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1 Introduction

Instability of parameters is an issue confronted by econometricians everyday. Coefficient

instability reflects, for example, an economic system exposed to exogenous shocks or an eco-

nomic agent exhibiting behavioral changes (the latter as pointed out by the Lucas critique

Lucas Jr (1976)). Indeed, the empirical literature has found models with constant param-

eters to be unsatisfactory in various contexts and devised various models to accommodate

such structural changes in the underlying data generating process.

To the best of our knowledge, theoretical literature on linear models with time-varying

coefficients predominantly employs kernel smoothing methods. See, for example, Cai (2007),

Cai et al. (2009), Kristensen (2012), and Chen and Hong (2012). The kernel approach re-

quires the model assumption that the functional parameters be at least as smooth as the

kernel, thus ruling out abrupt structural breaks or jump behavior. While our model only

admits a single time varying parameter as a source of non-stationarity, the standard smooth-

ness assumption on the time-varying parameter is dropped completely. Formally, this means

that the functional space containing the functional parameter is enlarged significantly. When

the time-varying coefficient corresponds to an intercept term, our model is a linear model

with arbitrary time trend and overlaps with the partial linear model from Robinson (1988)

in the time series setting.

Our approach consists of two steps. The time-invariant part of the model is estimated

consistently by kernel method. With these consistent estimates in hand, the problem of es-

timating the time-varying parameter is converted into a de-noising problem. One has a time

series of noisy observations of the time-varying parameter. The objective is to remove the

noise from the time series to reveal the true underlying trend. In our case, this trend may be

an arbitrary function of time that is, for example, nonlinear and has jumps. We apply an or-

thogonal series estimator to this problem. In particular, we choose the orthonormal basis to

be a wavelet basis and make use of their descriptive power in encoding spatial-inhomogeneity

in the parameter, such as varying degree of smoothness between possible discontinuities.

Wavelets was first discovered by Daubechies in seeking an orthonormal basis for square-

integrable functions that is both compactly supported and has certain smoothness properties

Daubechies (1988). The multi-resolution structure inherent in their construction makes the

associated filters natural tool in time series analysis from a spectral perspective. A sizable

body of results now testifies to the effective of wavelets in this regard. For example, the
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unit root test of Fan and Gençay (2010) and serial correlation test of Gençay and Signori

(2015) originate from this perspective. In contrast, the ability of wavelets to represent par-

simoniously a wide variety of functions remain relatively unexplored in the econometrics.

Lee and Hong (2001) introduces a test of serial correlation for covariance stationary time

series based on a linear wavelet estimator of the spectral density. In principle, this non-

parametric approach via wavelets allows for testing for serial correlation of arbitrary form,

without smoothness assumptions on the spectral density, resulting in a powerful test. This

was extended to the panel model setting by Hong and Kao (2004).

In our methodology, following Donoho (1995a), we make use of a nonlinear wavelet esti-

mator that is both minimax over a wide Besov scale and preserve the smoothness properties

of the underlying true parameter with probability one asymptotically. The language of Besov

spaces allows one to speak precisely of smooth properties more general than differentiability,

or, indeed, continuity (Besov et al. (1978)), and this language translates the ability of the

wavelet estimator to faithfully extract true jump from a noisy signal containing many spuri-

ous jumps. In addition to satisfactory theoretical properties, the nonlinear wavelet estimator

also offers computational advantages due to the pyramid structure of the associated filter

algorithm.

We also exploit the whitening effect of wavelets on serially correlated processes when the

error terms in the model have short memory instead of being mere white noise. In this more

general setting, the utility of wavelets is two-fold: first to decorrelate serial correlation in

error terms, second to encode efficiently the underling time-varying coefficient. Both of these

properties derive from the time-frequency localization of wavelets, which is unique among

available basis. Bases such as the classical Fourier basis or B-splines do not have this prop-

erty.

There are also extensive literature on testing for structural breaks. The flexibility of

wavelet estimator, being minimax in a global sense rather than pointwise, can complement

existing testing methods by supplying required information within the class of models be-

ing considered. The seminal paper Andrews (1993) introduced tests for structural break

in a general partial sample general method of moments framework. The Andrews test is

formally designed against alternatives where the structural change occurs in a specified in-

terval. However, information about location of change point for the parameter in question

may not be available to the econonometrican. For example, the issue at hand could be

general model adequacy. Or the structural break may be caused by a policy change, the
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lag-effect of which is is unknown. For the class of model considered in this paper, the An-

drews alternative is the special case where the time-varying coefficient is a piecewise constant

function of time. A minimax estimator that captures the true jumps can be very useful in

providing the econonometrican with a possible locations of structure breaks in the Andrews

alternative. When the time-varying coefficient is piecewise constant, our model is also a

special case of the linear models with partial structural breaks considered in Bai and Perron

(1998) and Perron and Yamamoto (2014) where the number of breaks are assumed to be

known. Bai and Perron (1998) also provides a test for whether the model has l versus l + 1

structural breaks. Once the number of breaks are determined, estimating the location of the

breaks then becomes a dynamic programming problem over the set of possible partitions. In

procedures of estimating the number and then locations of the breaks, considerable computa-

tion may be circumvented by inspecting the minimax wavelet estimate as a preliminary step.

In empirical research, the parameter instability might be addressed by either introducing

time series specifications for the parameter or fitting elaborate non-linear alternatives. Nei-

ther approach directly confronts the issue if the true source of misspecification is parameter

instability in time. Furthermore, the econometrician is forced to impose additional struc-

tures on the model, which may not be relevant. In such situations, a simple linear model

that allows for both abrupt structural breaks and smooth structural changes, should one

be available, deserves consideration before other alternatives. We highlight some examples

where our model is applicable below.

Our model specializes to a capital asset pricing model (CAPM) with time-varying beta.

