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Threshold stochastic regression models have attracted much attention and been widely used 

to model nonlinear phenomena in diverse areas, such as economics, finance, ecology and 

others. Their success is partly due to their simple fitting and often clear interpretation. 

Threshold models are typically characterized by piecewise linearization via partitioning a 

complex system into regimes by some threshold (or covariate) variable, thereby providing a 

relatively  easy-to-handle approximation of a complex system. When the model within each 

regime is a linear regression, we have the well-known two-phase regression of Quandt 

(1958). On the other hand, when the model within each regime is a linear autoregression, we 

have the well-known threshold autoregressive (TAR) model of Tong (1978), including the 

self-exciting threshold autoregressive model and its smooth cousin, the smooth threshold (or 

transition) autoregressive model, as special cases. See also Tong and Lim (1980), Chan and 

Tong (1986), Tong (1990), and the references therein. Recently  Hansen (2011) has provided 

a fairly comprehensive review of the impacts of TAR models on econometrics and economics 

by reference to 75  influential papers published in the  literature. Chen et al. (2011) has 

provided a similar review of the impacts on finance. More recently, Chan et al. (2014) has 

adopted the LASSO method to estimate TAR models with multiple thresholds, with 

promising results. A concise overview of the history and prospects of threshold models is 

given by Tong (2011). 

  

As far as theoretical results are concerned, much progress has been in two-phase regression 

since  Quandt (1958) and TAR models since Tong (1978). For the former, see, e.g., Bacon 

and Watts (1971), Goldfeld and Quandt (1972), Maddala (1977), Quandt (1984) and others. 

For the latter, see, e.g., Chan (1993), who first showed that the least squares estimator (LSE) 

of the threshold parameter is super-consistent and obtained its limiting distribution 

theoretically; Hansen (1997, 2000), who presented an alternative approximation to the 

limiting distribution of the estimated threshold when the threshold effect diminishes as the 

sample size increases;  Gonzalo and Pitarakis (2002), who developed a sequential estimation 

approach that makes the estimation of multiple threshold models computationally 

feasible and formally discussed the large sample properties; Li and Ling (2012), who 

established the asymptotic theory of LSE in multiple threshold models and proposed a 

resampling method for implementing the limiting distribution of the estimated threshold 

directly when the threshold effect is fixed. Other significant results related to threshold 

models include Tsay (1989, 1998), Hansen (1996), Caner and Hansen (2001), Gonzalo and 

Wolf (2005), Seo and Linton (2007), and Yu (2012) among others. 

  

  

Despite the theoretical progress in threshold models, computational issues are somewhat 

lacking behind, which hinders wider practical applications. A key issue is  computational 

cost. 

  

A commonly used approach to fit a threshold model is the (conditional) least squares method. 

When the threshold is known, the threshold model is piecewise linear in the remaining 

parameters and thus linear estimation techniques can be applied. However, when the 

threshold is unknown,  the ordinary least squares method for linear regression cannot be 



applied immediately since the threshold parameter lies in an indicator function.  This issue 

has been commonly tackled by using the single grid search (SGS) algorithm over a feasible 

threshold space; see Tong and Lim (1980), Chan (1993), Hansen (1997, 2000), Gonzalo and 

Pitarakis (2002), Li and Ling (2012), Yu (2012), and others. The SGS algorithm requires 

least squares operations of order O(n) for single threshold models, where n is the sample size. 

If n is small, the SGS algorithm can be effectively used to search for the estimate of the 

threshold over a set of threshold candidates by enumeration. However, when n is large, this 

algorithm can be rather time-consuming. 

The situation is worse when we wish to fit threshold models to a panel of observations. 

Gonzalo and Wolf (2005) considered subsampling inference of threshold models and massive 

computations are needed in the choice of the block size. Similarly, massive computations are 

also needed in bootstrap 

estimation of single threshold models in Seijo and Sen (2011). In practice, conventional 

numerical approach for threshold modelling incurs inevitably high cost for large sample. For 

example, about np^3 least squares operations are needed when fitting a threshold model with 

p covariates to data with sample size n. To illustrate, if n is 1000 and p is 10, then we need 

about one million least squares operations. Thus, it is crucially important to find ways to 

reduce the computational cost when fitting a threshold model for large n. 

  

In the time series literature,  Tong (1983, Appendix A10) proposed and later Tsay (1989) re-

discovered the SGS approach based on the rearranged technique, which essentially turns the 

threshold estimation into a change-point problem of the associated order statistics obtained 

from the observations. See also Ertel and Fowlkes (1976). This method is now available by 

calling the function \texttt{tar} in the package \texttt{TSA} in \textsf{R}; see  Chan and 

Ripley (2012). For threshold regression models, 

the SGS algorithm is available by calling the program in \textsf{R} developed by Hansen 

(2000)  on the website:\par\qquadhttp://www.ssc.wisc.edu/\~{}bhansen/progs/ecnmt$_{-

}$00.html.\\Wu and Chang (2002) proposed a genetic algorithm for TAR models. However, 

this algorithm has many limitations, as recognised by the above authors, so it is not widely 

used in practice. Coakley, Fuertes and P\'{e}rez (2003)  presented an algorithm based on the 

QR decomposition of matrices for a particular class of TAR models (called the band-type 

TAR model). For general threshold models, it is fair to say that the SGS algorithm remains 

to-date the most commonly adopted technique in practice due to its simplicity and reliability, 

although it is time-consuming for large n. 

  

In this paper, we propose a novel algorithm, namely the nested sub-sample search algorithm, 

or the NeSS algorithm for brevity, to produce a much faster search that is reliable in the 

context of threshold estimation. Compared with existing algorithms, the NeSS algorithm 

reduces the computational cost drastically from O(n) down to O(log n) least squares 

operations for large sample size. The idea is simple. We shrink the nested feasible set step by 

step and finally maximize over a small feasible set by enumeration 

so that it is expected to save computational costs. The performance of our method is 

evaluated via Monte Carlo simulation studies in finite samples. 

  

The method can be generalized to cover maximum likelihood estimation and other areas. 
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