
Proxy samples for time series

Statistical inference for time series usually involves nuisance parameters which are difficult

to estimate. In such situations, the general approach is to use a bootstrap scheme designed

for time series to estimate the nuisance and/or the finite sample distribution function of

the statistics of interest. Bootstrap schemes designed for time series (such as the block

bootstrap) are simple to implement and have interesting theoretical properties, However, in

practice, many of these bootstrap schemes can be computationally quite cumbersome and

involve a user-chosen tuning parameter which can heavily influence the results.

In this paper we propose the method of proxy samples, which can be used to estimate

nuisance parameters and the sampling distribution of certain test statistics. For a broad

class of statistics, using the original data, a proxy sample is constructed by making a slight

modification of the original statistic. The proxy sample is such that it is almost uncorrelated,

furthermore it is almost uncorrelated to the original statistic. The most important feature is

that it shares similar distributional properties to the centralised statistic of interest. These

properties mean that it can be used to estimate the variance of the statistic. Furthermore, by

using asymptotic normality of both the estimator and the corresponding proxy sample, we

show that a confidence interval for the parameter of interest can easily be constructed using

the standard t-distribution. Since the centralized statistic and the proxy sample share similar

distribution properties we use the proxy sample to estimate the finite sample distribution of

L2-type test statistics. We show consistency of our methodology and illustrate the method

with some simulations.
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Abstract

Inference for statistics of a stationary time series often involve nuisance parameters

and sampling distributions that are difficult to estimate. In this paper, we propose

the method of proxy samples, which can be used to address some of these issues.

For a broad class of statistics, using the original data, a proxy sample is constructed

by making a slight modification of the original statistic, such that it shares similar

distributional properties as the centralised statistic of interest. We use the proxy

sample to estimate nuisance parameters and the finite sample distribution of the test

statistics, focussing on Portmanteau and Goodness of Fit tests. The proposed method

is simple and computationally fast to implement.

Keywords Nuisance parameters, orthogonal transformations, statistical tests, time

series.

1 Introduction

A well known source of irritation for a time series analysist is that inference often depends

on nuisance parameters which are not straightforward to estimate. The simplest example

is the variance of the sample mean of a stationary time series, which is the sum of its

autocovariance function. The problems mount if more sophisticated statistics are considered,

such as the commonly used sample autocovariance function, spectral density estimators and

quasi-Gaussian likelihood/Whittle likelihood estimators. All these estimators come under

the canopy of integrated periodogram statistics which have the form

AT (φ) =
1

T

T∑
k=1

φ(ωk)|JT (ωk)|2, where JT (ωk) =
1√
2πT

T∑
t=1

Xt exp(itωk) (1)

2



with ωk = 2πk
T

. Under stationarity and some additional mixing-type and regularity conditions

it is known that Tvar[AT (φ)] = V +O(T−1), where

V =
1

2π

∫ 2π

0

f(ω)2|
(
|φ(ω)|2 + φ(ω)φ(−ω)

)
dω +

1

(2π)2

∫ 2π

0

∫ 2π

0

φ(ω1)φ(ω2)f4(ω1,−ω1, ω2)dω1dω2.

(2)

Clearly this term is unwieldy and difficult to estimate. Some simplifications can be made

under linearity of the time series. In particular, the fourth order cumulant term can be

simplified (and in the special case of the Whittle likelihood this term is zero). However, for

general nonlinear time series not even these simplifications are possible.

Several methods have been proposed to circumvent the need to estimate V . These include

the method of self-normalisation proposed in Lobato [2001], Shao [2009] and Shao [2010a],

where the limiting distribution is non-standard but free of nuisance parameters. The Haar-

Fisz transform is a different type of self-normalisation, proposed in Fryzlewicz and Nason

[2004] and Fryzlewicz and Nason [2006] which standardises the data in such a way that it is

close to pivotal in its application. Alternatively, Dahlhaus and Janas [1996] propose trans-

forming AT (φ) into a ‘ratio statistic’. The asymptotic variance of the ratio-statistic does not

contain the fourth order cumulant f4, which allows the spectral bootstrap (see Hurvich and

Zeger [1987] and Franke and Härdle [1992]) to be employed to estimate the finite sample

distribution of the statistic. The spectral bootstrap has the advantage that it can exploit

the Fast Fourier Transform and is simple to use. Unfortunately this method only holds for

univariate linear time series and even in the case of linearity, a multivariate extension is not

possible. Possibly the most popular and widely used method for estimating finite sample dis-

tributions and nuisance parameters in time series are the block-based bootstrap, resampling

methods, developed, for example, in Künsch [1989], Politis and Romano [1994], Romano and

Thombs [1996], Politis et al. [1999], Lahiri [2003], Kirch and Politis [2011], Shao [2010b] and

Kreiss and Lahiri [2012]. These methods avoid many of the issues mentioned above, but

are computationally quite intensive, and usually require the selection of a user-chosen block

length, where differing block lengths could lead to potentially different conclusions. The

purpose of this paper is to propose an alternative method to the estimation of nuisance pa-

rameters, such as V , and the sampling distribution of a test statistic. The proposed method

is simple and computationally fast, and will hopefully, complement and add to the existing

arsenal of methods.

