes the asymptotic normality. Define

Φ0 =
1

2π

∫ π

−π
ϕ1(θ0;λ)ϕ1(θ0;−λ)′dλ (17)

with ϕ1(θ0;λ) = ϕ(θ0;λ)− µ(θ0),

ϕ(θ0;λ) =
φ̇ (θ0;λ)

φ (θ0;λ)
, µ(θ0) =

1

2π

∫ π

−π
ϕ(θ0;λ)dλ, (18)

11



and with

φ̇(θ0;λ) =
∂

∂θ
φ(θ0;λ).

Define also

Φ∗0 =
1

2π

∫ π

−π
ϕ1(θ0;λ)ϕ1(θ0;λ)′dλ,

and note that Φ∗0 is zero for pure invertible and causal processes because in this case ϕ
1 = ϕ has no

constant term in its Fourier expansion. Note that both Φ0 and Φ∗0 are real because imaginary parts

of the integrands are odd and cancel out in the integration. Then, define the symmetric matrix

V =


Φ0 + Φ∗0

3
2 (Φ0 + Φ∗0) 2 µ̄4ν4 (Φ0 + Φ∗0)

9
4

{
µ̄4−1
ν23

Φ0 + Φ∗0

}
3
{
µ̄5−ν3
ν3ν4

Φ0 + µ̄4
ν4

Φ∗0

}
4

{
µ̄6−ν23
ν24

Φ0 +
(
µ̄4
ν4

)2

Φ∗0

}
 ,

where µ̄4 = µ4/κ
2
2 = ν4 + 3, µ̄5 = µ5/κ

5/2
2 = ν5 + 10ν3 and µ̄6 = µ6/κ

3
2 = ν6 + 10ν2

3 + 15ν4 + 15 > 0

are the standardized fourth, fifth and sixth moments, respectively.

Theorem 3: Under Assumptions 1 and 2, as T →∞,
√
T (θT − θ)→d N(0,Σ−1

0 Ω0Σ−1
0 )

where

Σ0 =

(
w2 +

3

2
w3ν

2
3 + 2w4ν

2
4

)
Φ0 + w2Φ∗0

is assumed positive definite and

Ω0 =

4∑
j=2

4∑
k=2

wjwkν
2
jν

2
kVj−1,k−1.

The expressions for Σ0 and Ω0 illustrate that the larger, relatively, are w3ν
2
3 and w4ν

2
4, the more

important is the contribution from these particular moments in the estimation method, while the

dependence of the asymptotic variance of θT on higher order moments is reflected in the elements

of V .

From this result we can obtain the properties of many specific estimates using a single spectral

density setting wj = 0, 1, as we do in the next Corollary. Define θ(k)
T as the L2-distance estimate

using only spectral densities of order k = 2, 3, 4, i.e., wk = 1, wj = 0, j 6= k.

Corollary 1: Under the conditions of Theorem 3, assuming that for θ̂
(2)

T Θ correctly identifies the

location of the roots of θ0, as T →∞,

√
T


θ

(2)
T − θ0

θ
(3)
T − θ0

θ
(4)
T − θ0

→d N (0,W )
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where

W =


(Φ0 + Φ∗0)

−1
Φ−1

0
µ̄4
ν4

Φ−1
0

µ̄4−1
ν23

Φ−1
0 + Φ−1

0 Φ∗0Φ−1
0

µ̄5−ν3
ν3ν4

Φ−1
0 + µ̄4

ν4
Φ−1

0 Φ∗0Φ−1
0

µ̄6−ν23
ν24

Φ−1
0 +

(
µ̄4
ν4

)2

Φ−1
0 Φ∗0Φ−1

0

 .

Remark 1: Corollary 1 shows that the asymptotic variances of θ(3)
T and θ(4)

T are smaller the larger

are ν3 and ν4, respectively, i.e. the more information is contained in these particular higher order

moments.

Remark 2: For pure invertible and causal processes, W simplifies to

W =


1 1 µ̄4

ν4
µ̄4−1
ν23

µ̄5−ν3
ν3ν4

µ̄6−ν23
ν24

⊗ Φ−1
0 .

Then the asymptotic variance of θ̂
(2)

T equals the usual Whittle result for invertible and causal

models, using that in this case Φ∗0 = 0, so

(Φ0 + Φ∗0)
−1

= 4π

(∫ π

−π
ϕ2(θ0;λ)ϕ2(θ0;−λ)′dλ

)−1

,

since ϕ1 = ϕ and
∫

Π
ϕ2(θ0;λ)ϕ2(θ0;−λ)′dλ = 2

∫
Π
ϕ(θ0;λ)ϕ(θ0;−λ)′dλ. In Appendix C we show

that the estimates are also asymptotically equivalent in this case. We also note that the asymptotic

variance of θ̂
(3)

T is positive definite (given that Φ0 is positive definite) since µ̄4 − 1 = µ̄4 − µ̄2
2 =

2 + ν4 ≥ 0, so that ν4 ≥ −2 while ν2
3 > 0 by assumption. Similarly µ̄6 − ν2

3 = µ̄6 − µ̄2
3 ≥ 0 and the

variance of θ̂
(4)

T is also positive semidefinite.

Remark 3: Note that for invertible processes µ0, defined in (18), equals 0, so that Φ0 simplifies to

1

2π

∫ π

−π
ϕ(θ0;λ)ϕ(θ0;−λ)′dλ,

but for general noninvertible cases the expression for µ0 has to be considered. For instance, for a

simple noninvertible MA(1) process, |θ0| > 1, from Cauchy formula, it is simple to show that

µ0 =
1

2π

∫ π

−π

eiλ

1 + θ0eiλ
dλ =

1

2πi

∮
z

1 + θ0z
dz =

1

θ0
,

and also that in this case with q = 1

Φ∗0 =
1

2π

∫ π

−π

(
eiλ

1 + θ0eiλ

)2

dλ− 1

θ2
0

= 0,

13



but this will not be generally true when q > 1.

Remark 4: Further, it can be showed that for this MA(1) process the asymptotic variance of

the (unrestricted) parameter estimate using L0
2T is the same for non-invertible parameter values

as the one obtained using the restricted estimate under invertibility and then inverting the roots

appropriately. To see this, the "invertible" asymptotic variance of the Whittle and of the θ(2)
0

estimates, |θ0| < 1, is given by

Φ−1
0 =

(
1

2π

∫ π

−π

1

|1 + θ0eiλ|2
dλ

)−1

= 1− θ2
0,

while the "noninvertible" asymptotic variance for θ∗0 = 1/θ0 provided by the L0
2T loss function is

Ω0 (θ∗0)
−1

=

(
1

2π

∫ π

−π

1

|1 + θ∗0e
iλ|2

dλ− µ2
0

)−1

=
(
θ∗20 − 1

)
θ∗20 ,

since Φ∗0 = 0 in this case (cf. Remark 3). Using the delta method, the AVar of the estimate of

θ∗0 = θ−1
0 from estimation of θ0 in an invertible model is equal to that of θ̂

(2)

0 times θ−4
0 = θ∗40 > 1,

that is,
(
1− θ2

0

)
∗ θ∗40 =

(
1− θ−∗20

)
∗ θ∗40 =

(
θ∗20 − 1

)
θ∗20 = Ω0 (θ∗0)

−1
> 0 as if he had estimated θ∗0

directly. The same results holds for estimates using higher order information since the AVar of these

estimates is always proportional to Φ−1
0 .

Remark 5: For all-pass models with constant spectral density we have that Φ0 + Φ∗0 is singular,

indicating that second moments cannot identify the parameters in absence of further information.

Consider the case of unrestricted estimation of an ARMA(1, 1) with (invertible) MA parameter,

β1 = θ0, |θ0| < 1 and with (noncausal) AR parameter α1 = −θ−1
0 so the roots of both polynomials

are −θ−1
0 and −θ0 respectively and

f2 (β1, α1;λ) =
κ2

2π

∣∣1 + β1e
iλ
∣∣2

|1− α1eiλ|2
=
κ2

2π

∣∣1 + θ0e
iλ
∣∣2∣∣1 + θ−1

0 eiλ
∣∣2 =

κ2

2π
θ2

0.

Then

Φ0 =
1

1− θ2
0

 1 0

0 θ4
0

 , Φ∗0 =
1

1− θ2
0

 0 −θ2
0

−θ2
0 0


since

ϕ1(β1, α1;λ) =

 eiλ

1+θ0eiλ

− eiλ

1+θ−10 eiλ
+ θ0

 =

 eiλ

1+θ0eiλ

θ20e
−iλ

1+θ0e−iλ

 .

Remark 6: In the case of restricted estimation of an all pass model of order r with

φ(θ;λ) =
eiλrθ (−λ)

−θrθ (λ)
,
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and θ = (θ1, . . . , θr)
′
, θ (λ) = 1− θ1e

iλ · · · − θreirλ, we can obtain that

ϕ1
j (β1, α1;λ) = − e−iλj

θ (−λ)
+

eiλj

θ (λ)
, j = 1, . . . , r

so that

Φ0,j,k =
1

2π

∫ π

−π

2 cos (j − k)λ

|θ (λ)|2
dλ

(which is twice the value for typical AR or MA coeffi cients) and Φ∗0 = −Φ0, so Φ0 + Φ∗0 = 0. Hence,

second moments do not provide information at all as f2 is constant for all θ, while the asymptotic

variances of θ̂
(3)

0 and θ̂
(4)

0 are respectively

µ̄4 − 1− ν2
3

ν2
3

Φ−1
0 and

µ̄6 − ν2
3 − µ̄2

4

ν2
4

Φ−1
0 .

Remark 7: Theorem 3 can be compared with previous CLTs in the literature. In particular, classi-

cal textbooks from Hannan (1970) or Brillinger (1975) to Brockwell and Davis (1991) provide CLT

for the QMLE for causal and invertible ARMA models. Their asyvar is a particular case of our asy-

var. Terdik (1999, Theorem 76) considers a loss function similar to w2L̃
0
2T (θ) + w3ṽ

2
3T L̃

0
3T (θ), but

with simultaneous normalization of the periodograms, although he does not analyze the contribution

of this modification to the asymptotic variance. Kumon provides a CLT for Z-estimators based on

higher order cumulants, which are asymptotically equivalent to the corresponding MD estimators.

Notice that Kumon’s formula (3.9), which provides the asymptotic variance of θ(k)
T cannot be com-

pared to ours for two reasons: he is not centering by µ(θ0) in expression (17), which is needed for

noninvertible processes, and the constants in his expression (3.9) are not adjusted by the fact that

one uses only the real part of the biperiodogram in the first order conditions. Similarly, the results

of Ahn, Leonenko and Sakhno (2007) are not directly comparable since their loss function depends

on a weighting function a a different identification strategy.

Remark 8: For establishing the CLT the iid restriction could be relaxed to mds with constant

conditional homoskedasticity (and additional moment restrictions) at cost of further notational com-

plexity. The extension to the conditional heteroskedasticity case is more challenging and left open

for future research.

4.5 Optimal Selection of Weights

Given Theorem 3 and Corollary 1 it is possible to derive the optimal weights (w2, w3, w4) in

the sense of minimizing the asymptotic variance of θT for a given value of higher order cumulants

(κ3, κ4, κ5, κ6) when the model is invertible and causal, Φ∗0 = 0, since in this case the problem

reduces to a univariate one. This analysis is not reported since the expressions for the optimal

weights are complicated and unintuitive, apart from the fact that large ν2
3 and ν2

4 improve the
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effi ciency of estimates based on third and fourth order cumulants. If Φ∗0 6= 0, then the analysis

cannot be reduced to a univariate optimization and it does not seem possible to give general results.