Ample empirical evidence exists for the inadequacy of the static CAPM model and the asset

pricing literature contains extensive investigations of the CAPM model with time-varying

beta. Chen and Keown (1981) extracts the component of the unsystematic risk due to non-

stationary beta under the random walk assumption on beta. One can also adopt a model

where the returns follow a time series specification as in Bodurtha and Mark (1991). Time

series specifications carry the implication that changes in the joint distribution of all the

securities in the market are captured by the parameters within the model. This may prove

to be inadequate, either due to simple misspecification or that the parameters themselves

vary in time. Ghysels (1998) shows that the latter case does indeed arise. It was shown

that when both the static model and a parametric time-varying beta model are misspecified,

there are situations where the static model could outperform the parametric time-varying

beta model in pricing risk. The parameters themselves can exhibit non-constancy and re-

sult in a sufficiently severe misspecification to overcome any additional flexibility gained by
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allowing for parametric time-variation. Modelling beta as a deterministic arbitrary, not nec-

essarily smooth, function removes such misspecification issues. Also of interest is a model

allowing for time-varying alpha rather than beta. For example, Evans (1994) shows that the

contribution of time-varying beta to variation in returns is small compared to the contribu-

tions of changing risk premia. This would also be a special case of our model.

The predictive regression literature studies the regression of excess returns on dividend

yield ratio, taking as given stylized facts persistence and endogeneity of valuation predictors,

assuming a correctly specified model. Cochrane (1999) asserts stock returns are predictable

over long horizons. Recent research has found evidence both for and against this assertion by

considering different non-linear alternatives. The non-linear alternative used in Kilian and

Taylor (2003) and Rapach and Wohar (2005) features a regressor time series with a mean-

reversion property. They found longer forecasting horizon in predictive regression leads to

more power. On the other hand, Ang and Bekaert (2007) constructs a present value model

where the dividend yield is a nonlinear function of interest rates, excess returns, and cash

flows and showed no power gain for long run predictive regression under this misspecification.

Similarly Maynard and Ren (2014) fits the predictive linear regression to data generated a

linear model where the coefficients switch in a Markov fashion and found no power gain of

long range regression over short range. Dangl and Halling (2012) considers a framework

where the regressors in the predictive regression follows a random walk. As in the asset pric-

ing case, a time varying coefficient linear model would remedy the potential misspecification

of parametric nonlinear models condition on existing data and suggest reasonable candidates

of nonlinear alternatives for forecasting purposes.

Nellis and Longbottom (1981) conducts an econometric analysis of United Kingdom hous-

ing prices. They found that a regression model of housing prices on consumer prices and

income fails the Chow test for parameter constancy. Data shows that the relationship be-

tween real house prices and real disposable income is not constant, which can be attributed

to changes to the economy during the period examined such as financial deregulation and

interest rate fluctuation. In addressing this, various time series specifications, such as state

space or GARCH, have been devised. See, for example, Brown et al. (1997). Guirguis et al.

(2005) considers the same issue for United States housing prices. They also found, in a

linear model setting, the failure of Chow test provides evidence of susceptibility of housing

prices to structural changes. Time series specifications introduces additional structure in the

model that is not implied by rejection of the Chow test null hypothesis. A linear model with

structure breaks is the Chow alternative.
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The rest of the paper is organized as follows. In Section 2, we specify the model and

recall standard facts in estimating the time-invariant part. Section 3 summarizes relevant

aspects of wavelet theory. Section 4 discusses our approach to the de-noising problem for the

time-varying parameter. Certain folklore facts regarding the classical nonparametric model is

recast in a way that we believe makes clear the superiority of the wavelet approach relative

to other estimators. In a model with white noise error terms, results in Donoho (1995a)

provides a wavelet minimax estimator that preserves the smoothness of the true parameter,

although a technical lemma is needed in bridging to our slightly different formulation. We

also show that the model with short range dependent errors decomposes asymptotically into

white noise models across different scales. This suggest naturally a scale-dependent wavelet

estimator that is minimax. Section 5 contains simulation results. We conclude afterwards.

2 The model and estimation of time invariant param-

eters

We consider the linear model with time series data

Yt =
m∑
i=0

βtxt + γ(t)xm+1,t + εt.

where

1. The parameters β0, · · · , βm are time-invariant.

2. {(x1,t, · · · , xm+1,t, εt)} is strictly stationary α-mixing.

3. The time series {(x1,t, · · · , xm+1,t, Yt)} is sampled at the rate 1
n

on the interval [0, 1],

i.e. at times 1
n
, 2
n
, · · · , 1.

4. The distribution of the regressor xm+1 has support bounded away from zero.

5. The time-varying parameter γ(t) is Riemann integrable and lies in a Besov space Bη
p,q

(defined precisely below). The restriction to the unit interval is for technical conve-

nience and without loss of generality.
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Assumptions 1 and 2 are for consistent estimation of time-invariant part of the model,

with consistency in the sense of in-fill asymptotics as Assumption 3 indicates. Assumption 4

is required for minimax estimation of the time-varying parameter γ. Assumption 5 specifies

the type of function space that contains γ.

At any randomly chosen s0 ∈ (0, 1), γ is continuous. Therefore (β1, · · · , βm, γ(s0)) ∈
Rm+1 can be consistently estimated by a Nadaraya-Watson estimator. Let K(·) be a kernel

function, hn a bandwidth sequence satisfying hn → 0 and nhn → ∞. Then the Nadaraya-

Watson estimate is

(β̂1, β̂m, γ̂(s0)) = arg min
θ∈Rm+1

n∑
t=1

(yt − x′tθ)
2K(

t
n
− s0

hn
),

where x′t = ((x1,t, · · · , xm+1,t, ). The closed form solution is

(β̂1, β̂m, γ̂(s0))′ = (
n∑
t=1

K(
t
n
− s0

hn
)xtx

′
t)
−1(

n∑
t=1

K(
t
n
− s0

hn
)xtyt).

We recall the following standard consistency result for the Nadaraya-Watson estimator (see,

for example, Theorem 1 in Cai (2007)):

Theorem 2.1. If the kernel K is symmetric, has compact support, and is differentiable with

continuous derivative, then under Assumptions 1, 2, and 5, the Nadaraya-Watson estimator

is consistent.

3 Wavelets and function spaces

We summarize in this section relevant aspects of wavelet theory. Let ψ be a Daubechies

mother wavelet of compact support having r vanishing moments, r continuous derivatives

and unit L2-norm (see Daubechies (1988)). An orthonormal basis of the Hilbert space L2(R)

is generated using ψ by integer translations and dyadic dilations by defining (Z denotes the

integers):

ψjk = 2
j
2ψ(2jx− k), j, k ∈ Z.