To motivate our approach let us consider two toy examples. In the first example, we

suppose {Xt} are independent, identically distributed (iid) random variables with mean

µ and variance σ2. The classical estimator of the variance of the sample mean,
√
TX̄,

where X̄T = T−1
∑T

t=1Xt is the sample variance, which we now derive from an alternative

perspective. To do this, we define the T dimensional vector X = (X1, . . . , XT ) and the T -
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dimensional orthonormal vectors {ej,T ; 1 ≤ j ≤M}, whose elements sum to zero and squared

elements sum to one (examples include the Discrete Fourier transform, the Discrete Wavelet

transform and the Walsh transform). By construction, the mean of the transformed data

e′j,TX is zero. However, straightforward calculations show that its variance is σ2, furthermore

{e′j,TX} is an uncorrelated sequence. Therefore, the sequence {e′j,TX} can be considered as

a centralised version of the sample mean
√
TX̄, which allows us to measure the uncertainty

in
√
TX̄. Based on these observations, an estimator of the variance of

√
TX̄ is σ̃2

T =
1
M

∑M
j=1 |e′j,TX|2. Setting M = (T − 1), σ̃2

T is the same as the sample variance. In future,

we call {e′j,TX; j = 1, . . . ,M} a proxy sample for the sample mean, because it shares similar

properties as the centralise sample mean.

In the second example, we relax the assumptions on {Xt}, and suppose it is a stationary,

short memory, time series with autocovariance function {c(j)} and spectral density func-

tion f(ω). In this case, our objective is to estimate the long run variance, var[
√
TX̄T ] =∑

j c(j) + o(T−1), using orthogonal transformations of the data which share the same vari-

ance. A suitable transformation should preserve the variance and be close to uncorrelated.

For stationary time series, an ideal candidate is the Discrete Fourier transform {JT (ωk)}.
We observe that JT (0) =

√
T/(2π)X̄T and var[JT (0)] = f(0) + O(T−1), whereas for k ≥ 1,

E[JT (ωk)] = 0 and var[JT (ωk)] ≈ f(0) + O(kT−1). Further, it is well known that under

stationarity the DFT is almost an orthogonal transformation of the time series, in the sense

that if k1 6= k2 then cov[JT (ωk1), JT (ωk2)] = O(T−1) and var[JT (ωk)] ≈ f(0) + O(kT−1).

Focusing on the frequencies close to the origin, we observe {JT (ωk); 1 ≤ k ≤ M} is a near

uncorrelated sample whose variable is close to the variance of var[JT (0)] when M is small.

Thus {JT (ωk); 1 ≤ k ≤ M} can be considered as proxy sample of the sample mean. These

arguments naturally lead us to use M−1
∑M

k=1 |JT (ωk)|2 as an estimator of var[JT (0)]. We

observe that this estimator can also be viewed as an estimator of the spectral density func-

tion at zero, noting that the typical estimator of the long run variance is the spectral density

estimator at zero.

In this paper we generalise this notion. That is, for a given statistic we define a ‘near

independent proxy’ sample, which, by construction, has properties that mimic the centralised

statistic of interest. We work within the frequency domain as it allows us to exploit the near

uncorrelated property of the discrete Fourier transform to define the proxy sample. Currently,

it is unclear whether other transformations have similar properties. Nevertheless, defining

estimators within the frequency domain is not a restrictive assumption as most estimators

defined within the time domain can also be defined within the frequency domain. In Section

2 we define a proxy sample associated with AT (φ) which shares similar properties to the

centralised AT (φ), namely the same variance and higher order cumulants. These properties

allow us to use the proxy sample to estimate the nuisance parameter V , defined in (2). In
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Section 3 we address the issue of testing. Since the proxy sample shares similar sampling

properties with the centralised version of the statistic, it can be used to estimate the finite

sample distribution, and the critical values, of the statistic under the null that the mean of

the statistic is zero. This type of setting arises in several situations in time series and in

Sections 3.1 and 3.2 we use the proxy sample to estimate the distribution of the test statistic

for testing for uncorrelatedness and the Goodness of Fit test.

The methods discussed in Sections 2 and 3 depend on number of elements, M , in the proxy

sample. The number of elements plays an analogous role to the bandwidth in nonparametric

regression; too few elements in the proxy sample will make the estimator too variable, while

too many terms will induce a bias. Therefore, in Section 4 we propose a cross validation

method to select the number of terms in the proxy sample. We mention that evaluation

of the proxy sample and cross validation criterion method requires O(T log T ) and O(|S|T )

operations, respectively, where S denotes the set over which the cross-validation criterion

is minimised and |S| denotes its cardinality. The methods are illustrated in Section 5 with

simulations. The proofs can be found in the supplementary material.

2 Estimation of nuisance parameters

In this section we consider statistics which have the form AT (φ). In particular, we define

a proxy sample associated with AT (φ) which we use to estimate the asymptotic variance V

(defined in (2)). Throughout this paper we will assume the time series is s-order stationary

- that is all of moments of Xt up to the s-moment is invariant to shift (for example, a

strictly stationary time series with finite s-order moment satisfies such a condition). We

denote the covariance and s order cumulant as c(j) = cov(Xt, Xt+j) and κs(j1, . . . , js−1) =

cum(Xt, Xt+j1 , . . . , Xt+js−1). Furthermore, we define spectral density and s-order spectral

density functions as

f(ω) =
1

2π

∑
j∈Z

c(j)eijω and fs(ω1, . . . , ωs−1) =
1

(2π)s

∑
j1,...,js−1

κs(j1, . . . , js−1)ei(j1ω1+...+js−1ωs−1).

To simplify notation we will assume that {Xt} is a zero mean time series, noting that the

same methodology also works when the mean of {Xt} constant, since the DFT zeros a

constant mean at most frequencies.