Here, instead, we will provide three lemmas with particular cases of interest for which relatively

simple and intuitive solutions are available for estimates based on only two moments for invertible

and causal models. Lemma 2 considers the case of the optimal selection of w2 and w3 when w4 is

restricted to be zero. This result is of interest since it shows that adding L̃0
3T (θ) to L̃0

2T (θ) can not

make any improvement from an effi ciency point of view. Lemma 3 addresses the case where w3 is

restricted to 0, for instance, due to anticipation of symmetric innovations. This case is of interest

because when ν4 < 0, employing the optimal w4 delivers an estimator whose asymptotic variance is

lower than the one for the Whittle estimator. The gain in effi ciency depends on the specific values

for the cumulants. For instance, for the uniform distribution the decrease in the asymptotic variance

is around 20%. Lemma 4 considers the case where w2 is restricted to be 0. This case is of interest

since, in terms of identification, L̃0
2T (θ) does not help to L̃wT (θ) since second order moments do not

globally identify the parameters., Hence, Lemma 4 provides the optimal weights from an identifica-

tion point of view (that is, imposing w2 = 0). Proofs are in Appendix D.

Lemma 2: Restricting to the weights (w2, w3, w4) = (1, w3, 0) , the optimal weights are w∗3 = 0.

Note that these weights would preclude identification.

Lemma 3: Restricting to the weights (w2, w3, w4) = (1, 0, w4) , the optimal weights are

w∗4 = max

{
3

2

1

ν2
4µ̄4 − ν4 (µ̄6 − ν2

3)
, 0

}
.

It is immediate to see that w∗4 is positive when ν4 < 0 because µ̄4 > 0 and µ̄6 − ν2
3 > 0, which

implies that fourth order cumulants are informative if the distribution tails of the innovations are

lighter than the Gaussian ones. In this case the asymptotic variance of θT is lower than that of the

Whittle estimator. The gain in effi ciency varies according to the distribution of et, as commented

above.

Lemma 4: Restricting to the weights (w2, w3, w4) = (0, 1, w4) , the optimal weights are

w†4 = max

{
3

4

ν3ν4 (µ̄4 − 1)− ν2
3 (µ̄5 − ν3)

ν3ν4 (µ̄6 − ν2
3)− ν2

4 (µ̄5 − ν3)
, 0

}
.

In principle w†4 can be positive when either ν4 < 0 or ν4 > 0, depending also on the values of ν3, ν5

and ν6. For instance, if ν3 and ν5 have the same sign, then w
†
4 > 0 when ν4 < 0, as shown in

the proof of Lemma 6, confirming that fourth cumulants are also useful for identification in this

situation.

Given that estimating the optimal weights is a complicated task, it is a sensible approach to

start with a consistent estimate, and then perform a Newton-Raphson step on L̃0
2T (θ), so that the
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resulting estimator is consistent and its asymptotic variance is asymptotically equivalent to the one

for the Whittle estimator. The initial consistent estimator could be constructed by minimizing

just L̃0
3T (θ), or adding L̃0

4T (θ) in case a negative kurtosis is suspected or found after this initial

estimation. If symmetry of innovations is suspected, the initial consistent estimator could just be

based on minimizing L̃0
4T (θ).

5. SIMULATIONS

In this section we report a short simulation exercise to assess the ability of L̃3T and L̃4T to identify

the proper location of the roots, complementing the theoretical analysis of Lemma 6. We focus on a

simple MA(1) process, and consider three innovation distributions: an exponential, and a Student’s

t with 5 degrees of freedom and a Uniform. The last two distributions are symmetric, so κ3 = 0

and L̃3T should not provide identification information, but the exponential distribution is highly

asymmetric, v3 = 2. The first two distributions have the same positive kurtosis ν4 = 6, while the

uniform has negative kurtosis, ν4 = −6/5 so we will expect L̃4T to be much more informative for

the latter.

In sum, we would expect that L̃3T (over L̃3T +L̃4T ) should be the best (in relative terms) criterion

to identify the location of the roots for exponential distributions because kurtosis is positive, while

L̃4T should be the best option for t and uniform distributions, but the identification of the t should

be much more diffi cult than that of the uniform, everything else the same.

Tables 1-3 reports the percentage of proper identification for 3 sample sizes, 50, 100, and 200,

respectively, and four values for θ (0.5, 0.9 and their inverse values) and 1000 replications.

The previous predictions for the exponential distribution are confirmed, L̃3T is the most informa-

tive in most cases, L̃3T + L̃4T is getting closer the larger T, while L̃4T is always doing worse. For the

t distribution we find that L̃3T , provides some marginal information (since κ3 be would expect just

50% of right identifications) we should not be able to identify models with symmetric innovations,

and L̃4T performs similarly to L̃3T + L̃4T . For the uniform, L̃3T is very close to 50% as expected,

while L̃4T improves over L̃3T + L̃4T as T gets larger. Overall, we can conclude that L̃3T + L̃4T

provides reasonable identification results, despite one of the elements L̃kT might not be well defined

or not improve on the information of the other element.

In terms of sample size, we can check that it always helps identification expect for L̃3T for sym-

metric distributions, while the distance to the unit circle helps to identify the right location of the

roots, everything else the same.
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Table 1. Identification with L̃3T + L̃4T

θ

T Distribution 0.5 0.9 0.9−1 0.5−1

50 εt ∼ Exp(1) 86.6 69.2 77.2 88.2
εt ∼ t5 59.9 47.8 49.9 59.6
εt ∼ Unif 63.6 54.4 61.2 70.2

100 εt ∼ Exp(1) 94.7 75.1 87.6 94.7
εt ∼ t5 71.9 56.4 63.8 75.7
εt ∼ Unif 81.0 55.8 63.9 79.7

200 εt ∼ Exp(1) 98.5 76.2 93.6 99.2
εt ∼ t5 85.1 59.5 68.0 84.2
εt ∼ Unif 96.4 53.8 66.3 95.7

Table 2. Identification with L̃3T

θ

T Distribution 0.5 0.9 0.9−1 0.5−1

50 εt ∼ Exp(1) 95.4 75.4 81.8 96.1
εt ∼ t5 64.1 57.3 57.8 65.9
εt ∼ Unif 46.4 47.4 45.2 48.0

100 εt ∼ Exp(1) 98.8 78.2 91.0 99.1
εt ∼ t5 67.3 55.3 61.0 68.7
εt ∼ Unif 46.0 44.3 51.5 46.9

200 εt ∼ Exp(1) 99.9 73.7 95.6 100.0
εt ∼ t5 70.5 56.8 62.4 70.4
εt ∼ Unif 46.3 42.3 54.8 44.5

Table 3. Identification with L̃4T

θ

T Distribution 0.5 0.9 0.9−1 0.5−1

50 εt ∼ Exp(1) 77.5 68.4 77.0 80.7
εt ∼ t5 67.0 56.9 60.2 65.7
εt ∼ Unif 61.4 47.7 49.7 60.0

100 εt ∼ Exp(1) 89.2 74.6 87.2 91.0
εt ∼ t5 71.6 56.0 63.3 75.2
εt ∼ Unif 81.6 59.2 61.0 81.3

200 εt ∼ Exp(1) 95.6 76.7 93.5 97.0
εt ∼ t5 85.2 59.6 68.1 83.3
εt ∼ Unif 96.6 54.2 65.8 96.1

6. CONCLUSIONS AND EXTENSIONS

This article introduces frequency domain minimum distance procedures for performing inference in

general time series linear models that may be noncausal and noninvertible. We propose a minimum

distance approach that combines the information contained in second, third, and fourth moments.

Contrary to existing estimators, the proposed estimator is consistent under general assumptions,

and can be more effi cient that the Whittle estimator by a careful selection of the weights given to

the higher order contributions.
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This article has focused in ARMA models with independent innovations, but the analysis can

be extended to other linear models, such as Bloomfield, and, especially to nonlinear models since

information contained in higher order spectra is particulary relevant for this case, an example would

be ARMA-GARCH models, so we could compare our methods with Ahn et al. (2007). Additional

extensions of interest are the following: use and justification of the bootstrap to estimate the stan-

dard errors of the estimates, use and justification of the two-step estimator commented at the end

of Subsection 4.5, use and justification of automatic criteria, such as AIC or BIC, to select the order

of the ARMA model.

APPENDICES

APPENDIX A: MAIN PROOFS

Proof of Theorem 1. First, by Lemma 1 and with θ0 = θ (ϕ0) ,

inf
θ=θ(ϕ),ϕ∈S,κk∈R

∫
Πk−1

∣∣fk(θ (ϕ) , κk;λ)− fk(θ0, κ
0
k;λ)

∣∣2 g(θ;λ)dλ ≥ ε1 > 0,

for some ε1 > 0, so that under Assumption A, by continuity of the mapping θ :
bp/2c+bq/2c
∪
r=0

Rp+q−2r ∪

C2r
∗ → Rp+q and fk and for a ball of radius ρ small enough around θ = θ (ϕ) for ϕ ∈S, B (ρ, θ) ={
θ† :

∥∥∥θ† − θ∥∥∥ ≤ ρ} and any η > 0,

inf
θ∈B(ρ,θ(ϕ))∩B(η,θ0)c,ϕ∈S,κk∈R

∫
Πk−1

∣∣fk(θ, κk;λ)− fk(θ0, κ
0
k;λ)

∣∣2 g(θ;λ)dλ ≥ ε2 > 0,

for some ε2 > 0.

Then, compactness of Θ and usual identification arguments for φ(θ;λa), a = 1, . . . , k − 1, imply

that for parameter values which are away of those whose roots ϕ ∈ S∪{ϕ0} , it holds that

inf
θ∈B(ρ,θ(ϕ))c∩B(η,θ0)c,ϕ∈S,κk∈R

∫
Πk−1

∣∣fk(θ, κk;λ)− fk(θ0, κ
0
k;λ)

∣∣2 g(θ;λ)dλ ≥ ε3 > 0,

for some ε3 > 0. Then the proof follows setting ε = min {ε1, ε2, ε3} . 2

Proof of Lemma 1: We only give the proof for k = 3 and g = 1. Consider first the case of a pure

MA(q) model where all roots are real. In this case, we can write the model for f3 in terms of the

roots ϕ0 =
(
ϕ1, . . . , ϕq

)
as

f3(θ (ϕ0) , κ3;λ1, λ2) =
κ3

(2π)2

q∏
j=1

(a(ϕj ;λ1, λ2) + ib(ϕj ;λ1, λ2))

where

a(ϕj ;λ1, λ2) = −
(
ϕj − 1

) (
ϕj − ϕj cos (λ1 + λ2) + ϕ2

j − ϕj cosλ1 − ϕj cosλ2 + 1
)

b(ϕj ;λ1, λ2) = −ϕj
(
ϕj + 1

)
(sinλ1 − sin (λ1 + λ2) + sinλ2) .
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Note that when ϕj = 1 the bispectrum is purely imaginary, whereas when ϕj takes the values 0 or

−1 it is purely real.

