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Abstract

Continuous-time long-memory models have found diverse applications

in many fields, including option pricing, volatility modeling, environmen-

tal study, and annual tree-ring measurements, among many others. Mar-

quardt (2007) introduces a class of multivariate continuous-time autoregres-

sive fractionally integrated moving average (MCARFIMA) models without

discussing the estimation of the model parameters and thus without render-

ing it applicable to real data. Alternative continous time models exhibiting

long range dependence either do not model the long-range dependence ex-

plicitly or assume all processes to have a common Hurst parameter.

In this paper, we develop the missing estimation theory of the MCARFIMA

models with different long memory parameters. The MCARFIMA models

are useful for analyzing multivariate discrete-time long memory data sam-

pled regularly or irregularly. In contrast to a discrete-time ARFIMA pro-

cess being defined as a solution of a difference equation, a d-dimensional

MCARFIMA process is defined as the solution of a p-th order stochastic

equation with suitable initial condition and driven by a vector of independent

fractional Brownian motions with different Hurst parameters. We derive the

spectral density matrix function of the model and show that the continuous-

time model given discrete-time regularly spaced data is identifiable under

certain regularity conditions. The spectral density function enables us to

consider the estimation of the MCARFIMA Models with discrete-time reg-

ularly spaced data by maximizing the Whittle likelihood. We show that the

spectral maximum Whittle likelihood estimator (SMLE) is asymptotically
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normal and efficient. Finite-sample properties of the SMLE are studied by

simulations. We illustrate the method with a real application.
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1 Introduction

Continuous-time long-memory models have found diverse applications in many

fields, including option pricing (Comte and Renault, 1998), volatility modeling

(Casas and Gao, 2008), environmental study (Tsai and Chan, 2005a), and annual

tree-ring measurements (Tsai and Chan, 2005b), among many others. For further

developments of univariate continuous-time long-memory models, see, for exam-

ple, Chambers (1996), Comte (1996), Comte and Renault (1996), and Brockwell

and Marquardt (2005). In order to study interactions and comovements among

a group of time series variables, one needs to consider multivariate time series

models. There are three extensions of univariate continuous-time long-memory

models to multivariate continuous-time long-memory models. Marquardt (2007)

introduces a class of multivariate fractionally integrated CARMA processes and

studies their probabilistic properties, however, without discussing the estimation.

Barndorff-Nielsen and Stelzer (2011) propose multivariate supOU (superpositions

of Ornstein-Uhlenbeck-type) processes which can exhibit long-range dependence

and suggest moments based estimation methods for estimating the parameters.

The finite- and large- sample properties of the estimator are, however, unknown.

Asai and McAleer (2013) propose a fractionally integrated Wishart stochastic

volatility model with a common long memory parameter for multivariate stochas-

tic volatility modeling. In this paper, we develop the missing estimation theory of

the MCARFIMA models with different Hurst parameters. The MCARFIMA mod-

els are useful for analyzing multivariate discrete-time long memory data sampled

regularly or irregularly.
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The rest of the paper is organized as follows. The multivariate continuous-time

fractionally integrated ARMA processes are described in Section 2. Spectral maxi-

mum likelihood estimator (SMLE) and its large sample properties are discussed in

Section 3. In Section 4, we report some empirical performance of the SMLE. We

illustrate the use of the MCARFIMA model with a real application in Section 5.

Section 6 concludes.

2 Multivariate continuous-time fractionally inte-

grated ARMA processes

We first introduce some notations. Let the indicator function of a set B, denoted

by IB(·), defined to be one if the argument lies in B and zero otherwise. The

real numbers and the integers are denoted by R and Z, respectively. The ring

of polynomial expressions in z over a ring K is denoted by K[z]. The symbols

Mm,n(K), or Mn(K) if m = n, stand for the space of m× n matrices with entries

in K.

Heuristically, a d-dimensional MFCARFIMA(p,H, q) process {Y (t)} is defined

as the solution of a p-th order stochastic differential equation with suitable initial

condition and driven by a vector of independent standard fractional Brownian

motions with Hurst parameters H = (H1, · · · , Hm)′, where m is a positive integer.

Specifically, for t ≥ 0,

P (D)Y (t) = Q(D)DB̄H(t), (1)

where D = d/dt, B̄H(t) = [BH1(t), · · · , BHm(t)]′, the superscript ′ denotes the

transpose, and for 1 ≤ k ≤ m, {BHk(t), t ≥ 0} is a standard Brownian motion

with Hurst parameter 0 < Hk < 1, and {BHk(t), t ≥ 0}, k = 1, ...,m, are m

independent stochastic processes; P (z) = zp+A1z
p−1+· · ·+Ap ∈Md(R[z]), Q(z) =

B0 + B1z + · · ·+ Bqz
q ∈ Md,m(R[z]). The fractional Brownian motion is nowhere

differentiable (Mandelbrot and Van Ness, 1968), so the stochastic equation (1)

has to be appropriately interpreted as some integral equation as explained below.