It is clear that AT (φ) is an estimator of A(φ), where

A(φ) =
1

2π

∫ 2π

0

φ(ω)f(ω)dω,

and as mentioned in the introduction, several interesting statistics can be written in the form

AT (φ). Below, we give some well known examples.
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Example 2.1 (a) The sample autocovariance function at lag j, with φ(ω) = exp(ijω),

corresponds to

ĉT (j) =
1

T

T∑
k=1

exp(ijωk)|JT (ωk)|2 = c̃T (j) + c̃T (T − j) = c̃T (j) +O

(
|j|
T

)
, (3)

with c̃T (j) = 1
T

∑T−|j|
t=1 XtXt+|j|.

(b) The spectral density estimator with φ(ω) = b−1W (ω−ωk

b
).

(c) In order to test for goodness of fit of a model with spectral density function g(ω; θ), Mil-

hoj [1981] proposed estimating the jth autocovariance function of the residuals obtained

by fitting the linear model corresponding to g(ω; θ) using

γ̂T (j) =
1

T

T∑
k=1

exp(ijωk)

g(ωk; θ)
|JT (ωk)|2.

In this case γ̂T (j) = AT (eij·g(·; θ)−1) and φ(ω) = eijωg(ωk; θ)
−1.

(d) The Whittle likelihood estimator (which is asymptotically equivalent to the quasi-Gaussian

likelihood), where θ̂T = arg minθ∈Θ LT (θ), Θ is a compact parameter space and

LT (θ) =
1

T

T∑
k=1

(
|JT (ωk)|2

f(ωk; θ)
+ log f(ωk; θ)

)
.

If for some θ ∈ Θ, f(ω) = f(ω; θ) (where f(ω) is the spectral density of the observed

time series) then the sampling properties of θ̂T are based on the sampling properties of

the derivative of the Whittle likelihood at θ, where

∇θLT (θ) = AT (φ) +
1

T

T∑
k=1

1

f(ωk; θ)
∇θf(ωk; θ) (4)

and φ(ω) = ∇θf(ωk; θ)
−1. More precisely, under sufficient mixing conditions we can

show V = limT→∞ var[∇θLT (θ)] = limT→∞ Tvar[AT (φ)]. Thus, by using (4) and the

Taylor series expansion it is well known that

√
T
(
θ̂T − θ

)
D→ N

(
0,W−1VW−1

)
,

where W = 1
2π

∫ 2π

0
f(ω)−2∇fθ(ω; θ)∇fθ(ω; θ)′dω.

To construct the proxy sample associated with AT (φ) we recall some of the pertinent

features of the proxy sample associated with the sample mean; that is {JT (ωk); k = 1, . . . ,M}
is a ‘near uncorrelated’ sequence which has similar distributional properties as a centralised
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version of
√
T/2πX̄T = JT (0). Returning to AT (φ) we observe that it is a weighted average

of the periodogram |JT (ωk)|2. We now compare |JT (ωk)|2 with JT (ωk)JT (ωk+r). Using

classical results it is clear that despite |JT (ωk)|2 and JT (ωk)JT (ωk+r) estimating very different

quantities (the spectral density and zero respectively), in the case that r is small and k > 0,

the variances are close. This suggests that in order to construct the proxy sample associated

with AT (φ) we replace |JT (ωk)|2 with JT (ωk)JT (ωk+r) and define

AT (φ; r) =
1

T

T∑
k=1

φ(ωk)JT (ωk)JT (ωk+r),

noting thatAT (φ; 0) = AT (φ). In the following lemmas we show that {
√

2<AT (φ; r),
√

2=AT (φ; r)}r
(where < and = denote the real and imaginary parts of a random variable) is a suitable proxy

sample. We first show that in general AT (φ; 0) and AT (φ; r) (r > 0) have differing means.

Lemma 2.1 Let us suppose that {Xt} is second order stationary time series where
∑

j |jc(j)| <
∞ and φ(·) is a Lipschitz continuous function. Then we have

E[AT (φ; r)] =

{
1

2π

∫ 2π

0
φ(ω)f(ω)dω +O(T−1) r = 0

O(T−1) 0 < r < T/2

Despite these terms having different expectations in the following lemma and corollary we

show that they share similar second order properties.

Theorem 2.1 Suppose {Xt} is a fourth order stationary time series where
∑∞

j=−∞ |jc(j)| <
∞ and for 1 ≤ i ≤ 3

∑∞
j1,j2,j3=−∞ |jiκ4(j1, j2, j3)| < ∞ and the function φ : [0, 2π] → R is

Lipschitz continuous. Then we have

Tvar[AT (φ)] = Tvar[AT (φ; 0)] = V (0) +O
(
T−1

)
T cov[<AT (φ; r1),<AT (φ; r2)] =

{
1
2
V(ωr) +O(T−1) 0 < r1 = r2(= r)

O(T−1) 0 < r1 6= r2 ≤ T/2

T cov[=AT (g; r1),=AT (φ; r2)] =

{
1
2
V(ωr) +O(T−1) 0 < r1 = r2(= r)

O(T−1) 0 < r1 6= r2 ≤ T/2

and

T cov[<AT (φ; r1),=AT (φ; r2)] = O(T−1) 0 < r1, r2 ≤ T/2

where

V(ωr) =
1

2π

∫ 2π

0

f(ω)f(ω + ωr)|
(
|φ(ω)|2 + φ(ω)φ(−ω − ωr)

)
dω +

1

(2π)2

∫ 2π

0

∫ 2π

0

φ(ω1)φ(ω2)f4(ω1,−ω1 − ωr, ω2)dω1dω2. (5)
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We observe that the two assumptions stated in the above lemma,
∑

j |jc(j)| < ∞ and∑∞
j1,j2,j3=−∞ |jiκ4(j1, j2, j3)| < ∞ (for 1 ≤ i ≤ 3) imply that the spectral density function

f(·) and fourth order spectral density function f4(·) are Lipschitz continuous over each

variable. These observations immediately lead to the following result.