Now, consider the typical element of S, where (without generality, the first) q1 = 1, . . . , q roots are

inverted and the last q − q1 are kept the same, and denote these new roots as ϕ∗ and any possible

value of the third order cumulant by κ∗3. In that case

f3(θ (ϕ∗) , κ∗3;λ1, λ2) =
κ∗3

(2π)2

q1∏
j=1

(
a(

1

ϕj
;λ1, λ2) + ib(

1

ϕj
;λ1, λ2)

) q∏
j=q1+1

(
a(ϕj ;λ1, λ2) + ib(ϕj ;λ1, λ2)

)
.

Since, for ϕj 6= 0,

a(
1

ϕj
;λ1, λ2) =

−1

ϕ3
j

a(ϕj ;λ1, λ2), and b(
1

ϕj
;λ1, λ2) =

1

ϕ2
j

b(ϕj ;λ1, λ2)), (19)

then the LHS of the inequality in (12) is

1

(2π)4

∫
Π2

∣∣∣∣∣∣
q1∏
j=1

((κ3 +
κ∗3
ϕ3
j

)a(ϕj ;λ1, λ2) + i(κ3 −
κ∗3
ϕ2
j

)b(ϕj ;λ1, λ2))

∣∣∣∣∣∣
2

C(ϕ0;λ1, λ2)dλ1dλ2

writing C(ϕ0;λ1, λ2) = Πq
j=q1+1

∣∣(a(ϕj ;λ1, λ2) + ib(ϕj ;λ1, λ2)
∣∣2 , with a and b orthogonal in Π2,

this can be written as

1

(2π)4

∫
Π2

q1∏
j=1

(κ3 +
κ∗3
ϕ3
j

)2

a(ϕj ;λ1, λ2)2 +

(
κ3 −

κ∗3
ϕ2
j

)2

b(ϕj ;λ1, λ2)2

C(ϕ0;λ1, λ2)dλ1dλ2

(20)

=
1

(2π)4

q1∏
j=1

(
κ3 +

κ∗3
ϕ3
j

)2 ∫
Π2

a(ϕj ;λ1, λ2)2C(ϕ0;λ1, λ2)dλ1dλ2

+
1

(2π)4

q1∏
j=1

(
κ3 −

κ∗3
ϕ2
j

)2 ∫
Π2

b(ϕj ;λ1, λ2)2C(ϕ0;λ1, λ2)dλ1dλ2

>

q1∏
j=1

C1

(
κ3 +

κ∗3
ϕ3
j

)2

+ C2

(
κ3 −

κ∗3
ϕ2
j

)2
 > 0,

for any choice of κ∗3 and all possible κ3 because C1, C2 > 0 for all ϕj 6= ±1, j = 1, . . . , q1.

The previous discussion has considered the case where all roots are real. The basic mechanism

to achieve identification is through relations (19) that show the change in the bispectrum when the

roots are inverted. Note that the complex roots are dealt with considering simultaneously the pairs

of conjugated roots, guaranteeing that the observed process is real (and not complex). In the case

that some pairs of conjugated complex roots appear there is also a relation between the contributions

to the bispectrum when the roots are inverted. Note that for a complex ϕj the contribution to the

bispectrum is(
1− ϕje−ijλ1

) (
1− ϕ̄je−ijλ1

) (
1− ϕje−ijλ2

) (
1− ϕ̄je−ijλ2

) (
1− ϕjeij(λ1+λ2)

)(
1− ϕ̄jeij(λ1+λ2)

)
,

(21)
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which, introducing the polar representation of ϕj , ϕj = Meiω, so that M is the modulus and ω the

phase, (21) can be written as, ρ = cos (ω) ,(
1− 2Mρe−ijλ1 +M2e−ij2λ1

) (
1− 2Mρe−ijλ2 +M2e−ij2λ2

) (
1− 2Mρeij(λ1+λ2) +M2eij2(λ1+λ2)

)
.

(22)

This expression is useful since inverting the roots just involves now inverting M since cos(ω) =

cos(−ω). Then, it is simple to show that the real and imaginary parts of (22) are respectively

c(M,ω, λ1, λ2) : = 1− 8M3ρ3 +M6 + (M2 +M4)(cos 2jλ1 + cos 2jλ2 + cos 2 (jλ1 + jλ2))

+(4M4ρ2 + 4M2ρ2 − 2M5ρ− 2Mρ)(cos jλ1 + cos jλ2 + cos (jλ1 + jλ2))

−4M3ρ(cos (jλ1 − jλ2) + cos (jλ1 + 2jλ2) + cos (2jλ1 + jλ2)),

and

d(M,ω, λ1, λ2) : = (M4 −M2)(sin 2jλ1 + sin 2jλ2 − sin 2 (jλ1 + jλ2))

+(4M2ρ2 − 2M5ρ− 4M4ρ2 + 2Mρ)(sin jλ1 + sin jλ2 − sin ((jλ1 + jλ2)).

Now the contribution to the bispectrum when a complex root is inverted is M−6(c(M,ω, λ1, λ2) −

id(M,ω, λ1, λ2)). So, the contribution of one pair of conjugated complex roots to the LHS of the

inequality in (12) is given by∣∣∣∣(κ3 −
κ∗3
M6

)
c(M,ω, λ1, λ2) + i

(
κ3 +

κ∗3
M6

)
d(M,ω, λ1, λ2)

∣∣∣∣2 ,
so identification is achieved similarly given that c and d are orthogonal in Π2.

Finally, the extension when considering the inverse roots of an autoregressive component is also

straightforward. Notice that in the general ARMA case the bispectrum has the form

f3 (ϕ, κ3;λ1, λ2) =
κ3

(2π)2

Πq
j=1h(ϕj ;λ1, λ2)

Πp
j=1h(φj ;λ1, λ2)

,

where h = a + ib for real roots and h(ϕj)h(ϕ̄j) = c + id for a pair of complex conjugate roots.

For simplicity in the notation, suppose we invert the AR roots and keep the MA component. In

particular, if p1 roots are inverted and the last p− p1 are kept the same, then

f3(ϕ∗, κ∗3;λ1, λ2) =
κ∗3

(2π)2

Πq
j=1h(ϕj ;λ1, λ2)

Πp1
j=1h(φ−1

j ;λ1, λ2)Πp
j=p1+1h(φj ;λ1, λ2)

,

so that the LHS of the inequality in (12) takes the form

1

(2π)4

∫
Π2

∣∣∣∣∣∣ Πq
j=1h(ϕj ;λ1, λ2)Πp

j=1h(φ−1
j ;λ1, λ2)

Πp
j=p1+1h(φj ;λ1, λ2)Πp

j=1h(φj ;λ1, λ2)

κ3

p∏
j=1

h(φ−1
j ;λ1, λ2)− κ∗3

p∏
j=1

h(φj ;λ1, λ2)


∣∣∣∣∣∣
2

dλ1dλ2,

and the analysis follows similarly to equation (20) where now

C(ϕ;λ1, λ2) =
Πq
j=1h(ϕj ;λ1, λ2)Πp

j=1h(φ−1
j ;λ1, λ2)

Πp
j=p1+1h(φj ;λ1, λ2)Πp

j=1h(φj ;λ1, λ2)
.
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Similarly the same argument follows for the case of autoregressive complex roots, covering as well

the case of all-pass models, and for any k ≥ 4. 2

Proof of Theorem 2. It follows from the identification provided by Theorem 1 for the objec-

tive functions with k = 3 and 4, and the uniform converge of the objective function, exploiting

Lemmas A1 and A2 in Appendix B and the smoothness of fk (θ, κk;λ) for ARMA models under

Assumption 1. 2

Proof of Theorem 3. We work with (re-scaled) concentrated objective functions using κ†kT (θ) but

not depending on any preliminary κ̃k as L̃wT (θ),

L†kT (θ) =
κ̃2
k

(2π)
2(k−1)

L̃0
kT (θ, κ†kT (θ)) =

1

T k−1

T−1∑
j=1

∣∣∣Ik(λj)− fk(θ, κ†kT (θ);λj)
∣∣∣2∣∣φk(θ̄T ;λj)

∣∣2 .

Then

∂

∂θ
L†kT (θ) =

−2

T k−1

T−1∑
j=1

Re
{
Ik(λj)− fk(θ, κ†kT (θ);λj)

}
∂
∂θfk(θ, κ†kT (θ);−λj)∣∣φk(θ̄T ;λj)
∣∣2

while

∂2

∂θ∂θ′
L†kT (θ) =

−2

T k−1

T−1∑
j=1

Re
{
Ik(λj)− fk(θ, κ†kT (θ);λj)

}
∂2

∂θ∂θ′ fk(θ, κ†kT (θ);−λj)∣∣φk(θ̄T ;λj)
∣∣2

+
2

T k−1

T−1∑
j=1

Re
{
∂
∂θfk(θ, κ†kT (θ);λj)

∂
∂θfk(θ, κ†kT (θ);−λj)′

}
∣∣φk(θ̄T ;λj)

∣∣2 .

Now
∂

∂θ
fk(θ, κ†kT (θ);λj) =

κ̇†kT (θ)

(2π)
k−1

φk(θ;λj) +
κ†kT (θ)

(2π)
k−1

φ̇k(θ;λj)

where φ̇k(θ;λj) = ∂
∂θφk(θ;λj) so that

κ̇†kT (θ) =
∂

∂θ
κ†kT (θ) = −

(
2π

T

)k−1 T−1∑
j=1

Re

(
Ik(λj)

φk(θ;λj)
ϕk(θ;λj)

)

with ϕk(θ;λj) = ∂
∂θ log φk(θ;λj).

In particular, from Theorem 2 we have that the estimate θT minimizing L̃wT (θ) satisfies

θT − θ0 = −
(

∂2

∂θ∂θ′
L̃wT (θ0) + op (1)

)−1
∂

∂θ
L̃wT (θ0) (23)
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where we argue, that for any θ̃T such that
∥∥∥θ̃T − θ0

∥∥∥ ≤ ‖θT − θ0‖ , using θT − θ0 = op (1) ,

∂2

∂θ∂θ′
L†kT (θ̃T ) =

∂2

∂θ∂θ′
L†kT (θ0) + op (1) (24)

=
2

T k−1

T−1∑
j=1

Re
{
∂
∂θfk(θ, κ†kT (θ0);λj)

∂
∂θfk(θ, κ†kT (θ0);−λj)′

}
∣∣φk(θ̄T ;λj)

∣∣2 + op (1)

=
2κ2

k

(2π)
3(k−1)

∫
Πk−1

Re
{
ϕ1
k(θ0;λ)ϕ1

k(θ0;−λ)′
}
dλ+ op (1)

=
2κ2

k

(2π)
2(k−1)

Φk,0 + op (1) ,

where ϕ1
k(θ0;λj) := ϕk(θ0;λj)−Av[ϕk(θ0)] , Av[ϕk(θ0)] = (2π)

1−k ∫
Πk−1

ϕk(θ0;λ)dλ, and

Φk,0 = (2π)
1−k

∫
Πk−1

Re
{
ϕ1
k(θ0;λ)ϕ1

k(θ0;−λ)′
}
dλ = kΦ0, k = 3, 4

Φ2,0 = (2π)
−1
∫

Π

Re
{
ϕ1

2(θ0;λ)ϕ1
2(θ0;λ)′

}
dλ = 2 (Φ0 + Φ∗0) , k = 2,

using from immediate application of Lemmas A1 and A2,

κ†kT (θ0) = κk +Op

(
T−1/2

)
(25)

and

κ̇†kT (θ0) = − κk

(2π)
k−1

∫
Πk−1

Re {ϕk(θ0;λ)} dλ+Op

(
T−1/2

)
= −κkAv [ϕk(θ0)]+Op

(
T−1/2

)
, (26)

since
∫

Πk−1
Im {ϕk(θ0;λ)} dλ = 0, and, uniformly in j,

∂

∂θ
fk(θ0, κ

†
kT (θ0);λj) =

−κkAv [ϕk(θ0)]

(2π)
k−1

φk(θ0;λj) +
κk

(2π)
k−1

φ̇k(θ0;λj) + op (1)

=
κk

(2π)
k−1

φk(θ0;λj) {ϕk(θ0;λj)−Av [ϕk(θ0)]}+ op (1)

= fk(θ0, κk;λj)ϕ
1
k(θ0;λj) + op (1) .