For a function in L2(R), its wavelet decomposition is f(x) =
∑

j,k θjkψjk(x) where θjk =∫
f(x)ψjk(x)dx. For L2[0, 1], an appropriate modification can be made on a subset of Z×Z

so that the resulting {ψjk} form an orthonormal basis of L2[0, 1](Cohen et al. (1993)).
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Wavelet bases are unconditional bases for a wide variety of functional spaces which

are convenient in modelling spatially inhomogeneous signals. Empirically, this means that

wavelets provide parsimonious representation of functions whose smoothness can, for exam-

ple, vary between possible discontinuities. We work with Besov spaces and refer to Meyer

(1995) and Triebel (1978) for more details on functional analytic properties of wavelets. Un-

like the classical Sobolev or Hölder spaces, Besov spaces go beyond continuity and allow one

to quantify smoothness of, for instance, cádlág functions. Allowing γ to lie in a Besov space

means that our model accommodates structural breaks of arbitrary type.

The Paley-Littlewood definition of Besov space is as follows (Meyer (1995)). Let S ′ be

the space of tempered distributions, i.e. the topological vector space dual of the Schwartz

space S of C∞-test functions (Gelfand and Vilenkin (1964)). Fix Ψ, {Φn}n≥0 ⊂ S such

that their Fourier transforms Ψ̂, {Φ̂n} form a partition of unity subordinate to the open

cover A0 = (−1, 1), An = {2n−1 < |ξ| < 2n+1}. So an element f ∈ S ′ can be written as

f = Ψ ∗ f +
∑

n≥0 Φn ∗ f . f is said to lie in the inhomogeneous Besov space Bα
p,q if

‖Ψ ∗ f‖Lp + (
∑
n≥0

(2nα‖Φn ∗ f‖Lp)q)
1
q <∞.

As a corollary of (sufficiently smooth) wavelets forming an unconditional basis for Bη
p,q, f

lies in the inhomogeneous Besov space Bη
p,q if

∑
j≥j0

(
2jq(η+ 1

2
− 1
p

)‖θjk‖lp
)q
<∞.

Example In the model being considered, let the time-varying parameter γ(t) = 1[0, 1
2

](t),

the indicator function on [0, 1
2
]. This is a parameter that has an abrupt structural break at

t = 1
2

but constant otherwise, a Chow alternative hypothesis. Let F(γ) denote the Fourier

transform of γ, then

F(γ)(ξ) =
1

4
e−2πi· 1

4
ξ ·

sin πξ
4

πξ
4

.

Choose p = 2, then in the above notation, the L2-norm of the n-th Paley-Littlewood piece

is, up to a multiplicative constant independent of n,

‖Φn ∗ g‖L2 ≈ 2−
n
2 .

Therefore γ ∈ Bη
2,q if and only if
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∑
n

2n(η− 1
2

)q <∞,

For q ∈ [1,∞], this is true whenever η < 1
2
. For η = 1

2
, one must have q =∞.

More generally, almost all sample paths of a Lévy process, which can be, for example,

a càdlàg function where each continuous piece is a Brownian sample path, lie in a Besov

space (Herren (1997)). Almost all sample paths of a Brownian motion belong to the suitable

Besov spaces Bη
p,q with 1 ≤ p, q ≤ ∞, 1

p
< η ≤ 1

2
. Such sample paths have the property, for

example, of crossing 0 infinitely many times on the time interval (0, ε) for ε arbitrarily small.

From a practical perspective, this descriptive power of Besov spaces means that, our model

places no restrictions on the time-varying parameter γ, allowing for features such as smooth

structural changes, abrupt jumps, or combinations thereof.

The family of Besov spaces contains both both L2-Sobolev spaces (the cases p = q = 2)

and Hölder spaces (the case p = q = ∞). The assumption of twice-differentiability that

is common in the time-varying coefficient literature correspond to the case η = 2 and

p = q =∞.

4 Estimation of the time-varying parameter

Plugging in the consistent estimates of β1, · · · , βm and re-writing the model gives, for

t = 1, · · · , n,

Yt −
∑

i β̂ixi,t
xm+1,t

=
Yt −

∑
i βixi,t

xm+1,t

+

∑
i(βi − β̂i)xi,t
xm+1,t

= γ(t) +
εt

xm+1,t︸ ︷︷ ︸
De-noising problem

+

∑
i(βi − β̂i)xi,t
xm+1,t︸ ︷︷ ︸

Estimation error of β1, · · · , βm

.

The above expression suggests that the problem of estimating γ is a denoising problem con-

ditional on the true time-invariant parameters with additional additive error, the estimation

error of the time-invariant parameters. We first consider the de-noising problem, showing

the faithfulness of the wavelet estimator with respect to the smoothness of γ and establishing

its minimax rates of convergence, before incorporating estimation error.
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4.1 The De-noising Problem

The term γ(t)+ εt
xm+1,t

can be viewed as noisy observations of γ. Thus estimation of γ is now

a de-noising problem. In more compact notation, rewrite as

Zt = γ(t) + ut.

Allowing for jumps necessarily means that one must abandon the notion of pointwise

consistency. Instead, we measure the loss by the squared norm ‖ · ‖2
L2 on L2[0, 1]. The

corresponding risk is the mean integrated square error (MISE). For a given estimator γ̂, the

MISE is

E[‖γ̂ − γ‖2
2] = E[

∫ 1

0

|γ̂(t)− γ(t)|2dt].

The benchmark is the minimax risk. The (asymptotic) minimax risk over a subset F (e.g.

a subspace such as Bα
2,q or a family of subspaces) is defined by

lim inf
n→∞

inf
T

sup
γ∈F

E[‖γ̂ − γ‖2
2],

where infT denotes infimum over all F -valued maps measurable with respect to data.

4.1.1 White noise {εt}

If the error terms {εt} in the model is homoskedastic white noise, Assumption 4 on the

distribution of xm+1 implies that {ut} is heteoskedastic white noise with uniformly bounded

variance ≤ σ2. We treat the model

Zt = γ(t) + ut

as one where ut is homoskedastic white noise with variance σ2. In practice, error variance

is estimated from the highest level wavelet coefficients, the most noisy part of the noisy

observations of γ.

The de-nosing problem with homoskedastic white noise and the infinite dimensional Gaus-

sian sequence model are shown formally to be statistically equivalent by Brown et al. (1996).