Corollary 2.1 Suppose the assumptions in Theorem 2.1 hold. Let V (·) be defined as in (5).

Then we have

|V (ωr)− V (0)| ≤ K|r|T−1,

where K is a finite constant that does not depend on r or T .

Theorem 2.1 and Lemma 2.1 imply for M << T , that the sequence

{
√

2<AT (φ; r),
√

2=AT (φ; r); r = 1, . . . ,M} are ‘near uncorrelated’ random variables with

approximately the same variance. Based on these observations we propose the following

estimator of V (0)

V̂ (0) =
T

2M

M∑
r=1

(
2|<AT (φ; r)|2 + 2|=AT (φ; r)|2

)
=

T

M

M∑
r=1

|AT (φ; r)|2. (6)

In the following we show that V̂ (0) is a mean square consistent estimator of V .

Lemma 2.2 Suppose that {Xt} is an eight order stationary time series where for 2 ≤ s ≤ 8,∑
j1,...,js−1

|jiκs(j1, . . . , js−1)| <∞ (for 1 ≤ i ≤ s− 1). Then we have

cov[|
√
TAT (φ; r1)|2, |

√
TAT (φ; r2)|2] =

{
V (ωr)

2 +O(T−1) 0 < r1 = r2(= r)

O(T−1) 0 < r1 < r2 < T/2
(7)

and

E
(
V̂ (0)− V (0)

)2

= O

(
M2

T 2
+

1

M

)
. (8)

It is interesting to note that the estimator of V̂ (0) is analogous to kernel estimators in

nonparametric regression, where M plays the role of window width (bandwidth multiplied

by the length of time series). We note that we can directly apply (6) to estimate the statistics

defined in Example 2.1(a,b,c). Missing from these examples is the estimator of the variance

of the derivative of the Whittle likelihood AT (∇θf(·; θ)−1) given in Example 2.1(d). This is

because θ is unknown, and we only have an estimator θ̂T . Instead, we suggest using

V̂θ̂(0) =
1

M

M∑
r=1

∣∣∣∣∣ 1√
T

T∑
k=1

∇θf(ωk; θ̂)
−1JT (ωk)JT (ωk+r)

∣∣∣∣∣
2

(9)
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as an estimator of Vθ = limT→∞ Tvar[AT (∇θf(·; θ)−1)]. Similarly, in the general case that

we want to estimate the variance of

AT (φθ) =
1

T

T∑
k=1

φ(ωk; θ)|JT (ωk)|2,

but only observe an estimator θ̂T of θ, we can use

V̂θ̂(0) =
T

M

M∑
r=1

|AT (φθ̂; r)|
2, where AT (φθ̂; r) =

1

T

T∑
k=1

φ(ωk; θ̂)JT (ωk)JT (ωk+r) (10)

as an estimator of Vθ = limT→∞ Tvar[AT (φθ)]. We now show that V̂θ̂(0) consistently esti-

mates Vθ.

Lemma 2.3 Let us suppose that |θ̂T−θ| = Op(T
−1/2), supθ,ω |

∂φ(ω;θ)
∂ω
| <∞ and supθ,ω |

∂2φ(ω;θ)
∂θ2

| <
∞. Let V̂θ̂(0) be defined as in (10). Then we have∣∣∣V̂θ̂(0)− Vθ

∣∣∣ = Op

(
M

T
+

1√
M

)
,

where Vθ = limT→∞ Tvar[AT (φθ)].

It immediately follows from the above lemma that if f(ω; θ) is uniformly bounded away from

zero and uniformly bounded from above for all θ and ω, and its first and second derivatives

with respect to θ and ω are uniformly bounded, then (9) is a consistent estimator of Vθ if

M/T → 0 as M →∞ and T →∞.

We now state an asymptotic result, which will be useful in the construction of confidence

intervals.

Theorem 2.2 Let us suppose that {Xt} is a stationary α-mixing time series, where the α-

mixing coefficient α(t) is such that α(t) ≤ K|t|−s (for |t| 6= 0) and K < ∞. In addition

we will assume that φ : [0, 2π] → R has a bounded second derivative, AT (φ) is a real-

valued random variable and for some r > 4s/(s − 6) we have E|Xt|r < ∞. Let AM,T =

(AT (φ; 1), . . . , AT (φ;M))′. Then for M fixed we have

√
T

V (0)

 AT (φ)− A(φ)

<AM,T

=AM,T

 D→ N
(

0, diag
(
1,

1√
2
IM ,

1√
2
IM
))

,

where IM denotes the identity matrix of dimension M .
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PROOF. The proof immediately follows from Lemma 3.3, Lee and Subba Rao [2012]. Note

the same result will hold under different type mixing conditions, including physical depen-

dence (see Wu [2005] and, for quadratic forms, Wu and Shao [2007]). 2

The above lemma implies that for M fixed, the ratio
√
T [AT (φ)− A(φ)]√

V̂ (0)

D→ Z0√
1
M

∑M
j=1 Z

2
j

∼ tM ,

as T → ∞, where {Zj; j = 0, . . . ,M} are iid standard normal random variables and tM

denotes the t-distribution with M degrees of freedom. Using this result a (100 − α)%

confidence interval for A(φ) isAT (φ)± tM(α/2)

√
V̂(0)

T

 .
We have seen that by construction the proxy sample has approximately the same vari-

ance as the statistic of interest, and both the original statistic and the proxy sample are

asymptotically Gaussian. Thus the proxy sample can be considered as a centralised version

of the statistic of interest. We use these properties in the following section.