This gives the expression for Σ0 by just normalizing L̃wT (θ0) by 1
4 and eliminating the factors

κ̃2k
(2π)2(k−1)

in the definition of L̃kT .

Denoting f0
k (λj) = fk(θ0, κk;λj), the terms inside the summation in ∂

∂θL
†
kT (θ0) can be written as

Re
{(
Ik(λj)− f0

k (λj)
)
f0
k (−λj)ϕ1

k(θ0;−λj)
}

|φk(θ0;λj)|2
(27)

−
Re
{(
Ik(λj)− f0

k (λj)
)
f0
k (−λj)ϕ1

k(θ0;−λj)
}

|φk(θ0;λj)|2

{
1− |φk(θ0;λj)|2∣∣φk(θ̄T ;λj)

∣∣2
}

(28)

−
Re
{(
Ik(λj)− f0

k (λj)
) (
f0
k (−λj)ϕ1

k(θ0;−λj)− ∂
∂θfk(θ0, κ

†
kT (θ0) ;−λj)

)}
∣∣φk(θ̄T ;λj)

∣∣2 (29)

−
Re
{(
fk(θ0, κ

†
kT (θ0);λj)− f0

k (λj)
)

∂
∂θfk(θ0, κ

†
kT (θ0) ;−λj)

}
∣∣φk(θ̄T ;λj)

∣∣2 (30)
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Using that
|φk(θ0;λj)|2∣∣φk(θ̄;λj)

∣∣2 = 1− 2 Re {ϕk(θ0;λj)}′
(
θ̄ − θ0

)
,

plus Op
(
T−1

)
terms uniform in j, the contribution from (28) to ∂

∂θL
†
kT (θ0) is showed to be Op

(
T−1

)
because Ik(λj)−fk(θ0, κk;λj) is centered up to a factor o

(
T−1/2

)
, so that the average is Op

(
T−1/2

)
and θ̄ − θ0 = Op

(
T−1/2

)
.

Next, we note that

f0
k (−λj)ϕ1

k(θ0;−λj)−
∂

∂θ
fk(θ0, κ

†
kT (θ0) ;−λj)

=
κk

(2π)
2φk(θ0;−λj)ϕk(θ0;−λj)−

κk

(2π)
2φk(θ0;−λj)Av [ϕk(θ0)]

− κ̇
†
kT (θ0)

(2π)
2 φk(θ0;−λj)−

κ†kT (θ0)

(2π)
2 φ̇k(θ0;−λj)

= −

(
κ̇†kT (θ0) + κkAv [ϕk(θ0)]

)
(2π)

2 φk(θ;−λj)−

(
κ†kT (θ0)− κk

)
(2π)

2 φ̇k(θ;−λj)

so using (25) and (26) the contribution of the term (29) to ∂
∂θL

†
kT (θ0) is Op

(
T−1

)
.

Finally, using (25) ,

fk(θ0, κ
†
kT (θ0);λj)− f0

k (λj) =

(
κ†kT (θ0)

κk
− 1

)
fk(θ0, κk;λj)

and
∂

∂θ
fk(θ0, κ

†
kT (θ0) ;−λj) = f0

k (−λj)ϕ1
k(θ0;−λj)

(
1 +Op

(
T−1/2

))
,

where the Op
(
T−1/2

)
term is uniform in j, we find that the term coming from (30) in ∂

∂θL
†
kT (θ0) is

2

T k−1

(
κ†kT (θ0)− κk

)
(2π)

k−1

T−1∑
j=1

Re
{
φk(θ0;λj)f

0
k (−λj)ϕ1

k(θ0;−λj)
}

|φk(θ0;λj)|2
(31)

+Op

T−1T 1−k
T−1∑
j=1

fk(θ0, κk;λj)f
0
k (−λj)

∥∥ϕ1
k(θ0;−λj)

∥∥2

|φk(θ0;λj)|2


which is Op

(
T−1

)
because the first average in (31) converges to a zero value integral,

1

T k−1

T−1∑
j=1

Re
{
φk(θ0;λj)f

0
k (−λj)ϕ1

k(θ0;−λj)
}

|φk(θ0;λj)|2

=
1

T k−1

κk

(2π)
k−1

T−1∑
j=1

Re
{
ϕ1
k(θ0;−λj)

}
=

1

(2π)
2(k−1)

∫
Πk−1

ϕ1
k(θ0;−λ)dλ+O

(
T−1

)
= O

(
T−1

)
as ϕ1

k is centered in Π2, and the second average in (31) converges to a bounded integral so this term

is also negligible
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So finally, considering the terms (27) ,

T 1/2 ∂

∂θ
L̃†kT (θ0) = T 1/2 −2

T 1−k

(
κk

(2π)
k−1

)2 T−1∑
j=1

Re

{(
Ik(λj)

fk(λj)
− 1

)
ϕ1
k(θ0;−λj)

}
+ op (1) ,

From Lemma A1 in Appendix B, we can write

T 1/2 ∂

∂θ
L̃†kT (θ0) = T 1/2 −2

T 1−k
κk

(2π)
2(k−1)

T−1∑
j=1

Re
{(

(2π)
k−1

Iεk(λj)− κk
)
ϕ1
k(θ0;−λj)

}
+ op (1) .

Now we analyze each of the elements in ∂
∂θ L̃wT (θ0) separately for k = 2, 3, 4. In particular for

k = 3, Iε3 (λj) = Iε3(λj1 , λj2) is the innovations biperiodogram and we can write

(2π)
2
Iε3(λj)− κ3 =

1

T

T∑
t=1

(
ε3
t − κ3

)
+

1

T

T∑
t=1

ε2
t

t−1∑
r=1

εrAt,r (λj) (32)

+
1

T

T∑
t=1

εt

t−1∑
r,s=1

εrεsBt,r,s (λj) ,

where

At,r (λj) = exp {−i ((r − t)λj1)}+ exp {−i ((r − t)λj2)}+ exp {−i ((t− r) (λj1 + λj2))}

Bt,r,s (λj) = exp {−i ((r − t)λj1 + (s− t)λj2)}+ exp {−i ((r − s)λj1 + (t− s)λj2)}

+ exp {−i ((t− s)λj1 + (r − s)λj2)} .

The first term in (32) does not contribute asymptotically to the distribution of T 1/2 ∂
∂θ L̃

†
3T (θ0)

because it is Op
(
T−1/2

)
and not depending on λj, with

1

T 2

T−1∑
j=1

Re
{
ϕ1

3(θ0;−λj)
}

= O
(
T−1

)
(33)

because Av
[
ϕ1

3(θ0)
]

= (2π)
−2 ∫

Π2 Re
{
ϕ1

3(θ0;λ)
}
dλ = 0 by construction.

We can write the second term in (32) as

1

T

T∑
t=1

(
ε2
t − σ2

) t−1∑
r=1

εrAt,r (λj) +
σ2

T

T∑
t=1

t−1∑
r=1

εrAt,r (λj) , (34)

where the elements in the average in t of the first term in (34) are a MDS, and noting that j1+j2 6= T

the second term in (34) can be written as

σ2

T

T∑
t=1

εt

T∑
r=t+1

Ar,t (λj) = −σ
2

T

T∑
t=1

εt

t−1∑
r=1

Ar,t (λj)−
3σ2

T

T∑
t=1

εt (35)

using that
∑T
t=1 exp (itλj) = 0 if j 6= 0 modT and that restriction on j1 + j2 6= 0 modT. Note that

the second term in (35) is Op
(
T−1/2

)
and does not contribute to the asymptotic distribution of

T 1/2 ∂
∂θ L̃3T (θ0) by (33).
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The third term in (32) can be written as

1

T

T∑
t=1

εt

t−1∑
r,s=1

(
εrεs − σ2 {r = s}

)
Bt,r,s (λj) (36)

+
σ2

T

T∑
t=1

εt

t−1∑
r=1

Bt,r,r (λj) (37)

where (36) is the average of a MDS and (37) is equal to the opposite of the first term in the rhs of

(35) noting that Bt,r,r (λj) = Ar,t (λj), so they cancel out.

Therefore, we can write

T 1/2 ∂

∂θ
L̃†3T (θ0) =

T∑
t=1

z3,t + op (1) ,

where z3,t is a MDS,

z3,t =
1

T 1/2

(
ε2
t − σ2

) t−1∑
r=1

εrcT,t−r

+
1

T 1/2
εt

t−1∑
r,s=1

(
εrεs − σ2 {r = s}

)
gT,t−r,t−s

supressing dependence on T in the notation, and

cT,t−r =
−2κ3

(2π)
4

1

T 2

T−1∑
j=1

Re
{
At,r (λj)ϕ

1
3(θ0;−λj)

}
gT,t−r,t−s =

−2κ3

(2π)
4

1

T 2

T−1∑
j=1

Re
{
Bt,r,s (λj)ϕ

1
3(θ0;−λj)

}
.

The variance of T 1/2z3,t is

σ2
(
2σ4 + κ4

) t−1∑
r=1

cT,t−rc
′
t−r + σ2

(
2σ4 + κ4

) t−1∑
r=1

gT,t−r,t−rg
′
T,t−r,t−r

+σ6
t−1∑

r 6=s=1

{
gT,t−r,t−sg

′
T,t−r,t−s + gT,t−r,t−sg

′
T,t−s,t−r

}
+ κ2

3

t−1∑
r=1

{
cT,t−rg

′
T,t−r,t−r + gT,t−r,t−rc

′
T,t−r

}
so that the variance of

∑T
t=1 z3,t converges to

V3 = σ2
(
2σ4 + κ4

) ∞∑
j=0

cjc
′
j + σ2

(
2σ4 + κ4

) ∞∑
j=0

gj,jg
′
j,j

+σ6
∞∑
j=0

∞∑
k=0
k 6=j

{
gj,kg

′
j,k + gj,kg

′
k,j

}
+ κ2

3

∞∑
j=0

{
cjg
′
j,j + gj,jc

′
j

}
,

using that the Fourier coeffi cients of ϕ1, ϕ1
j = (2π)

−1 ∫
Π

exp (−ijλ)ϕ1(θ0;λ)dλ = (2π)
−1 ∫

Π
Re
{

exp (ijλ)ϕ1(θ0;−λ)
}
dλ

(because the parameters are real and the complex contribution is eliminated by the symmetric inte-
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gral), decay exponentially fast for ARMA models without unit roots, and

cj =
−2κ3

(2π)
6

∫
Π2

Re

{[
exp {ijλ1}+ exp {ijλ2}
+ exp {−ij (λ1 + λ2)}

]
ϕ1

3(θ0;−λ)

}
dλ

=
−6κ3

(2π)
4ϕ

1
j

gj,k =
−2κ3

(2π)
6

∫
Π2

Re


 exp {i (jλ1 + kλ2)}

+ exp {−i ((k − j)λ1 + kλ2)}
+ exp {−i (jλ1 + (j − k)λ2)}

ϕ1
3(θ0;−λ)

 dλ (38)

= c−jδ (j = k) ,

with c0 = 0 because ϕ1 has zero mean and c−j = 0 for j > 0 for causal and invertible processes since

the Fourier power series of ϕ1
3(θ0;λ1, λ2) has only terms in positive powers of eiλi . Then

∞∑
j=−∞

cjc
′
j =

36κ2
3

(2π)
10 2π

∫
Π

ϕ1(θ0;λ)ϕ1(θ0;−λ)′dλ =
36κ2

3

(2π)
8 Φ0

and
∞∑

j=−∞
c−jc

′
j =

36κ2
3

(2π)
10 2π

∫
Π

ϕ1(θ0;λ)ϕ1(θ0;λ)′dλ =
36κ2

3

(2π)
8 Φ∗0

where Φ∗0 = 0 for pure causal and invertible processes.