We offer a development of this equivalence that explicates the utility of wavelets, first as the

basis used in an orthogonal series estimator and second in facilitating the extension to {εt}
with long-range dependence.
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From de-noising to filtering model: For a given n, define a stochastic process on [0, 1]

as follows:

F
(n)
t =

1

n

dnte∑
i=1

Zi =
1

n

dnte∑
i=1

γ(t) +
1

n

dnte∑
i=1

ut.

The drift term 1
n

∑dnte
i=1 γ(t) converges to

∫ t
0
f(t)dt. By the classical Functional Central Limit

Theorem (see, e.g. Davidson (1994)), the process

t 7→ 1

n

dnte∑
i=1

ut

converges to σ√
n
Bt, where Bt is the standard Brownian motion on [0, 1] weakly.1 Therefore

the sequence of processes {F (n)
t } converges to the Itô process

dFt = γ(t)dt+ σ
1√
n
dBt, t ∈ [0, 1].

From filtering model to Gaussian sequence model: We make use of the Lévy-

Ciesielski-Îto construction (Lévy (1954), Ciesielski (1961), Itô et al. (1968)) of the Brow-

nian motion Bt.
2 Let {ψj} of L2[0, 1] be an arbitrary orthonormal basis, then the standard

Brownian motion on [0, 1] can be expressed as

dBt =
∑
j

wjψj(t)dt

where {wj} is standard Gaussian white noise and the series converges in the mean square

sense. Therefore ∫ 1

0

ψj(t)dFt =

∫ 1

0

ψj(t)γ(t)dt+

∫ 1

0

ψj(t) · σ
1√
n
dBt

where
∫ 1

0
ψj(t) · σ 1√

n
dBt = σ 1√

n
wj by orthonormality of {ψj}. In a stochastic sense, the

Fourier transform of the filtering model, taken with respect to {ψj}, is the Gaussian sequence

model

Xj = θj + ej,

where (θj) ∈ l2(N), ej ∼ N (0, σ
2

n
), j = 1, 2, · · · .3

1In the sense of probability measures on the space of càdlàg functions on [0, 1].
2We recall the details of this construction in the Appendix.
3l2(N) denotes the Hilbert space of square summable sequences.
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We summarize the above in a theorem:

Theorem 4.1. The following three models are statistically equivalent as n→∞:

(i)

Zt = γ(t) + ut

where {ut} is homoskedastic white noise with variance σ2, γ ∈ L2[0, 1] is Riemann-integrable,

and Zt is sampled at the rate 1
n

.

(ii) The filtering model where the drift of the Itô process

dFt = γ(t)dt+ σ
1√
n
dBt

is to be estimated.

(iii) The Gaussian sequence model

Xj = θj + ej,

where (θj =
∫ 1

0
γψj) ∈ l2(N) for some orthonormal basis {ψj}, ej ∼ N (0, σ

2

n
), j = 1, 2, · · · .

Remark 4.2. The above development, with passage through the intermediate filtering model,

generalizes to the case of long range dependent {εt}. In the white noise case, model equiva-

lence holds for any basis, with the means of the resulting Gaussian sequence model being the

expansion coefficients with respect the the chosen basis. The effectiveness of wavelet lies in

that a wide variety of functions can be parsimoniously encoded by their wavelet coefficients.

The long range dependent case, however, the additional property of wavelets to de-correlate

serial dependence is required to arrive at a Gaussian sequence model.

The sequence (θj) are the expansion coefficients of γ with respect to the chosen basis

ψj whose empirical counterpart is (Xj). The seminal estimation result in this setting is

due to Pinsker, who used the classical Fourier basis and showed that minimax risk can

be achieved over Sobolev ellipsoids by shrinking the empirical Fourier coefficients (Pinsker

(1980)). While a shrinkage estimator is natural in this setting, it is impossible to extend the

minimax result beyond Sobolev spaces.4 Wavelets, however, allows one to extend beyond

4We have the following fact from Fourier analysis: For any g ∈ L2[0, 1], there exists a continuous h on
[0, 1] such that all the Fourier coefficients of h are larger than those of g (Katznelson (2004)). Therefore
shrinking the Fourier coefficients does not in general preserve smoothness.
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continuous functions. Define the soft threshold function ηλ with threshold λ by

ηλ(x) = sgn(x)(|x| − λ)+.

The wavelet universal threshold estimator γ̂n, where n is sample size, applies ηλ(·) to each

empirical wavelet coefficient with threshold λ = σ̂
√

2 logn
n

, where σ̂ is the median absolute

deviation estimate of σ from the highest level of wavelet coefficients. The following theorem,

proved in Donoho (1995a), says that not only does wavelet universal threshold estimator

achieve minimax risk over a Besov scale (up to a log factor), the estimated function γ̂ is as

smooth as γ with probability approaching 1.5

Theorem 4.3. (Donoho 1995) Let ψ, the mother wavelet that generates the wavelet basis

used, have r vanishing moments and r continuous derivatives, where r > max{1, η}. In the

de-noising model with white noise {εt}, let Rn(p, q, η, L) denote the minimax risk over the

Besov ball Bη
p,q(L). Then

(i)

lim
n→∞

supγ∈Bηp,q(L) E[‖γ̂n − γ‖2]

Rn(p, q, η, L)
= 2 log n+ 1

for all 1 ≤ p, q ≤ ∞, 0 < L <∞, and η0 < η < r where

η0 = max{1

p
, 2(

1

p
− 1

2
)+}.

(ii) There exists a constant C such that

Prob{‖γ̂n‖Bηp,q ≤ C‖ γ‖Bηp,q} → 1.

Even as we abandon the notion of pointwise estimation, conclusion (ii) of Theorem 4.3

guarantees that the estimate γ̂n is as smooth as the true γ, as measured by the Besov norm

‖ · ‖Bαp,q , with probability approaching 1. Therefore empirically there are no spurious jumps

in the estimate.

5Strictly speaking, the statements from Donoho (1995a) applies to the sequence of truncated finite dimen-
sional Gaussian sequence models. The gap with our formulation is bridged with a technical lemma, given in
the Appendix.
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4.1.2 Short range dependent {εt}

The covariance-stationary time series {εt} is said to have short range dependence if its

autocorrelation function ρ is absolutely summable:
∑+∞
−∞ |ρ(h)| <∞ and long range depen-

dence if ρ has sub-hyperbolic decay: ρ(h) ≈ A
|h|α for some 0 < α < 1 and A > 0.