3 Testing in Time Series

In this section we turn to the problem of hypothesis testing in time series. Many test

statistics in time series can be formulated in terms of {AT (φj)}j, where under the null

hypothesis E[AT (φj)] = 0 and under the alternative E[AT (φj)] 6= 0. This motivates the

popular `2 test statistic

ST = T
L∑
j=1

|AT (φj)|2.

In this section we use proxy samples to estimate the distribution of ST under the null

hypothesis.

By using the results in Section 2 that under the null hypothesis

{
√

2<AT (φj; r),
√

2=AT (φj; r)} and AT (φj; r) have asymptotically the same marginal distri-

bution. Furthermore, the covariances between {AT (φj)}j are asymptotically equivalent to

the covariances between

{
√

2<AT (φj; r),
√

2=AT (φj; r)}j (see Theorem 3.1). Based on these observations we define

the proxy sample associated with ST as

ST,R(r) = 2T
L∑
j=1

|<AT (φj; r)|2 and ST,I(r) = 2T
L∑
j=1

|=AT (φj; r)|2 for 1 ≤ r ≤M.
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In the theorem below we show that under the null hypothesis H0 : E[AT (φj)] = 0 for

1 ≤ j ≤ L, the asymptotic sampling properties of ST , ST,R(r) and ST,I(r) are equivalent.

Theorem 3.1 Suppose that {Xt} is an 16-order stationary time series where for 2 ≤ s ≤ 16,∑
j1,...,js−1

|jiκs(j1, . . . , js−1)| < ∞ (for 1 ≤ i ≤ s − 1). Furthermore, we assume {φj} are

Lipschitz continuous functions and <AT (φj) = AT (φj) (this final assumption is used to

simplify analysis). Let Vj1,j2 be defined as

Vj1,j2 =
1

2π

∫ 2π

0

f(ω)2
[
φj1(ω)φj2(ω) + φj1(ω)φj2(ω)

]
dω +

1

(2π)2

∫ 2π

0

∫ 2π

0

φj1(ω1)φj2(ω2)f4(ω1,−ω1, ω2)dω1dω2 +O(T−1).

Then we have

(i) The mean

(a) Under the null hypothesis that E[AT (φj)] = 0 for 1 ≤ j ≤ L we have

E[ST ] =
L∑
j=1

Vj,j +O(T−1).

However, if for at least one 1 ≤ j ≤ L E[AT (φj)] 6= 0, then E[QT ] = O(T ).

(b) Under both the null and alternative and for 0 < r < T/2 we have

E[ST,R(r)] =
L∑
j=1

Vj,j +O(|r|T−1) and E[ST,I(r)] =
L∑
j=1

Vj,j +O(|r|T−1).

(ii) The covariance

(a) Under the null hypothesis, var[ST ] = 2
∑L

j1,j2=1 V
2
j1,j2

+O(T−1)

(b) Under both the null and alternative hypothesis where 1 ≤ r1, r2 < T/2 we have

cov[ST,R(r1), ST,R(r2)] =

{
2
∑L

j1,j2=1 Vj1,j2 +O(|r|T−1) r1 = r2(= r) 6= 0

O(T−1)

cov[ST,I(r1), ST,I(r2)] =

{
2
∑L

j1,j2=1 Vj1,j2 +O(|r|T−1) r1 = r2(= r) 6= 0

O(T−1)

cov[ST,R(r1), ST,I(r2)] = O(T−1).

(iii) Higher order cumulants Suppose that {Xt} is a 2p-order stationary time series with

2 ≤ s ≤ 2p and
∑

j1,...,js−1
|jiκs(j1, . . . , js−1)| < ∞. Let cump denote the pth order

cumulant of a random variable. Then under the null hypothesis

|cump(ST )− cump(ST,R(r))| = O(|r|T−1), |cump(ST )− cump(ST,I(r))| = O(|r|T−1).
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We observe that the above theorem implies under the null, ST , ST,R(r) and SR,I(r) asymp-

totically have equivalent mean, variance and higher order cumulants. Furthermore, under

the alternative the asymptotic mean and variance of ST,R and ST,I are finite and bounded

with M → ∞ as T → ∞. Therefore motivated by these results we define the empirical

distribution

F̂M,T (x) =
1

2M

(
M∑
r=1

[I(ST,R(r) ≤ x) + I(ST,I(r) ≤ x)]

)
. (11)

To do the test we use F̂M,T (x) as an approximation of the distribution of ST under the null

hypothesis. We reject the null at the α%-level if 1 − F̂M,T (ST ) < α%. We note that under

the alternative that at least one E[AT (φj)] for j = 1, . . . , L} is non-zero, then ST = O(T ).

By Theorem 3.1(ii) the variance of ST,R(r) and ST,I(r) is finite and uniformly bounded

for all r and T . This implies that 1 − F̂M,T (ST )
P→ 0 as M and T → ∞, thus giving the

procedure power. At this point we mention that under sufficient Brillinger-mixing conditions

and the null hypothesis, it can be shown that the kth sample moment associated with the

distribution of F̂M,T (x) consistently estimates the kth moment of ST . However, to show

a Glivenko-Cantelli type result of the form supx∈R |F̂M,T (x) − F (x)| a.s.→ 0 as M → ∞ and

T → ∞, where F denotes the limiting distribution of QT under the null hypothesis (F

is a generalised chi-squared) is beyond the scope of the current paper. Nevertheless, we

believe that this result holds for a general class of time series (including those with only a

finite number of moments). Our conjecture is supported by the results of the simulation in

Section 5, where we apply the proposed methodology to a wide class of problems.