Therefore

V3 = σ2
(
2σ4 + κ4

) ∞∑
j=−∞

cjc
′
j + κ2

3

∞∑
j=−∞

cjc
′
−j

=
36κ2

3

(2π)
8

{
σ2
(
2σ4 + κ4

)
Φ0 + κ2

3Φ∗0
}
.

Proof for L̃†2T . We can write

T 1/2 ∂

∂θ
L̃†2T (θ0) = T 1/2−2

T

σ2

(2π)
2

T−1∑
j=1

(
(2π)

2
Iε2(λj)− σ2

)
ϕ1

2(θ0;−λj) + op (1) ,

where Iε2(λj) is the innovations (usual) periodogram with

(2π)
2
Iε2(λj)− σ2 =

1

T

T∑
t=1

(
ε2
t − σ2

)
(39)

+
1

T

T∑
t=1

εt

t−1∑
r=1

εr [exp {−i ((r − t)λj)}+ exp {−i ((t− r)λj)}] .

The first term in (39) does not contribute asymptotically because it is Op
(
T−1/2

)
and not depending

on λj , cf. (33) .

Therefore we can write

T 1/2 ∂

∂θ
L̃†2T (θ0) =

T∑
t=1

z2,t + op (1) ,
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where z2,t is a MDS,

z2,t =
1

T 1/2
εt

t−1∑
r=1

εrbT,t−r,

and

bT,t−r =
−2σ2

(2π)
2

1

T

T−1∑
j=1

Re

{[
exp {−i ((r − t)λj)}

+ exp {−i ((t− r)λj)}

]
ϕ1

2(θ0;−λj)
}

so that the variance of T 1/2z2,t is

σ4
t−1∑
r=1

bt−rb
′
t−r

and the variance of
∑T
t=1 z2,t converges to V2 = σ4

∑∞
j=0 bjb

′
j where

bj =
−2σ2

(2π)
3

∫
Π

[exp {ijλ}+ exp {−ijλ}]ϕ1
2(θ0;−λ)dλ

=
−4σ2

(2π)
3

∫
Π

[exp {ijλ}+ exp {−ijλ}]ϕ1(θ0;−λ)dλ

=
−4σ2

(2π)
2

{
ϕ1
j + ϕ1

−j
}
,

b0 = 0, so that,

V2 =
16σ8

(2π)
6 (2π)

2
∞∑

j=−∞

(
ϕ1
jϕ

1′
j + ϕ1

jϕ
1′
−j
)

=
16σ8

(2π)
4 (Φ0 + Φ∗0) .

Proof for L̃†4T . We can write

T 1/2 ∂

∂θ
L̃†4T (θ0) = T 1/2−2

T 3

κ4

(2π)
6

T−1∑
j=1

Re
{(

(2π)
3
Iε4 (λj)− κ4

)
ϕ1

4(θ0;−λj)
}

+ op (1) ,

where λj = (λj1 , λj2 , λj3) and I
ε
4 (λj) is the innovations triperiodogram and

(2π)
3
Iε4(λj)− κ4 =

1

T

T∑
t=1

(
ε4
t − κ4

)
+

1

T

T∑
t=1

ε3
t

t−1∑
r=1

εrCt,r (λj) (40)

+
1

T

T∑
t=1

ε2
t

t−1∑
r,s=1

εrεsDt,r,s (λj) +
1

T

T∑
t=1

εt

t−1∑
r,s,u=1

εrεsεuFt,r,s,u (λj) ,
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where

Ct,r (λj) =

[
exp {−i ((r − t)λj1)}+ exp {−i ((r − t)λj2)}

+ exp {−i ((r − t)λj3)}+ exp {−i ((t− r) (λj1 + λj2 + λj3))}

]

Dt,r,s (λj) =



exp {−i ((t− s)λj1 + (t− s)λj2 + (r − s)λj3)}
+ exp {−i ((t− s)λj1 + (r − s)λj2 + (t− s)λj3)}

+ exp {−i ((r − t)λj2 + (s− t)λj3)}
+ exp {−i ((r − s)λj1 + (t− s)λj2 + (t− s)λj3)}

+ exp {−i ((r − t)λj1 + (s− t)λj3)}
+ exp {−i ((r − t)λj1 + (s− t)λj2)}



Ft,r,s,u (λj) =


exp {−i ((t− u)λj1 + (r − u)λj2 + (s− u)λj3)}
exp {−i ((r − u)λj1 + (t− u)λj2 + (s− u)λj3)}
exp {−i ((s− u)λj1 + (r − u)λj2 + (t− u)λj3)}
exp {−i ((u− t)λj1 + (r − t)λj2 + (s− t)λj3)}

 .
The first term in (40) can be written as

1

T

T∑
t=1

(
ε4
t − 3σ4 − κ4

)
+ 3σ4, (41)

whose first element does not contribute asymptotically because it is Op
(
T−1/2

)
and not depending

on λj.

We can write the second term in (40) as

1

T

T∑
t=1

(
ε3
t − κ3

) t−1∑
r=1

εrCt,r (λj) +
κ3

T

T∑
t=1

t−1∑
r=1

εrCt,r (λj)

=
1

T

T∑
t=1

(
ε3
t − κ3

) t−1∑
r=1

εrCt,r (λj) +
κ3

T

T∑
t=1

εt

T∑
r=t+1

Cr,t (λj) , (42)

where the summands of the two terms are MDS.

The third term in (40) is

1

T

T∑
t=1

(
ε2
t − σ2

) t−1∑
r,s=1

(
εrεs − σ2δr=s

)
Dt,r,s (λj) (43)

+
σ2

T

T∑
t=1

t−1∑
r,s=1

(
εrεs − σ2δr=s

)
Dt,r,s (λj)

+
σ2

T

T∑
t=1

(
ε2
t − σ2

) t−1∑
r=1

Dt,r,r (λj) +
σ4

T

T∑
t=1

t−1∑
r=1

Dt,r,r (λj) .

where the first element in (43) is an average of MDS, and discarding the cases when λja + λjb = T,

a 6= b, the second element in (43) can be further decomposed as

σ2

T

T∑
t=1

t−1∑
r=1

(
ε2
t − σ2

)
Dt,r,r (λj) +

σ2

T

T∑
t=1

t−1∑
r=1

εr

t−1∑
s6=r=1

εsDt,r,s (λj) (44)

=
σ2

T

T∑
t=1

(
ε2
r − σ2

) T∑
r=t+1

Dt,r,r (λj) +

{
σ2

T

T∑
t=1

{
t−1∑
r=1

εr

r−1∑
s=1

εs +

t−1∑
s=1

εs

s−1∑
r=1

εr

}}
Dt,r,s (λj)
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= −3σ2

T

T∑
t=1

(
ε2
t − σ2

)
+
σ2

T

T∑
t=1

εt

t−1∑
s=1

εs

T∑
r=t+1

{Dr,t,s (λj) +Dr,s,t (λj)}

because
∑T
r=1Dt,r,r (λj) = 0 and Dt,r,r (λj) = Dr,t,t (λj) , so the first term in (44) is not going to

contribute as does not depend on λi and is Op
(
T−1/2

)
while the second is an average of a MDS.

Using the same reasoning the third element in (43) is

σ2

T

T∑
t=1

(
ε2
t − σ2

) T∑
r=1
r 6=t

Dt,r,r (λj) = −3σ2

T

T∑
t=1

(
ε2
t − σ2

)

and does not contribute because is Op
(
T−1/2

)
and not depending on λji since we have discarded

that j1 + j2 = T or j2 + j3 = T or j2 + j3 = T.

Finally the fourth term in (43) is

σ4

T

T∑
t=1

T∑
r=1
r 6=t

Dt,r,r (λj) = −σ
4

T

T∑
t=1

3 = −3σ4,

which cancels out with the second element in (41) corresponding to the first term of (40).

The fourth term in (40) can be written as

1

T

T∑
t=1

εt

t−1∑
r,s,u=1

(εrεsεu − κ3δr=s=u)Ft,r,s,u (λj) +
κ3

T

T∑
t=1

εt

t−1∑
r=1

Ft,r,r,r (λj) ,

where the first term is MDS, and, noting that Ft,r,s,u (λj) = Cr,t (λj) the second term plus the

second term in (42) is equal to

−κ3

T

T∑
t=1

εt,

which does not contribute since it does not depend on λji and is Op
(
T−1/2

)
.

Therefore we can write

T 1/2 ∂

∂θ
L̃†4T (θ0) =

T∑
t=1

z4,t + op (1) ,

where z4,t is a MDS with

z4,tT
1/2 =

(
ε3
t − κ3

) t−1∑
r=1

εrc
(4)
T,t−r +

(
ε2
t − σ2

) t−1∑
r,s=1

(
εrεs − σ2δr=s

)
g

(4)
T,t−r,t−s

+σ2εt

t−1∑
s=1

εs

T∑
r=t+1

d
(4)
T,t−r,t−s + εt

t−1∑
r,s,u=1

(εrεsεu − κ3δr=s=u) b
(4)
T,t−r,t−s,t−u
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and

c
(4)
T,t−r =

−2

T 3

κ4

(2π)
6

T−1∑
j=1

Re
{
Ct,r (λj)ϕ

1
4(θ0;−λj)

}
g

(4)
T,t−r,t−s =

−2

T 3

κ4

(2π)
6

T−1∑
j=1

Re
{
Dt,r,s (λj)ϕ

1
4(θ0;−λj)

}
d

(4)
T,t−r,t−s =

−2

T 3

κ4

(2π)
6

T−1∑
j=1

Re
{

[Dr,t,s (λj) +Dr,s,t (λj)]ϕ
1
4(θ0;−λj)

}
b
(4)
T,t−r,t−s,t−u =

−2

T 3

κ4

(2π)
6

T−1∑
j=1

Re
{
Ft,r,s,u (λj)ϕ

1
4(θ0;−λj)