The model equivalence for the de-noising problem in fact generalizes to short range

dependent {εt}. The error partial sum process

1

n

dnte∑
i=1

ut

still converges to a Brownian motion τ√
n
dBt where τ 2 =

∑+∞
−∞ |ρ(h)| (De Jong and Davidson

(2000)). Therefore the de-noising problem is still equivalent to estimating the means of a

sequence of independent Gaussian random variables. In simulations, however, we found that

the presence of short range dependence causes the estimates of γ be be noisier than the white

noise case. This indicates that serial correlation dissipates slowly relative to sample size and

motivates us to consider the situation where the de-noising problem, the second step in our

procedure, features long range dependent errors.

Unlike the short range dependent case, the whitening effect of wavelets, not shared by

other basis, is now required to establish model equivalence. In this more general setting, the

limit process is now the fractional Brownian motion dBH
t is with Hurst index H, which is

determined by H = 1− α
2
∈ (1

2
, 1). dBH

t is a mean-zero Gaussian process that behaves like

(∆t)H for small time increments ∆t, and self-similar in the sense that BH(ct) and cHBH(t)

have the same distribution. For H = 1
2
, dBH

t is the Brownian motion. Unlike the Brownian

motion, dBH
t does not have independent increments in general nor is it a semi-martingale.

(The Appendix contains a precise definition of dBH
t .)

By a version of Functional Central Limit Theorem for long range dependent processes

(Taqqu (1975)), the observation and error partial sum processes satisfy

n1−H(F
(n)
t −

∫ t

0

γ(s)ds)→ τBH
t

where the asymptotic variance τ 2 = 2A
(1−α)(2−α)

. This gives the long-range filtering model

dFt = γ(t)dt+
τ

(
√
n)α

dBH
t .

13



Unlike the case of Brownian motion, where the Îto isometry yields i.i.d. Gaussian sequence

for any basis of L2[0, 1], the long memory situation require unique properties of wavelets to

decorrelate the fractional Brownian motion. By performing a principal component analy-

sis on the reproducing kernel of dBH
t using wavelets, we obtain a Lévy-Ciesielski-Îto type

representation (details provided in Appendix):

dBH
t =

∑
jk

wjkvjk(t)dt,

where vjk is approximately orthogonal to {ψjk}. The stochastic integrals∫
ψjkdFt =

∫
ψjkγ(t)dt+

τ

(
√
n)α

ψjkdB
H
t

give a Gaussian sequence model whose error terms are approximately white noise, with level-

dependent error variance.

Theorem 4.4. Denote the empirical wavelet coefficient by Xjk =
∫
ψjkdFt. Then

(i)

Xjk = θjk +
τ

(
√
n)α

σjejk,

where, at each level j, σj = 2−j(1−α).

(ii) The random variables ejk = 1
σj

∫ 1

0
ψjkdB

H
t have mean zero, variance 1, and are

approximately uncorrelated in the sense that 0 < c0 ≤ Var(ejk|ej′k′ , (j′, k′) 6= (j, k)) ≤ 1.

It was shown in Donoho (1995b) that a Gaussian sequence model whose noise satisfies the

approximate uncorrelated condition (ii) has the same asymptotic minimax risk as a model

with independent noise. In other words, asymptotically the model is equivalent to

Xjk = θjk +
τ

(
√
n)α

σje
′
jk

where e′jk’s are i.i.d. standard normal. Since for a fixed resolution level j, the equivalent

model is a Gaussian sequence model with homoskedastic independent noise for which the

unversal wavelet threshold estimator achieves minimax risk, as a corollary of Theorem 4.3

we arrive at a level-dependent thresholding estimator for the long memory case.

Theorem 4.5. Let ψ, the mother wavelet that generates the wavelet basis used, have r

vanishing moments and r continuous derivatives, where r > max{1, η}. In the de-noising

14



problem with long memory error {εt}, let Rn(p, q, η, L) denote the minimax risk over the

Besov ball Bη
p,q(L) and γ̂n be the estimate obtained by applying the universal wavelet thresh-

old estimator to each level j. Then

(i)

lim
n→∞

supγ∈Bηp,q(L) E[‖γ̂n − γ‖2]

Rn(p, q, η, L)
= 2 log n+ 1,

for all 1 ≤ p, q ≤ ∞, 0 < L <∞, and η0 < η < r where

η0 = max{1

p
, 2(

1

p
− 1

2
)+}.

(ii) There exists a constant C such that

Prob{‖γ̂n‖Bηp,q ≤ C‖γ‖Bηp,q} → 1.

Also by asymptotic equivalence, the (non-adaptive) minimax rate of convergence of the

wavelet threshold estimator can is therefore the same as that obtained in Donoho et al.

(1998) for the Gaussian sequence model with level-dependent noise

Xjk = θjk +
τ

(
√
n)α

σje
′
jk,

under the assumption that the time-varying parameter γ is sufficiently regular relative to

the correlation structure of the limit process dBH
t .

Theorem 4.6. Suppose η + 1
2
− 1

p
> α(2−p)

2p
, then the wavelet threshold estimator is rate-

optimal and its minimax risk satisfies

lim inf
n→∞

sup
γ∈Bηp,q(L)

E[‖γ̂n − γ‖2] = O(n−r)

where r = 2 · (η+ 1
2
− 1
p

)·α
2

η+ 1
2
− 1
p

+α
2

.

4.2 Estimation Error

From the time-invariant part of the model, the mean square error ‖β̂ββ−βββ‖2
2 =

∑m
j=1(β̂j −

βj)
2, with optimal bandwidth selection, is known to be of order Op(n

− 4
5 )Bierens (1987).

Also, since m is finite, the norms ‖βββ‖2 and ‖βββ‖∞ = max
1≤j≤m

βj on Rm are equivalent. There-

fore ‖β̂ββ − βββ‖∞ is of order Op(n
− 4

5 ).

15



Making the additional assumption that distributions of the regressors xj, j = 1, · · · ,m,

have compact support, the estimation error term6

|
∑

i(βi − β̂i)xi,t
xm+1,t

| ≤ const · ‖β̂ββ − βββ‖∞ = Op(n
− 2

5 ).