We now apply this procedure to test for uncorrelatedness and goodness of fit.

3.1 A Portmanteau test for uncorrelatedness

Let us suppose we observe the stationary time series {Xt}. The classical test for serial corre-

lation assumes that under the null hypothesis the observations are independent, identically

distributed (iid) random variables. In this case the classical Box-Pierce statistic is defined

as

Q̃T =
T

c̃T (0)2

L∑
j=1

|c̃T (j)|2 , (12)

where c̃T (j) is defined in Example 2.1(a). If the null holds, then Q̃T is asymptotically a

chi-square distribution with L degrees of freedom. However, if the intention is to test for

uncorrelatedness (ie. H0 : c(j) = 0 for all j 6= 0 against the alternative HA : c(j) 6= 0 for

some j), without the additional constraint of independence, then it can be shown that

T cov[c̃T (j1), c̃n(j2)] = c(0)2δj1,j2 + c(0)2δj1,j2δj1,0 +
∞∑

k=−∞

κ4(j1, k, k + j2), (13)
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where δj1,j2 is the dirac-delta function (see Brockwell and Davis [1987], Chapter 7, for the

derivation in the case of a linear time series and Romano and Thombs [1996] in the general

case). Consequently, under the null of uncorrelatedness, the distribution of Q̃T is not a

standard chi-square.

Diebold [1986], Weiss [1986], Robinson [1991], Bera and Higgins [1993] and Escanciano

and Lobato [2009] avoid some of these issues by placing stronger conditions on the time series

and assume that under the null hypothesis the time series are martingales differences (thus

uncorrelated). This implies that the fourth order cumulant term in (13) is zero in the case

that j1 6= j2, which induces asymptotic uncorrelatedness between the sample covariances.

Based on this observation they propose the robust Portmanteau test

Q∗T = T

L∑
j=1

|c̃T (j)|2

τ̂j
, (14)

where τ̂j = 1
n−j
∑n

t=j+1(Xt − X̄)2(Xt−j − X̄)2. Under the null of martingale differences

Q∗T is asymptotically χ2-distributed with L-degrees of freedom. However, if the intention

is to test for uncorrelatedness, without additional assumptions on the structure, then, even

under the null, Q∗T will have a generalised chi-squared distribution, whose parameters are

difficult to estimate. This problem motivated Romano and Thombs [1996] (using the block

bootstrap) and Lobato [2001] (who developed the method of self-normalisation) to test for

uncorrelatedness under these weaker conditions. Our intention in this section is to use proxy

samples to test for serial correlation.

We will use proxy samples to estimate the distribution of Portmanteau statistic under

the null that H0 : c(j) = 0 for all 1 ≤ j ≤ L. We recall from Example 2.1(a) that AT (eij·)

is an estimator of the autocovariance ĉT (j). Therefore, to test for uncorrelatedness at lag

j = 1, . . . , L we define the test statistic

QT = T

L∑
j=1

|AT (eij·)|2. (15)

Using {
√

2<AT (eij·; r),
√

2=AT (eij·; r); r = 1, . . . ,M} we define the proxy sample associated

with QT as

QT,R(r) = 2T
L∑
j=1

|<AT (eij·; r)|2 and QT,I(r) = 2T
L∑
j=1

|=AT (eij·; r)|2 for 1 ≤ r ≤M

and the empirical distribution

F̂M,T (x) =
1

2M

(
M∑
r=1

[I(QT,R(r) ≤ x) + I(QT,I(r) ≤ x)]

)
. (16)
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We reject the null at the α%-level if 1 − F̂M,T (QT ) < α%. Results of the corresponding

simulation study is given in in Section 5.1, where we apply the proposed methodology to a

wide class of uncorrelated processes.

3.2 Testing for goodness of fit

In this section we describe how proxy samples can be used in a goodness of fit statistic.

Given that f is the spectral density of the observed time series, our objective is to test

H0 : f(ω) = g(ω; θ) for all ω ∈ [0, 2π] against HA : f(ω) 6= g(ω; θ) for some ω ∈ [0, 2π].

Typically this is done by fitting the model to the data and applying the Portmanteau test to

the residuals – in either the time or frequency domain (see, for example, Milhoj [1981], Hong

[1996] and Chen and Deo [2004]). We mentioned in Example 2.1(c) that AT (eij·g(·; θ)−1) is

an estimator of the covariance of the residual process at lag j. If the null were true, then

the residual covariance, AT (eij·g(·; θ)−1), is estimating zero. Motivated by Milhoj [1981] we

define the test statistic as

GT = T
L∑
j=1

∣∣AT (eij·g(·; θ)−1)
∣∣2 . (17)

Furthermore, motivated by (16), we estimate the finite sample distribution of GT with

F̂M,T (x) =
1

2M

(
M∑
r=1

[I(GT,R(r) ≤ x) + I(GT,I(r) ≤ x)]

)
, (18)

where {GT,R(r), GR,I(r)} is the corresponding proxy sample defined as

GT,R(r) = 2T
L∑
j=1

|<AT (eij·g(·; θ)−1; r)|2 and GT,I(r) = 2T
L∑
j=1

|=AT (eij·g(·; θ)−1; r)|2.

A similar result stated in Theorem 3.1 also applies GT , GT,R(r) and GT,I(r). Thus we use

F̂M,T (x) as an approximation of the distribution of GT under the null of no serial correlation.