}
,

so that the variance of T 1/2z4,t is

(
µ6 − κ2

3

)
σ2

t−1∑
r=1

c
(4)
T,t−rc

(4)′
T,t−r +

(
2σ4 + κ4

){ (
2σ4 + κ4

)∑t−1
r=1 g

(4)
T,t−r,t−rg

(4)′
T,t−r,t−r

+σ4
∑t−1
r 6=s=1

[
g

(4)
T,t−r,t−sg

(4)′
T,t−r,t−s + g

(4)
T,t−r,t−sg

(4)′
T,t−s,t−r

] }

+σ8
t−1∑
s=1

T∑
r=t+1

T∑
r′=t+1

d
(4)
T,t−r,t−sd

(4)
T,t−r′,t−s

+σ2
t−1∑

r,s,u=1

t−1∑
r′,s′,u′=1

E [(εrεsεu − κ3δr=s=u) (εr′εs′εu′ − κ3δr′=s′=u′)] b
(4)
T,t−r,t−s,t−ub

(4)
T,t−r′,t−s′,t−u′

+
(
3σ4 + κ4

) t−1∑
a=1

t−1∑
r,s,u=1

E [εa (εrεsεu − κ3δr=s=u)]
{
c
(4)
T,t−ab

(4)′
T,t−r,t−s,t−u + b

(4)
T,t−r,t−s,t−uc

(4)′
T,t−a

}
where µ6 = κ6 + 15κ4σ

2 + 9κ2
3 + 15σ6 and the variance of

∑T
t=1 z

(4)
t converges to

V4 =
(
µ6 − κ2

3

)
σ2
∞∑
j=0

c
(4)
j c

(4)′
j +

(
µ6 − κ2

3

)
σ2
∞∑
j=0

b
(4)
j,j,jb

(4)′
j,j,.j +

(
3σ4 + κ4

)2 ∞∑
j=0

{
c
(4)
j b

(4)′
j,j,j + b

(4)
j,j,jc

(4)′
j

}
=

(
µ6 − κ2

3

)
σ2

∞∑
j=−∞

c
(4)
j c

(4)′
j +

(
3σ4 + κ4

)2 ∞∑
j=−∞

c
(4)
j c

(4)′
−j

=
(
µ6 − κ2

3

)
σ2 64κ2

4

(2π)
12 Φ0 +

(
3σ4 + κ4

)2 64κ2
4

(2π)
12 Φ∗0,

where c(4)
j = 0 for j < 0 for invertible processes, c(4)

0 = 0,

c
(4)
j =

−2κ4

(2π)
9

∫
Π3

Re

{[
exp {ijλ1}+ exp {ijλ2}+ exp {ijλ3}

+ exp {−ij (λ1 + λ2 + λ3)}

]
ϕ1

4(θ0;−λ)

}
dλ

=
−8κ4

(2π)
7

∫
Π

Re
{

exp (ijλ)ϕ1(θ0;−λ)
}
dλ

=
−8κ4

(2π)
6ϕ

1
j

b
(4)
j,k,` =

−2κ4

(2π)
9

∫
Π3

Re




exp {−i (`λ1 + (`− j)λ2 + (`− k)λ3)}
+ exp {−i ((`− j)λ1 + `λ2 + (`− k)λ3)}
+ exp {−i ((`− k)λ1 + (`− j)λ2 + `λ3)}

+ exp {−i (−`λ1 − jλ2 − kλ3)}

ϕ1
4(θ0;−λ)

 dλ

= c
(4)
−j ∗ δ (j = k = `) ,
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while the limits of g(4)
T,j,k and d

(4)
T,j,k are, respectively,

g
(4)
j,k =

−2κ4

(2π)
9

∫
Π3

Re





exp {−i (kλ1 + kλ2 + (k − j)λ3)}
+ exp {−i (kλ1 + (k − j)λ2 + kλ3)}

+ exp {−i (−jλ2 − kλ3)}
+ exp {−i ((k − j)λ1 + kλ2 + kλ3)}

+ exp {−i (−jλ1 − kλ3)}
+ exp {−i (−jλ1 − kλ2)}

ϕ
1
4(θ0;−λ)


dλ

=
−2κ4

(2π)
9

∫
Π3

Re


 exp {−i (kλ1 + kλ2 + (k − j)λ3)}

+ exp {−i (kλ1 + (k − j)λ2 + kλ3)}
+ exp {−i ((k − j)λ1 + kλ2 + kλ3)}

ϕ1
4(θ0;−λ)

 dλ

= 0 if j, k 6= 0,

d
(4)
j,k =

−2κ4

(2π)
9

∫
Π3

Re





exp {−i ((k − j)λ1 + (k − j)λ2 + kλ3)}
+ exp {−i ((k − j)λ1 + kλ2 + (k − j)λ3)}

+ exp {−i (jλ2 + (j − k)λ3)}
+ exp {−i (kλ1 + (k − j)λ2 + (k − j)λ3)}

+ exp {−i (jλ1 + (j − k)λ3)}
+ exp {−i (jλ1 + kλ2)}



+



exp {−i (−jλ1 − jλ2 − kλ3)}
+ exp {−i (−jλ1 − kλ2 − jλ3)}
+ exp {−i ((j − k)λ2 + jλ3)}
+ exp {−i (−kλ1 − jλ2jλ3)}
+ exp {−i ((j − k)λ1 + jλ3)}
+ exp {−i ((j − k)λ1 + jλ2)}





ϕ1
4(θ0;−λ)dλ

= 0 if j, k 6= 0

so these terms do not contribute, and

∞∑
j=−∞

c
(4)
j c

(4)′
j =

64κ2
4

(2π)
12

∞∑
j=−∞

ϕjϕ
′
j =

64κ2
4

(2π)
12 Φ0

∞∑
j=−∞

c
(4)
j c

(4)′
−j =

64κ2
4

(2π)
12

∞∑
j=−∞

ϕjϕ
′
−j =

64κ2
4

(2π)
12 Φ∗0.

The covariance terms, Vj,k = limT→∞ Cov
(∑T

t=1 zj,t,
∑T
t=1 zk,t

)
, j 6= k, can be obtained by

similar arguments,

V2,3 = κ3σ
2
T∑
t=1

t−1∑
r=1

{
bT,t−rc

′
T,t−r + bT,t−rg

′
T,t−r,t−r

}
+ o (1)

=
24

(2π)
6

(
σ2κ3

)2
(Φ0 + Φ∗0) + o (1) .

Next, in a similar way,

V2,4 = µ4σ
2
T∑
t=1

t−1∑
r=1

{
bT,t−rc

(4)′
T,t−r + bT,t−rb

(4)′
T,r−t

}
+ o (1)

=
32

(2π)
8σ

4µ4κ4 (Φ0 + Φ∗0) + o (1) ,
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and

V3,4 =

T∑
t=1

t−1∑
r=1

 σ2
(
µ5 − κ3σ

2
){
c
(3)
T,t−rc

(4)′
T,t−r + g

(3)
T,t−r,t−rb

(4)′
T,t−r,t−r,t−r

}
+µ4κ3

{
c
(3)
T,t−rb

(4)′
T,t−r,t−r,t−r + g

(3)
T,t−r,t−rc

(4)′
T,t−r

} + o (1)

=
48κ3κ4

(2π)
10

{
σ2
(
µ5 − κ3σ

2
)

Φ0 + µ4κ3Φ∗0
}

+ o (1) .

Collecting all terms in the covariance matrix of zt =
(
z′2,t, z

′
3,t, z

′
4,t

)′
we obtain the asymptotic

variance of ∂
∂θ L̃wT (θ0) and V after adjustment by the factors in the defintion of L̃kT .

To complete the proof of the martingale central limit theorem for the vector zt we have to check

that for any linear combination of elements of zt,

T∑
t=1

E

(∑
a

paza,t

)2
∣∣∣∣∣∣Ft−1

 → p

∑
a,b

papbVa,b (45)

T∑
t=1

E

(∑
a

paza,t

)2

1


(∑

a

paza,t

)2

> δ


 → 0 for all δ > 0. (46)

to obtain the asymptotic normality of the parameter estimates, where Ft−1 = σ {zt−1, zt−2, . . .}.

We give the proof just for z3,t, pretending that is scalar to simplify notation. First we note that

T∑
t=1

E
[
z2

3,t

∣∣Ft−1

]
= T−1

(
2σ4 + κ4

) T∑
t=1

(
t−1∑
r=1

εrcT,t−r

)2

(47)

+σ2T−1
T∑
t=1

(
t−1∑
r,s=1

(
εrεs − σ2 {r = s}

)
gT,t−r,t−s

)2

+2κ3T
−1

T∑
t=1

t−1∑
a=1

εacT,t−a

(
t−1∑
r,s=1

(
εrεs − σ2 {r = s}

)
gT,t−r,t−s

)
,

where the expectation of the rhs of (47) converges to V3. Then, checking the variance of each of the

three terms in
∑T
t=1E

[
z2

3,t

∣∣Ft−1

]
from (47) we find that the variance of the first one is, up to a

constant, equal to

E

T−2

 T∑
t=1

(
t−1∑
r=1

εrcT,t−r

)2
2
− E

T−1
T∑
t=1

(
t−1∑
r=1

εrcT,t−r

)2
2

(48)

= 2σ4T−2
T∑
t=1

T∑
t′=1

t−1∧t′−1∑
r=1

cT,t−rcT,t′−r

t−1∧t′−1∑
s=1

cT,t−scT,t′−s

+
(
3σ4 + κ4

)
T−2

T∑
t=1

T∑
t′=1

t−1∧t′−1∑
r=1

c2T,t−rc
2
T,t′−r.

Now the first term in the rhs (48) is not larger than

2σ4 sup
T,j
‖cT,j‖T−2

T∑
r=1

T∑
t=1

‖cT,t‖
T∑

t′=−T
‖cT,t′‖

T∑
s=−T

‖cT,s‖ = O
(
T−1

)
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because
∑T
s=−T ‖cT,s‖ =

∑∞
s=−∞ ‖cs‖ + O (1) < ∞, and the second term in (48) can be showed

similarly to be O
(
T−1

)
.