Therefore

Yt −
∑

i β̂ixi,t
xm+1,t

is asymptotically equivalent to

γ(t) +
εt

xm+1,t

+Op(n
− 2

5 ). (1)

With γ̂n denoting the wavelet estimate from the de-noising problem, let ˆ̂γn be the wavelet

threshold estimator applied to (1). Because the wavelet threshold operator is identity on the

one dimensional subspace spanned by constants, we have

ˆ̂γn = γ̂n +Op(n
− 2

5 ),

which immediately gives the following:

Theorem 4.7. Suppose the distributions of the regressors xj, j = 1, · · · ,m, have compact

support and the time-varying parameter is not constant. If η+ 1
2
− 1
p
> α(2−p)

2p
, then the wavelet

threshold estimator ˆ̂γ for time-varying parameter γ in the full model stated in Section 2 has

minimax risk satisfying

lim inf
n→∞

sup
γ∈Bηp,q(L)

E[‖ˆ̂γn − γ‖2] = O(max{n−r, n−
4
5})

where r = 2 · (η+ 1
2
− 1
p

)·α
2

η+ 1
2
− 1
p

+α
2

.

In the full model, one achieves the worst of the two rates from the time-invariant and

time varying parts. Similarly, since ‖ˆ̂γn‖Bηp,q = ‖γ̂n‖Bηp,q +Op(n
− 2

5 ), the faithfulness result of

Theorem 4.5(ii) extends to the full model:

Prob{‖ˆ̂γn‖Bηp,q ≤ const · (‖γ‖Bηp,q + n−
2
5 )} → 1.

In summary, our proposed estimator consists of the following two steps:

6Recall that xm+1,t is assumed to be bounded away from zero.
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1. Estimate the time-invariant part of the model consistently by local smoothing kernel

methods at a randomly chosen s0 ∈ (0, 1).

2. Apply a non-linear wavelet orthogonal series estimator to obtain ˆ̂γ.

5 Monte Carlo simulations

5.1 White noise {εt}

We simulate the following model

Yt = α + β1x1,t + β2x2,t + β3x3,t + γ(t)x4,t + εt, (2)

where

• The value of the time-invariant parameters are α = 7, β1 = 5, β2 = −6, β3 = 2.

• The functional parameter γ : [0, 1]→ R is defined by

γ(t) =

 cos π
2
t if t ∈ [0, 1

2
]

cos 8πt+ (cos π
4
− cos 4π) if t ∈ [1

2
, 1]

.

γ is a continuous but not C1, being not differentiable at t = 1
2
. Figure 1(a) contains

a plot of γ. This simulated data generating process has a structural change from low

frequency to high frequency oscillation at t = 1
2
.

• The regressors and errors have the following independent distributions:

– x1,t ∼ i.i.d. χ2
2.

– x2,t ∼ i.i.d. N (0, 1).

– x3,t is a realization of a ARMA(1, 2) time series with AR parameters 0.1 and MA

parameters (1,−1). The underlying innovation is standard normal white noise.

– x4,t has i.i.d. distributions which is a χ2
2 distribution shifted to the right by 1,

making it bounded away from zero.

– εt ∼ i.i.d. N (0, 4).

The sample size is 1, 024. We now describe a typical estimate. Using an Epanechnikov

kernel, the estimates of time-invariant parameters are

α̂ = 6.640, β̂1 = 5.058, β̂2 = −6.082, β̂3 = 2.023.

Plugging-in gives the noisy version of γ to be wavelet-thresholded, shown in Figure 1(c),
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(a) The functional parameter γ
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(b) Zt obtained by plugging in consistent esti-
mates of time-invariant parameters.
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(c) Zt in comparison with true γ.
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(d) Estimate γ̂ given by the universal wavelet
threshold estimator

Figure 1: Estimate of γ by universal wavelet thresholding from a typical realization of data
generated by (2). The errors {εt} in the simulated DGP is i.i.d. N (0, 4) white noise.

Zt =
Yt − α̂− β̂1x1,t − β̂2x2,t − β̂3x3,t

x4,t

.

Even though Zt is very noisy compare to γ, wavelet thresholding removes most of the noise,

yielding estimate shown in Figure 1(d). The average mean square error (AMSE), the empir-

ical counterpart to mean integrated square error (MISE), in this case is

1

n

∑
t

(ˆ̂γ(t)− γ(t))2 = 0.02996225.

On the other hand, the total energy contain in γ is 1
n

∑
t γ(t)2 = 0.7018039, making the

relative error approximately 4.2%. This is in spite of a very large noise-to-signal ratio of

2.041884, as measure by the ratio of empirical variances of (Zt) over that of γ(t). Relative

errors from a Monte Carlo simulations of 1000 repetitions are shown in Figure 2, with mean

of approximately 6% and standard deviation 0.05. From the same 1000 simulations, the

noise-to-signal variance ratios have a relatively large mean 2.001118 and standard deviation

0.09640994.
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simulations.

1.5 2.0 2.5 3.0

0
10

0
25

0

(b) Noise-to-signal ratio from 1000 simulations.

Figure 2: Monte Carlo simulation of 1000 repetitions. The average relative error is approxi-
mately 6%, which is small considering the amount of noise faced by the estimator.

5.2 Short-range dependent {εt}
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(a) Noisy γ in comparison with true γ.
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(b) Universal threshold estimate of γ when {εt}
has short-range dependence.
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(c) Level-dependent threshold estimate of γ

Figure 3: The wavelet universal and level-dependent threshold estimators applied to data
with short-range dependent errors.

As stated in Section 4.2, in theory asymptotic minimaxity of the universal threshold

estimator extends to models with such short range dependent error {εt}. However, in simu-

lations we found that the universal threshold estimator often gives somewhat noisy estimates

of γ when {εt} has short range dependence. Figure 3(b) shows one such estimate. The sim-

ulated DGP satisfies all previous conditions except {εt} is now an AR(1) time series with

AR parameter 0.5. Noticeable more noise survives universal thresholding than in the white
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(a) Relative errors, mean = 0.02083235× 100%,
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(b) Noise-to-signal ratio, mean = 1.846658, sd
= 0.08510039.

Figure 4: Monte-Carlo simulation of 1000 repetitions with short range dependent errors.

noise case. This is empirical evidence that while the observation processes still converge to

the Brownian motion, serial dependence slows down the speed of convergence considerably.

In comparison, applying the level-dependent threshold estimator specified in Theorem 4.5

to the same set of data gives an improved estimate, which is shown in Figure 3(c). Figure

4 shows a results from 1000 simulations using the level dependent threshold estimator; 4(a)

shows the distribution of relative errors and 4(b) shows the distribution of the noise-to-signal

ratio faced by the wavelet estimator in the de-noising problem.