We reject the null at the α%-level if 1− F̂M,T (GT ) < α%.

In Section 5.2 we illustrate this method with some simulations.

4 Selection of M

It is clear that both the estimator V̂ and empirical distribution function F̂M,T discussed in

Sections 2 and 3 rely on the choice of M . In this section we propose a cross validation

criterion for selecting M . Our proposed method is based on the results derived in Section

2. Using Theorem 2.1 we note that {AT (φ; r); 1 ≤ r < T/2} is an almost uncorrelated, zero

mean sequence with variance var[AT (φ; r)] ≈ V (ωr) (where V (ωr) is defined in (5)). These

observations together with (7) imply that(
|
√
TAT (φ; r)|2

V (ωr)
− 1

)
1 ≤ r < T/2, (19)
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is an almost uncorrelated sequence with mean zero and variance one. We use this sequence

as the building blocks of the cross validation criterion. In order to select M we extend

the estimator defined in (6) to all frequencies V (ωr). More precisely, we use V̂ (ωr) as an

estimator of V (ωr) where

V̂M(ωr) =
T

M

M+r∑
s=1+r

|AT (φ; s)|2,

noting that for r = 0 we have the estimator defined in (6). Therefore, replacing V̂ (ωr) in

(19) with V̂M(ωr) we see that if M is too large, it will induce a bias, whereas if M is too

small it’s variance will be inflated. Using these observations we propose to select the M

which minimises the average squared error for frequencies in the neighbourhood of zero. We

define the average squared error as

Cφ(M) =
4

T

T/p∑
r=1


∣∣∣√TAT (φ; r)

∣∣∣2
V̂M(ωr)

− 1


2

,

noting that we have only used the T/p frequencies which are closest to 0. To select M we

use the cross validation criterion M̂ = arg minM∈S Cφ(M), where S is the set over which we

do the selection. To illustrate how the criterion behaves, in Figure 1 we give a plot of Cφ(M)

over M for φ(ω) = eiω (which corresponds to the statistic which estimates the autocovariance

at lag one).

5 Simulations

In this section we illustrate the proxy sampling methodology by using it to test for uncorrelat-

edness and for goodness of fit (described in Section 3). All tests are done at the α = 5% and

α = 10% nominal levels. The methods are compared to the block bootstrap method, where

to obtain the bootstrap critical values 1000 bootstrap samples were taken. Throughout this

section we let {Zt} and {εt} denote independent, identically distributed standard normal

random variables and chi-square with one degree of freedom random variables respectively.

5.1 Testing for uncorrelatedness

In this section we illustrate the test for uncorrelatedness using the proxy sample method

described in Section 3.1. We use the test statistic QT (defined in (15)), using L = 5,

and obtain the critical values using the estimated distribution function, F̂M,T defined in

(16). We compare our method with the regular Box-Pierce statistic (defined in (12)) and

the robust Portmanteau test statistic defined in (14), for both these methods we obtained

the critical values using the χ2 distribution with five degrees of freedom. In addition, we

compare our method to the results of the bootstrap test where the critical values are obtained
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using the block bootstrap procedure. Namely, the critical values for QT are obtained using

the centralised empirical distribution constructed with samples from the block bootstrap

procedure, with block bootstrap length B = 5, 10 and 20.

To select M in the proxy sample method we use the cross-validation criterion described

in Section 4. More precisely, we focus on the sample covariance at lag one and choose

M = arg minM∈S Cφ(M), where

Cφ(M) =
4

T

T/4∑
r=1


∣∣∣√TAT (ei·; r)

∣∣∣2
V̂M(ωr)

− 1


2

with V̂M(ωr) =
T

M

M+r∑
s=1+r

|AT (ei·; s)|2.

For the case that n = 100 and n = 200 we used S = {10, . . . , 25} and for n = 500 we used

S = {10, . . . , 40}.

Models under the null of no correlation

The first two models we consider are iid random variables which follow a standard nor-

mal distribution and a t-distribution with five degrees of freedom. The third model is the

two-dependent model X3,t = ZtZt−1. The fourth model we consider is the non-linear, non-

martingale, uncorrelated model, defined in Lobato [2001], whereX4,t = Zt−1Zt−2 (Zt−1 + Zt + 1).

The fifth model we consider is the ARCH(1) process X5,t, where

X5,t = σ5,tZt σ2
5,t = 1 + 0.8X2

5,t−1.

The sixth model is X6,t = |X5,t|Vt where {X5,t} and {Vt} are independent of each other,

X5,t is the ARCH process described above and Vt is an uncorrelated non-causal time series

defined by

Vt =
∞∑
j=0

ajεt−j −
a

1− a2
εt+1,

where a = 0.8. The seventh model we consider is a ‘pseudo-linear’ non-causal, uncorrelated

time series with ARCH innovations defined by

X7,t =
∞∑
j=0

bj1U1,t−j −
b1

1− b2
1

U1,t+1, U1,t =
∞∑
j=0

bj2U2,t−j −
b2

1− b2
2

U2,t+1

where U2,t = σ2,tZt with σt = 1 + 0.5U2
2,t−1, b1 = −0.8 and b2 = −0.6. Finally, the

eighth model we consider is the periodically stationary model defined in Politis et al. [1997],

X7,t = stX3,t and st is a deterministic sequence of period 12, where the elements are

{1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 6} (this time series does not satisfy our stationary assumptions,

moreover unlike the stationary case, there are significant correlations between the DFT sep-

arated by T/12 frequencies). We used the sample sizes T = 100 and T = 500.
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The results are given in Tables 1 and 2. We observe that overall the proxy sampling

method keeps to the nominal level, with a mild inflation of the type I error for independent

data (normal and t-distribution), which is probably because the 5th and 10th percentile is

estimated using a maximum of 40 points (depending on the set S). As expected, the regular

Box-Pierce statistic keeps the nominal level well for the iid data, but cannot control the type

I error when the data is uncorrelated but not iid. Suprisingly, the robust Portmanteau test

is able to keep the type I error in most cases, the exception being the pseudo-linear model,

X7,t, where there is a mild inflation of the type I error. In the case of the Block Bootstrap for

T = 100 the performance depends on the size of the block. For B = 5 and B = 10 the type

I error is below the nominal level, whereas for B = 20 the type I error tends to be around

and above the nominal level. However, when T = 500 the block bootstrap is consistently

below the nominal level for B = 5, 10 and 20.