The variance of the second term on the rhs of (47) is, up to a constant,

E

T−2


T∑
t=1

(
t−1∑
r,s=1

(
εrεs − σ2 {r = s}

)
gT,t−r,t−s

)2


2
−E

T−1
T∑
t=1

(
t−1∑
r,s=1

(
εrεs − σ2 {r = s}

)
gT,t−r,t−s

)2
2

where the first term is

T−2
T∑

t,t′=1

t−1∑
r,s=1

t−1∑
a,b=1

t′−1∑
r′,s′=1

t′−1∑
a′,b′=1

gT,t−r,t−sgT,t−a,t−bgT,t′−r′,t′−s′gT,t′−a′,t′−b′

×E
[(
εrεs − σ2

r=s

) (
εaεb − σ2

a=b

) (
εr′εs′ − σ2

r′=s′
) (
εa′εb′ − σ2

a′=b′
)]
,

and the expectation introduces at least 4 restrictions on the 8 indexes r, s, a, b, r′, s′, a′, b′ because to

contribute to the variance they must involve simultaneously primed and not primed indexes because

of the substraction of the expectation squared. Then these eight summations are reduced to at most

four, such as in the particular example where r = r′, s = s′, a = a′, b = b′, which leads to a term

whose contribution is bounded for some positive C <∞ by

σ8T−2
T∑

t,t′=1

t−1∧t′−1∑
r,s=1

t−1∧t′−1∑
a,b=1

‖gT,t−r,t−s‖ ‖gT,t−a,t−b‖ ‖gT,t′−r,t′−s‖ ‖gT,t′−a,t′−b‖

≤ Cσ8T−2
T∑

t,t′=1

t−1∧t′−1∑
r=1

t−1∧t′−1∑
a=1

‖cr−t‖ ‖ca−t‖ ‖cr−t′‖ ‖ca−t′‖ = O
(
T−1

)
,

because writing ϕ1
3(θ0;−λ1,−λ2) = (2π)

−2∑∞
k1,k2=−∞ exp {i (k1λj1 + k2λj2)}ϕ1

3,k1,k2
and noting

that up to a multiplicative constant,

gT,j,k =
1

(2π)
2
T 2

T−1∑
j1,j2=1

Re


 exp {i (jλj1 + kλj2)}

+ exp {−i ((k − j)λj1 + kλj2)}
+ exp {−i (jλj1 + (j − k)λj2)}

 ∞∑
k1,k2=−∞

exp {i (k1λj1 + k2λj2)}ϕ1
3,k1,k2


=

(T − 1)
2

T 2

∞∑
k1,k2=−∞

ϕ1
3,k1,k2


 δ (k1 = −jmodT, k2 = −kmodT )

+δ (k1 = (k − j) modT, k2 = kmodT )

+δ (k1 = jmodT, k2 = (j − k) modT )


=

(T − 1)
2

T 2




(
ϕ1

3,−j,−k + ϕ1
3,−j±T,k + ϕ1

3,−j,−k±T + ϕ1
3,−j±T,−k±T + · · ·

)
+
(
ϕ1

3,k−j,k + ϕ1
3,k−j±T,k + ϕ1

3,k−j,k±T + ϕ1
3,k−j±T,−k±T + · · ·

)
+
(
ϕ1

3,j,j−k + ϕ1
3,j±T,j−k + ϕ1

3,j,j−k±T + ϕ1
3,j±T,j−k±T + · · ·

)



=
(T − 1)

2

T 2

(
ϕ1

3,−j,−j + ϕ1
3,−j+T,−j+T + ϕ1

3,−j−T,−j−T + · · ·
)
δ (j = k)

=
(T − 1)

2

T 2

(
ϕ1

3,−j,−j + ϕ1
3,−j+T,−j+T + ϕ1

3,−j−T,−j−T
) (

1 +O
(
T−1

))
δ (j = k)

= O (c−j) δ (j = k)

uniformly for |j|, |k| < T, since from (38) ϕ1
3,j,j is proportional to g−j,−j = cj , gjk = 0 for j 6= k and

‖cj‖ decays in j exponentially fast since ϕ1
3 is analytic.
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The variance of the third term in (47) can be showed to be also O
(
T−1

)
, so (45) follows.

To check the second condition (46), we just check the suffi cient condition

T∑
t=1

E
[
z4

3,t

]
<∞.

Just considering the first term of z3,t, its contribution to
∑T
t=1E

[
z4

3,t

]
is

1

T 2

T∑
t=1

E
[(
ε2
t − σ2

)4] t−1∑
r1=1

· · ·
t−1∑
r4=1

E [εr1cT,t−r1 · · · εr4cT,t−r4 ]

=
3σ4E

[(
ε2
t − σ2

)4]
T 2

T∑
t=1

t−1∑
r1=1

t−1∑
r2=1

c2T,t−r1c
2
T,t−r2 +

κ4E
[(
ε2
t − σ2

)4]
T 2

T∑
t=1

t−1∑
r1=1

c4T,t−r1

= O
(
T−1

)
and a similar proof holds for the other components in z4

3,t, and in zt, completing the proof of the

theorem. 2

Proof of Corollary 1. It follows from the proof of Theorem 2 noting that from (23) and (24) the

asymptotic variance of θ(3)
T is(

6
κ2

3

(2π)
4 Φ0

)−1

V3

(
6
κ2

3

(2π)
4 Φ0

)−1

=
σ6

κ2
3

{2 + ν4}Φ−1
0 + Φ−1

0 Φ∗0Φ−1
0

=

{
2 + ν4

ν2
3

}
Φ−1

0 + Φ−1
0 Φ∗0Φ−1

0 ,

2+ν4 = µ̄4−1, which is positive definite noting that Φ0 is positive definite, Φ∗0 is positive semidefinite,

ν4 ≥ −2 and ν2
3 > 0 by assumption. Then the asymptotic variance of θ(2)

T follows as(
4
σ4

(2π)
2 Φ0

)−1

V2

(
4
σ4

(2π)
2 Φ0

)−1

= Φ−1
0 (Φ0 + Φ∗0) Φ−1

0 ,

and the asymptotic variance of (4)
T is(

8
κ2

4

(2π)
6 Φ0

)−1

V4

(
8
κ2

4

(2π)
6 Φ0

)−1

=
µ̄6 − ν2

3

ν2
4

Φ−1
0 +

(
3ν−1

4 + 1
)2

Φ−1
0 Φ∗0Φ−1

0 ,

where µ̄6 = ν6 + 10ν2
3 + 15ν4 + 15, while the covariances follow by immediate calculations,

ACov
(
θ

(2)
T , θ

(3)
T

)
=

(
4σ4

(2π)
2 (Φ0 + Φ∗0)

)−1

V2,3

(
6κ2

3

(2π)
4 Φ0

)−1

= Φ−1
0 ,

just sustituting the value of V2,3, and similarly,

ACov
(
θ

(2)
T , θ

(4)
T

)
=

(
4σ4

(2π)
2 (Φ0 + Φ∗0)

)−1

V2,4

(
8κ2

4

(2π)
6 Φ0

)−1

=
µ4

κ4
Φ−1

0 =
µ̄4

ν4
Φ−1

0 ,
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and

ACov
(
θ

(3)
T , θ

(4)
T

)
=

(
6κ2

3

(2π)
4 Φ0

)−1

V3,4

(
8κ2

4

(2π)
6 Φ0

)−1

= σ2

(
µ5 − κ3σ

2

κ3κ4

)
Φ−1

0 +
µ4

κ4
Φ−1

0 Φ∗0Φ−1
0

=

(
ν5 + 9ν3

ν3ν4

)
Φ−1

0 +
µ̄4

ν4
Φ−1

0 Φ∗0Φ−1
0 .

2

APPENDIX B: AUXILIARY LEMMAS

Define for k = 3, 4 the following fundamental sets ∆k of frequencies in Πk−1 = [−π, π]
k−1 where

higher order periodograms can be defined uniquely and usual orthogonality properties of discrete

Fourier Transforms are preserved. The set∆3 is the closure of anyone of the 12 equal-area triangles in

which the hexagon Q3 defined by the restrictions |λ1 − λ2| ≤ 2π and |2λa + λb| ≤ 2π for a, b = 1, 2,

a 6= b can be cut by the lines λ1 ± λ2 = 0, λ1 + λ2 ± λ1 = 0 and λ1 + λ2 ± λ2 = 0. We can take the

one defined by 0 < λ1 < π, λ2 < λ1, λ2 < 2 (π − λ1).

The set ∆4 is the closure of anyone of the 48 equal-volume tetrahedrons in which the 12-face

polyhedron (rhombic dodecahedron) Q4 with volume 8π3, defined by the system of inequalities

|λa − λb| ≤ 2π, a, b = 1, 2, 3, a 6= b,

|λa + λb + 2λc| ≤ 2π, a 6= b 6= c 6= a,

can be cut by the planes

λa ± λb = 0, a, b = 1, 2, 3, a 6= b,

λ1 + λ2 + λ3 + λa = 0, a = 1, 2, 3.

For k = 2, ∆2 is composed of just [−π, 0] and [0, π] . See Alekseev (2010) for details.

Let for any bounded function g and for k = 2, 3, 4,

αk,T = T 1/2 1

T k−1

T−1∑
j1,··· ,jk−1=1

Ik(λj1 , · · · , λjk−1)g(λj1 , · · · , λjk−1)

and for any bounded scalar function g and the periodogram Iεk of order k of the innovations εt,

βk,T = T 1/2 1

T k−1

T−1∑
j1,··· ,jk−1=1

Iεk(λj1 , · · · , λjk−1)φk(λj1 , · · · , λjk−1)g(λj1 , · · · , λjk−1).

Lemma A1: Under Assumptions 1 and 2,
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E
∣∣αk,T − βk,T ∣∣ = O

(
T−1/2 logk T

)
.

Proof of Lemma A1. Write for k = 3,

(2π)
2
T · Iε3(λj1 , λj2)φ3(λj1 , λj2) = v (λj1) v (λj2) v (λ−j1−j2)

where v (λ) = wε (λ)φ(λ) and wεT (λ) is the innovations discrete Fourier transform so that by the

triangle inequality we can see that E |αT − βT | can be bounded by

T 1/2

(2π)
2
T 3
E

∣∣∣∣∣∣
T−1∑

j1,j2=1

{w (λj1)− v (λj1)}w (λj2)w (−λj1+j2) g(λj1 , λj2)

∣∣∣∣∣∣ (49)

plus two similar terms depending on {w (λj2)− v (λj2)} v (λj1)w (−λj1+j2) and

{w (−λj1+j2)− v (−λj1+j2)} v (λj2) v (λj1). By the triangle inequality we can restrict ourselves to

frequencies within one of the fundamental triangles ∆3. Expression (49) then is bounded by

CT 1/2

(2π)
2
T 3

 ∑
j1,j2∈∆3

∑
k1,k2∈∆3

E

[
{w (λj1)− v (λj1)}w (λj2)w (−λj1+j2)

×{w (−λk1)− v (−λk1)}w (−λk2)w (λk1+k2)

]
g(λj1 , λj2)g(λk1 , λk2)

1/2

(50)

Then, expanding the product {w (λj1)− v (λj1)} {w (−λk1)− v (−λk1)} and multiplying the four

terms by w (λj2)w (−λj1+j2)w (−λk2)w (λk1+k2) we can calculate the expectations using Lemma

A2 for both Yt data and εt with flat spectrum of all orders. Then the main terms of non negligible

contributions cancel out up to approximation errors, which require two restrictions among the in-

dexes j1, j2, k1, k2 in the products of moments of w involving cumulants κ3
2, just one restriction for

contributions involving κ2κ4 or κ2
3, and none for terms involving κ6. Then the magnitude of (50) is

≤ CT 1/2

(2π)
2
T 3

 ∑
j1,j2∈∆3

∑
k1,k2∈∆3

T 3 log T

T
δ {2 restrictions}+ T 2 log3 T

T
δ {1 restriction}+ T

log5 T

T

1/2

= O
(
T−5/2

(
T 4 log5 T

)1/2)
= O

(
T−1 log5 T

)1/2
,

which proofs the lemma, since other terms could be dealt with similarly. The proof for k = 2, 4 follows

similarly. 2

Lemma A2: Under Assumptions 1 and 2, uniformly for
(
λj1 , . . . , λjk−1

)
∈ ∆k, k = 2, 3, 4,

E
[
Ik
(
λj1 , . . . , λjk−1

)]
= fk

(
λj1 , . . . , λjk−1

)
+O

(
T−1 logk−1 T

)
and for λj1 + · · ·+ λjk 6= 0 mod 2π

1

(2π)
k−1

T
cumk [w (λj1) , . . . , w (λjk)] = O

(
T−1 logk−1 T

)
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If v (λ) = wε (λ)φ(λ), and denoting by u either v or w, for
(
λj1 , . . . , λjk−1

)
∈ ∆k,

1

(2π)
k−1

T
E [u (λj1) · · ·u (−λj1+···+jk)] = fk

(
λj1 , . . . , λjk−1

)
+O

(
T−1 logk−1 T

)
and for λj1 + · · ·+ λjk 6= 0 mod 2π,

1

(2π)
k−1

T
cumk [u (λj1) , . . . , u (λjk)] = O

(
T−1 logk−1 T

)
.