5.3 Small sample

Figure 5 contains simulation result of 1000 repetitions with sample size reduced from

1, 024 to 256. For comparison, 5(b) shows the level-dependent threshold estimate and 5(c)

universal threshold estimate for the same realization in 5(a). The level-dependent threshold

estimator is used, as specified by our methodology. As expected, the quality of estimates

worsens with smaller sample size but it is still acceptable in our view.

5.4 Discontinuous γ

Consider now a γ that undergoes simultaneously smooth structural change and abrupt

structural break at t = 1
2
, plotted in Figure 6(a):

γ(t) =

 cos π
2
t if t ∈ [0, 1

2
)

cos 8πt+ 3 if t ∈ [1
2
, 1]

.

With a sample size of 1, 024 and short range dependent errors, typical estimates using the

level-dependent threshold estimator and the universal threshold estimator are shown in Fig-

ures 6(c) and 6(d) respectively. Both capture well the true jump at t = 1
2
, although the
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(a) One realization of noisy γ with AR(1) {εt}.
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(b) Corresponding level-dependent threshold es-
timate of γ with AR(1) {εt}.
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(c) Corresponding universal threshold estimate
of γ with AR(1) {εt}.
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(e) Noise-to-signal ratio, mean = 1.868884, sd
= 0.1902459

Figure 5: Monte-Carlo simulation of 1000 repetitions with short range dependent errors.
Sample size reduced from 1, 024 to 256.

universal threshold estimate is visually more noisy. It is level-dependent estimator that is

used in the 1000 repetitions. The average relative error of approximately 2.13% is approx-

imately the same as the 2.08% obtained for a γ that is continuous, in Figure 4(c). The

noise-to-signal ratio is approximately the same in the two cases. Thus the performance of

the wavelet estimator is unaffected by possible discontinuities in γ. Whereas a pointwise

estimator obtained by local smoothing would breakdown in the presence of discontinuity,

the wavelet estimator can actually exploit the additional spatial inhomogeneity in γ. With

a smaller sample size of 256, the wavelet estimate still retains the essential features of true γ

as shown by results in Figure 8. Again comparing to the case where γ is continuous with the

same sample size of 256, discontinuity in γ causes no discernible degradation on the quality
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(a) γ with discontinuity.
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(b) One realization of noisy γ with AR(1) {εt}.
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(c) Level-dependent threshold estimate of γ
with AR(1) {εt}.
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(d) Universal threshold estimate of γ.

Figure 6: Discontinuous γ with short range dependent errors.

of the estimate, with the noise level being comparable.

6 Conclusion

We provide a framework for functional estimation of a time-varying parameter in a linear

regression model. Leaving the paradigm of pointwise estimation, we estimate the parameter

over the entire observed period simultaneously. This new perspective allows one to incor-

porate the machinery of wavelets. Wavelets stand out as the only family of basis functions

that can efficiently encode spatial inhomogeneity and whiten serial correlated time series.

Both properties are exploited in our methodology. By transforming the estimation problem

into one of estimating wavelet coefficients, we make use of the fact that the wavelet de-

composition of spatially inhomogeneous functions are concentrated at a few relatively large

coefficients. Furthermore, the estimation problems are statistically independent across reso-

lution levels even when the error terms feature serial correlation. The allowance for jumps,

abrupt breaks, and smooth trends of any type is in contrast with local smoothing methods,

which must impose smoothness assumptions. Wavelets also also computational advantages.

A Monte Carlo simulation of 1000 repetitions of the estimator, as one performed in Section

5, takes approximately 25 seconds. In this more general environment, important character-

istics of the parameter such as the locations of possible discontinuities and different types
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Figure 7: Monte-Carlo simulation of 1000 repetitions with short range dependent errors and
γ with discontinuity.

of time trending behavior are captured by the wavelet estimate. It is of use for economics,

finance as well as other disciplines where similar linear regressions in a time series context

are relevant.

7 Appendix

Technical lemma for Theorem 4.3: For Bα
p,q(L) with space of wavelet coefficients Θ ⊂

l2(N), Donoho (1995a) considers a sequence of truncated Gaussian sequence models Mn

Xj = θj + ej, where ej ∼ N (0,
σ2

n
), 1 ≤ j ≤ n,

where for each n, (θj) ∈ Θ ∩ Rn (as it is irrelevant for the argument in this case, we

suppress the double indices for wavelet coefficients). γ̂n is constructed by estimating the n

coefficients. We show that this is without loss of generality in our global L2-formulation. As

any γ ∈ L2[0, 1] can be approximated by its truncations γn, it is without loss of generality to

estimate γn. Furthermore, estimating γn from its first n coefficients does not increase risk:

In the filtering model, let Pγ and P0 be the probability measures on C[0, 1] that gives the

distribution of F = dFt and dBt respectively. By Girsanov’s theorem (Girsanov (1960)), the

likelihood ratio is

dPγ

dP0

= e
1
n

∑n
j=1 θjXj−

1
2n

∑n
j=1 θ

2
j .

By Jensen’s inequality, for any estimator θ̂j(F) where 1 ≤ j ≤ n,
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(a) One realization of noisy γ with AR(1) {εt}.
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(b) Corresponding level-dependent threshold es-
timate of γ with AR(1) {εt}.
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(c) Corresponding universal threshold estimate
of γ with AR(1) {εt}.
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Figure 8: Monte-Carlo simulation of 1000 repetitions with short range dependent errors with
discontinuous γ. Sample size reduced from 1024 to 256.

Eγ[(θ̂j(F)− θj)2] = E0[
dPγ

dP0

(F)(θ̂j(F)− θj)2]

= E0[E0[(θ̂j(F)− θj)2|X1, · · · , Xn]
dPγ

dP0

]

≥ E0[(θ̄j(X1, · · · , Xn)− θj)2dPγ

dP0

]

= Eγ[(θ̄j(X1, · · · , Xn)− θj)2],
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where θ̄j(X1, · · · , Xn) = E0[θ̂j(F)|X1, · · · , Xn]. Therefore Theorem 1.1 and Theorem 1.2 in

Donoho (1995a) imply Theorem 4.3.