Analogous to the case of univariate continuous-time ARMA processes (see, e.g.,

Brockwell, 1993), equation (1) can be equivalently cast in terms of the state and
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observation equations:

dX(t) = ĀX(t) + βdB̄H(t), (2)

Y (t) = CX(t), (3)

where

Ā =



0 Id 0 · · · 0

0 0 Id · · · 0
...

...
...

. . .
...

0 0 0 · · · Id

−Ap −Ap−1 −Ap−2 · · · −A1


∈Mpd(R),

where Id is the d× d identity matrix, β = (β′1, · · · , β′p) ∈Mpd,m(R),

βp−j = −I0,...,q(j)
[∑p−j−1

i=1 Aiβp−j−i −Bj

]
, and C = (Id, 0, ..., 0) ∈ Md,pd(R). Un-

der the condition that all the eigenvalues of A have strictly negative real parts, the

solution of (2) can be written as

Xt = eĀtX0 +

∫ t

0

eĀ(t−u)βdBH(t),

where eĀt = Idp +
∑∞

n=1

{
(Āt)n(n!)−1

}
.

The spectral density matrix of {Y (t)} is given in Theorem 1.

Theorem 1 The spectral density matrix of {Y (t), t ≥ 0} equals

fY (ω) =
1

2π
P−1(iω)Q(iω)Σ diag(D1(ω), · · · , Dm(ω))Q(−iω)

′{P−1(−iw)}′ ,(4)

where Dj(ω) = Γ(2Hj + 1) sin(πHj)|w|1−2Hj , for j = 1, · · · ,m, and Γ() is the

Gamma function.

Remark 1: note that in Theorem 1, Dj(ω) = 1 if Hj = 1/2.

Remark 2: the multivariate CARFIMA(p,H, q) defined for {t ≥ 0} can be extended

to be well-defined for {t ∈ R}. The extension is similar to that of Tsai (2009) in

the univariate case.

One major problem with continuous-time modeling is the identifiability of the

continuous-time model, given discrete-time data. Let θ = (H1, .., Hm, A1, .., Ap, B0.., Bq),

and {Y (ih)}i=1,...,N be the observations sampled from a stationary MCARFIMA(p,H, q)
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process, where h is the step size. By the aliasing formula (Priestley, 1981), the

spectral density matrix of {Y (ih)}i=1,...,N equals

fh(ω; θ) =
1

h

∑
k∈Z

fY

(
ω + 2kπ

h

)
, ω ∈ [−π, π],

where fY (·) is as defined in Equation (4). Using the frequency domain method,

Tsai and Chan (2005b) showed that the univariate CARFIMA(p,H, q) model with

1/2 < H < 1 is identifiable. For the multivariate case, we have similar identifica-

tion results in the following theorem.

Theorem 2 Let Y = {Y (ih)}Ni=1 be sampled from a stationary (Gaussian)

MCARFIMA(p,H,q) process given by Equation (1), detP (z) and detQ(z) have no

common zeros, all roots of detP (z) = 0, and the roots of detQ(z) = 0 have strictly

negative real parts. If h > 0, then for θ1 6= θ2, the set {ω|fh(ω; θ1) 6= fh(ω; θ2)}
has positive Lebesgue measure.

We note that the roots of the determinant of the polynomial P (z) are the

same as the eigenvalues of the matrix Ā, and the condition on the roots of the

determinant of the polynomial P (z) is necessary for the stationarity of the process,

whereas the condition on the determinant of the polynomial P (z) is akin to the

invertibility condition for discrete-time processes.

3 Spectral maximum likelihood estimator and its

large sample properties

Let IY (ω) = JY (ω)JY (ω)∗/(2πN), where JY (ω) =
∑N

t=1 Yte
itω, J(ω)∗ denotes the

conjugate transpose of J(ω). Let tr(A) be the trace of the matrix A, ωj := 2πj/N ∈
(0, π) the Fourier frequencies, and T be the largest integer ≤ (N − 1)/2. Then the

(negative) log-likelihood function of {Y (ih)} can be approximated, up to a multi-

plicative constant, by the (negative) Whittle log-likelihood function (see Hosoya,

1996)

−l̃(θ) =
T∑
i=1

[
log det fh(ωi; θ) + tr{fh(ωi; θ)

−1IY (ωi)}
]

(5)

The objective function (5) is minimized with respect to θ to get the spectral

maximum likelihood estimator (SMLE) θ̂.
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Theorem 3 Let the data Y = {Y (ih)}Ni=1 be sampled from a stationary Gaussian

long-memory process given by (1), where all roots of detP (z) = 0, and the roots of

detQ(z) = 0 have strictly negative real parts. Let the spectral maximum likelihood

estimator θ̂ ∈ Θ, a compact parameter space, and the true parameter θ0 be in the

interior of the parameter space. Then
√
N(θ̂ − θ0) converges in distribution to

a normal random vector with mean 0 and covariance matrix Γ(θ0)−1, where the

(i, j)-th element of Γ(θ) is given by

Γij(θ) =
1

4π

∫ π

−π
tr

[
fh(ω; θ)−1∂fh(ω; θ)

∂θi
fh(ω; θ)−1∂fh(ω; θ)

∂θj

]
dω.

4 Simulation

5 Real Application

6 Conclusion
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