2

Proof of Lemma A2. Noting that for ARMA processes without unit roots all existing spectral

densities are differentiable and (finite) cumulants satisfy any summability condition, these results

are an extension of Lemma 2 in Delgado, Hidalgo and Velasco (2005) using arguments in Theorem

2 in Robinson (1995) to higher order cumulants, cf. Theorem 4.3.2 of Brillinger (1975). 2

APPENDIX C: ASYMPTOTIC EQUIVALENCE BETWEEN MD ESTIMATION

WITH L2T AND WHITTLE ESTIMATION

In this Appendix we show that the estimator based on minimizing L2T (θ, κ2) is asymptotically

equivalent to the Whittle estimator under invertibility and causality, which is asymptotically equiva-

lent to the maximum likelihood estimator in the Gaussian case. In addition, our estimator is effi cient

in the sense of Kumon (1992) (that is, in the invertible case, it achieves the minimum variance that

an estimator that belongs to the generalized Whittle-class proposed by Kumon can achieve).

Next, we show that for a particular case, when κ3 = κ4 = 0 and the process is invertible, the

proposed L2−estimator has optimal asymptotic properties in the sense that it is asymptotically

equivalent to the effi cient Whittle estimator defined by minimizing the Whittle Likelihood (an ap-

proximation to the Gaussian likelihood), see Whittle (1953). Recall the Whittle function

LWT (θ, κ2) =
1

T

T−1∑
j=1

log f(θ, κ2;λj) +
1

T

T−1∑
j=1

I(λj)

f(θ, κ2;λj)
(51)

= log
(κ2

2π

)
+

1

T

T−1∑
j=1

I(λj)

f(θ, κ2;λj)
,

where we assume that the second equality holds in finite samples using that
∫ π
.π

log φ2(θ;λ)dλ = 0

for all θ under invertibility and causality of the ARMA parameterization.

Note that κ2 can be also concentrated out of the objective function, so that

κ2T (θ) =
2π

T

T−1∑
j=1

I(λj)

φ2(θ;λj)
,
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that coincides with (14) for the k = 2 case so that estimation of θ and κ2 can be conducted then

separately because and

κ̇2T (θ0) =
∂

∂θ
κ2T (θ0) = −2π

T

T−1∑
j=1

I(λj)

φ2(θ0;λj)
ϕ2(θ0;λj) = op (1)

since ϕ2(θ0, λ) = ∂
∂θ log φ2(θ0, λ) integrates to zero in Π and the properties of the periodogram, cf.

Lemma A2.

The asymptotic equivalence between estimates is simply shown by checking that the score and

Hessian of both problems are asymptotically equivalent. Then, on the one hand the normalized

score with respect to θ corresponding to LW is

SWT (θ0, κ2) = − 1

T

T−1∑
j=1

I(λj)

f(θ0, κ2;λj)

(∂/∂θ) f(θ0, κ2;λj)

f(θ0, κ2;λj)
+ oP

(
T−1/2

)

= − 1

T

T−1∑
j=1

I(λj)

f(θ0, κ2;λj)
ϕ2(θ0;λj) + oP

(
T−1/2

)
.

On the other hand, the normalized score with respect to θ corresponding to the minimum distance

L2-estimator based on minimizing L̃2T (θ, κ2) is

S2T (θ0) = − 1

T

T−1∑
j=1

(
I(λj)− f(θ0, κ

†
2T (θ0) ;λj)

f(θ̄T , κ̄2T ;λj)2

)
∂

∂θ
f(θ, κ†2T (θ) , λj) + oP

(
T−1/2

)
(52)

= − 1

T

T−1∑
j=1

(
I(λj)− f(θ0, κ2;λj)

f(λj)

)
ϕ2(θ0;λj) + oP

(
T−1/2

)

= − 1

T

T−1∑
j=1

I(λj)

f(λj)
ϕ2(θ0;λj) + oP

(
T−1/2

)
using that κ2T (θ0) = κ2 +OP

(
T−1/2

)
, κ̇2T (θ0) = OP

(
T−1/2

)
and preliminary consistent estimates

θ̄T and κ̄2T , following the proof of Theorem 2.

This shows that both objective functions have asymptotically the same score up to error T−1/2

when evaluated at the parameter true value. Then, the same arguments can be used to show

the asymptotic equivalence of the respective Hessian functions in a neighborhood of θ0 and of the

corresponding estimates up to terms oP
(
T−1/2

)
.

APPENDIX D: PROOFS OF LEMMAS 4, 5 AND 6

Proof of Lemma 4. For pure invertible and causal models, Φ∗0 = 0, the AVar of an estimate using

only second and third moments with (w2, w3, w4) = (1, w3, 0) w.l.o.g., is

1 + 3w3ν
2
3 + 9

4w
2
3ν

4
3

(
µ̄4−1
ν23

)
1 + 3w3ν2

3 + 9
4w

2
3ν

4
3

Φ−1
0
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where the factor in front of Φ−1
0 is always larger than 1 if w3 > 0 because µ̄4 − 1 = 2 + ν4 ≥ ν2

3 > 0,

see Rao (1973, p.143). 2

Proof of Lemma 5. For an estimate using only second and fourth moments we could check for

(w2, w3, w4) = (1, 0, w4) w.l.o.g. that the AVar is

1 + 4w4ν
2
4
µ̄4
ν4

+ 4w2
4ν

4
4
µ̄6−ν23
ν24

1 + 4w4ν2
4 + 4w2

4ν
4
4

Φ−1
0 =

1 + 4w4ν4µ̄4 + 4w2
4ν

2
4

(
µ̄6 − ν2

3

)
1 + 4w4ν2

4 + 4w2
4ν

4
4

Φ−1
0

where µ̄4
ν4

= ν4+3
ν4

= 1 + 3
ν4

> 1 if ν4 > 0; < −0.5 if v4 < 0, and µ̄6 − ν2
3 ≥ µ̄2

4 > ν2
4. Therefore if

ν4 > 0, then using L4 reduces effi ciency, but if v4 < 0 it can increase for some values of w4.

The problem of minimizing the variance can be written as

min
w4∈[0,∞)

1 + 4w4ν
2
4

(
1 + 3

ν4

)
+ 4w2

4ν
4
4
µ̄6−ν23
ν24

1 + 4w4ν2
4 + 4w2

4ν
4
4

so the FOC is

0 =
(
1 + 4w4ν

2
4 + 4w2

4ν
4
4

)(
4ν2

4

(
1 +

3

ν4

)
+ 8w4ν

4
4

µ̄6 − ν2
3

ν2
4

)
−
(
4ν2

4 + 8w4ν
4
4

)(
1 + 4w4ν

2
4

(
1 +

3

ν4

)
+ 4w2

4ν
4
4

µ̄6 − ν2
3

ν2
4

)
,

whose solutions for ν4 6= 0 are{
3

6ν24+2ν34−2ν4µ6+2ν23ν4
,− 1

2ν24

}
if 6ν2

4 + 2ν3
4 − 2ν4µ6 + 2ν2

3ν4 6= 0{
− 1

2ν24

}
if 6ν2

4 + 2ν3
4 − 2ν4µ6 + 2ν2

3ν4 = 0.

So if we disregard the simple solution − 1
2ν24

because is always negative, we obtain the solution

provided given the denominator is not zero.

If we assume that ν4 < 0, then w†4 > 0, then the denominator is always positive since it is equal

to

2ν2
4 (3 + ν4)− 2ν4

(
µ̄6 − ν2

3

)
= 2ν2

4 (3− |ν4|) + 2|ν4|
(
µ̄6 − ν2

3

)
and all factors are positive, where µ̄6 − ν2

3 ≥ µ̄2
4 > ν2

4 > 0 and 3− |ν4| > 1 > 0 since −2 < ν4 < 0.

To explore whether ν4 > 0 is compatible with effi ciency gains we can alternatively consider linear

combinations of estimates, γθ̂
(2)

T + (1− γ) θ̂
(4)

T , γ ∈ [0, 1], whose asymptotic variance is proportional

to

γ2 + (1− γ)
2 µ̄6 − ν2

3

ν2
4

+ 2γ (1− γ)
µ̄4

ν4

which is minimized by

γ∗ =

µ̄6−ν23
ν24
− µ̄4

ν4

µ̄6−ν23
ν24
− 2 µ̄4ν4 + 1

=

{
µ̄6−ν23
ν24
− 1
}
− 3

ν4{
µ̄6−ν23
ν24
− 1
}
− 2 3

ν4
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where the terms in brackets are always positive. If ν4 < 0 then γ∗ ∈ (0, 1), so there are effi ciency

gains by using L2, but if ν4 > 0 then γ∗ > 1. 2

Proof of Lemma 6. Consider estimates which only use higher order moments, (w2, w3, w4) =

(0, 1, w4), whose asymptotic variance is

9
4ν

4
3
µ̄4−1
ν23

+ 4w2
4ν

4
4
µ̄6−ν23
ν24

+ 6w4ν
2
3ν

2
4
µ̄5−ν3
ν3ν4(

3
2ν

2
3 + 2w4ν2

4

)2 Φ−1
0

and the foc of its minimization with respect to w4 is

0 =

(
3

2
ν2

3 + 2w4ν
2
4

)(
8w4ν

4
4

µ̄6 − ν2
3

ν2
4

+ 6ν2
3ν

2
4

µ̄5 − ν3

ν3ν4

)
−4ν2

4

(
9

4
ν4

3

µ̄4 − 1

ν2
3

+ 4w2
4ν

4
4

µ̄6 − ν2
3

ν2
4

+ 6w4ν
2
3ν

2
4

µ̄5 − ν3

ν3ν4

)
,

with solution

w†4 =
3ν3

3 − 3ν3ν4 − 3ν2
3µ5 + 3µ4ν3ν4

4ν3ν2
4 − 4µ5ν

2
4 − 4ν3

3ν4 + 4ν3ν4µ6

,

when the denominator is different from zero. The numerator is

3
(
ν3

3 − ν3ν4 − ν2
3µ̄5 + µ̄4ν3ν4

)
= 3

{
ν3ν4 (µ̄4 − 1)− ν2

3 (µ̄5 − ν3)
}

= 3ν3

{
ν4 (µ̄4 − 1)− 9ν2

3

}
− 3ν2

3ν5

because µ̄5 = ν5 + 10ν3, while the denominator is

4
(
ν3ν

2
4 − µ̄5ν

2
4 − ν3

3ν4 + ν3ν4µ̄6

)
= 4

{
ν3ν4

(
µ̄6 − ν2

3

)
− ν2

4 (µ̄5 − ν3)
}

= 4ν3

{
ν4

(
µ̄6 − ν2

3

)
− 9ν2

4

}
− 4ν2

4ν5.

so that when ν5 > 0 and ν3 > 0 w.l.o.g., both terms are negative because µ̄6 − ν2
3 > 0 by Cauchy-

Swartz inequality, and w†4 > 0. 2
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