The Lévy-Ciesielski-Îto construction of Brownian motion: This construction was

used in passing from the filtering model to the Gaussian sequence model in Section 4.1 and

generalized to fractional Brownian motion en route to proving Theorem 4.4. Let ε′j ∼ N (0, 1)

be i.i.d. random variables defined on a probability space (Ω,F , P ). Let H be the Hilbert

subspace of L2(Ω,F , P ) generated by {ε′j}. Define an Îto isometry by

ε′j ∈ H
Ψ7→ ψj ∈ L2[0, 1].

The stochastic process t 7→ Ψ(1[0,t]) is a standard Brownian motion by the following proper-

ties:

1. The increment Ψ(1[0,t]) − Ψ(1[0,s]) = Ψ(1[s,t]) for any 0 ≤ s < t ≤ 1 is distributed

N (0, t− s), being the mean square limit of normal random variables.

2. Two increments Ψ(1[s,t]) and Ψ(1[s′,t′]) are uncorrelated, therefore independent by nor-

mality.

Definition of fractional Brownian motion: We recall here the precise definition of

the fractional Brownian motion, which is the limit process for the Functional Central Limit

Theorem used in Section 4.2. The fractional Brownian motion with Hurst exponent H

BH(t), t ∈ R, is a zero-mean Gaussian process with covariance function

γ(s, t) =
VH
2

(|s|2H + |t|2H − |t− s|2H)

where

VH = var(BH(1)) =
−Γ(2− 2H) cos(πH)

πH(2H − 1)
,

and Γ(·) is the gamma function.

Proof of Theorem 4.4: Fix a wavelet basis {ψjk} that is continuously differentiable up

to r > H + 3
2

times. Let ∆ = d2

dx2
be the Laplace operator on [0, 1]. For Hurst exponent

H ∈ (1
2
, 1), the operator KH = (−∆)H+ 1

2 is the reproducing kernel of the reproducing kernel

Hilbert space of dBH
t .7 The functions K

− 1
2

H ψjk diagonalizes KH , which gives a Karhunen-

7The reproducing kernel Hilbert space of dBH
t consists of f ∈ L2[0, 1] for which
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Loéve decomposition of fractional Brownian motion

BH
t =

∑
jk

wjkK
− 1

2
H ψjk

where {wjk} is a Gaussian white noise. Define

vjk =
d

dt
K
− 1

2
H ψjk = (−∆)

1
4
−H

2 ψjk.

Then we have a representation:

dBH
t =

∑
jk

wjkvjk(t)dt.

The random variables ejk in the statement of the theorem can be expressed by

ejk =
1

σj

∫
ψjkdB

H
t =

1

σj

∑
j′k′

wj′k′

∫
ψjkvj′k′(t)dt.

The near-independence property of ejk can now be shown using the time-scale localization

property of wavelets: By normality, the conditional mean êjk = E[ejk|ej′k′ , (j′, k′) 6= (j, k)]

must lie in the l2-span of {ej′k′ , (j′, k′) 6= (j, k)}: êjk =
∑

(j′,k′)6=(j,k) aj′k′ej′k′ . So

ejk − êjk = −
∑
j′,k′

[

∫
vj′k′(t)

∑
j′′,k′′

1

σj′′
aj′′k′′ψj′′k′′dt]wj′k′ (3)

= −
∑
j′,k′

[

∫
ψj′k′(t)

∑
j′′,k′′

1

σj′′
aj′′k′′vj′′k′′dt]wj′k′ , (4)

where the second equality follows from the symmetry of the operator (−∆)
1
4
−H

2 . Using the

fact that {ψjk} is an orthonormal basis,

∫ 1

0

KHf(t)f(t)dt <∞.

For standard Brownian motion, the case H = 1
2 , this space is the Cameron-Martin space of Brownian motion:

the Sobolev space of absolutely continuous functions f with f(0) = 0 and f ′ ∈ L2[0, 1].
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Var(ejk − êjk) =
∑
j′,k′

[

∫
ψj′k′(t)

∑
j′′,k′′

1

σj′′
aj′′k′′vj′′k′′dt]

2 (5)

= ‖
∑
j′′,k′′

aj′′k′′ ·
1

σj′′
vj′′k′′‖2

L2 (6)

= c0‖
∑
j′′,k′′

a2
j′′k′′‖ (7)

> 0. (8)

This proves Theorem 4.4.

Proof of Theorem 4.5: Let f (j) be the L2-projection of f onto the j-th resolution detail

subspace, and R
(j)
n (p, q, ζ, L) be the minimax risk of the corresponding Gaussian sequence

model with independent noise. By Parseval’s equality

E[‖f̂n − f‖2] =
∑
j

E[‖f̂ (j)
n − f (j)‖2],

and

Rn(p, q, ζ, L) =
∑
j

R(j)
n (p, q, ζ, L).

Therefore Theorem 4.5 follows immediately from Theorem 4.3.
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Lévy, P. (1954). Le mouvement brownien. Mémorial des sciences mathématiques, 126, 1–84.

Lucas Jr, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester

Conference Series on Public Policy. Elsevier.

Meyer, Y. (1995). Wavelets and Operators. Cambridge University Press.

Nellis, J. G. and Longbottom, J. A. (1981). An empirical analysis of the determination of

house prices in the United Kingdom. Urban Studies, 18(1), 9–21.

Perron, P. and Yamamoto, Y. (2014). A note on estimating and testing for multiple structural

changes in models with endogenous regressors via 2SLS. Econometric Theory, 30(02),

491–507.

Pinsker, M. (1980). Optimal filtration of square-integrable signals in Gaussian noise. Prob.

Info. Transmission, 16(2), 120–133.

Rapach, D. E. and Wohar, M. E. (2005). Valuation ratios and long-horizon stock price

predictability. Journal of Applied Econometrics, 20(3), 327–344.

Robinson, P. M. (1988). Root-N -consistent semiparametric regression. Econometrica, 56(4),

931–954.

Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt

process. Probability Theory and Related Fields, 31(4), 287–302.

Triebel, H. (1978). Interpolation Theory, Function spaces, Differential Operators. North

Holland.

30


	Introduction
	The model and estimation of time invariant parameters
	Wavelets and function spaces
	Estimation of the time-varying parameter
	The De-noising Problem
	Estimation Error

	Monte Carlo simulations
	White noise { t }
	Short-range dependent { t }
	Small sample
	Discontinuous 

	Conclusion
	Appendix