Model Proxy QT Regular Q̃T Robust Q∗T Block Bootstrap

B=5 B=10 B=20

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Normal 6.52 11.1 4.1 8.34 5.42 10.18 0.0 0.1 1.14 4.36 5.14 11.94

t5 6.34 11.42 4.08 8.46 4.92 10.5 0.0 0.08 0.96 4.12 4.74 10.70

X3,t = ZtZt−1 5.02 9.44 10.66 16.64 4.38 9.52 0.14 0.66 1.2 4.68 4.14 11.14

X4,t 0.86 1.82 3.5 4.86 1.1 2.32 0.06 0.3 0.22 1.0 0.64 2.26

X5,t 4.26 8.14 23.56 31.6 5.4 9.98 0.14 1.06 1.22 4.96 3.54 11.00

X6,t 3.16 6.42 17.64 24.22 4.20 8.38 0.08 0.4 0.6 2.92 2.08 7.78

X7.t 5.1 10.46 13.22 20.46 6.88 12.8 0.16 0.86 1.18 5 4.56 11.88

X8,t 4.46 8.36 8.2 13.18 3.5 8.38 0.04 0.58 0.74 4 3.1 10.48

Table 1: Test for uncorrelatedness, under the null hypothesis, T = 100 over 5000 replications.

Model Proxy QT Regular Q̃T Robust Q∗T Block Bootstrap

B=5 B=10 B=20

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Normal 5.9 11.1 4.56 9.44 4.74 9.86 0.08 0.44 1.48 4.22 3.7 8.78

t5 6.1 10.82 4.8 9.58 4.92 9.98 0.04 0.34 1.24 4.18 3.3 8.66

X3,t = ZtZt−1 5.00 9.82 15.26 22.26 4.9 9.16 0.7 2.52 2.5 6.56 3.6 9.16

X4,t 1.0 1.86 30.52 38.56 5.6 11.16 1.56 4.48 2.72 7.94 3.1 10.02

X5,t 3.76 7.06 49.86 58.76 4.82 9.34 1.06 4.10 2.08 6.9 2.52 7.96

X6,t 2.88 6.22 42.48 50.46 3.64 7.24 0.64 2.4 1.24 4.68 1.5 6.62

X7,t 4.48 8.88 20.38 28.32 6.02 11.46 0.78 2.58 1.52 5.04 2.78 7.5

X8,t 5.28 9.46 15.08 20.46 4.12 8.54 1.28 3.82 3.04 7.36 4.34 9.92

Table 2: Test for uncorrelatedness, under the null hypothesis, T = 500 over 5000 replications.
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Models under the alternative of correlation

To access the empirical power of the test we consider three different models. The first model

is the Gaussian autoregressive process Y1,t, where Y1,t = −0.2Y1,t−1 + Zt. The second model

is Y2,t = Y1,t|U2,t|, where {Y1,t} and {Ut,2} are independent of each other, {Y1,t} is defined

above and {Ut,2} is the ARCH model defined in the previous section. Finally, the third

model is Y3,t = U3,t|U2,t|, where {U2,t} and {U3,t} are independent of each other, {Ut,2} is

the ARCH model defined in the previous section and {U3,t} is the Gaussian autoregressive

process U3,t = 0.5U4,t−1 + Zt. We used the sample sizes T = 100, T = 200 and T = 500.

The result are given in Tables 3, 4 and 5. The power for most of the methods are relatively

close (the regular Box-Pierce statistic having the largest power). Overall, in terms of power,

the proxy sampling test and the robust Portmanteau test tend to have more power than the

Block Bootstrap test, especially when the sample size is small.

Model Proxy QT Regular Q̃T Robust Q∗T Block Bootstrap

B=5 B=10 B=20

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Y1,t 27.06 38.88 29.52 40.84 28.60 40.50 2.62 9.4 14.12 29.34 25.74 43.22

Y2,t 12.68 20.58 21.78 30.6 11.08 18.68 0.5 3.3 3.94 13.84 9.96 24.02

Y3,t 55.7 68.6 71.94 79.58 61.8 72.32 18.36 41.46 41.62 65.14 52.86 74.30

Table 3: Test for uncorrelatedness, under the alternative hypothesis, T = 100 over 5000

replications.

5.2 Goodness of fit test

In this section we illustrate the goodness of fit test using the proxy sample method described

in Section 3.2 to test H0 : f(ω) = g(ω; θ) for all ω ∈ [0, 2π] against HA : f(ω) 6= g(ω; θ) for

some ω ∈ [0, 2π]. We use the test statistic GT (defined in (17)), with L = 5, and obtain the

critical values using the estimated distribution function, F̂M,T defined in (18). We compare

our method to the results of the bootstrap test where the critical values are obtained using

the block bootstrap procedure. We use the block bootstrap length B = 5, 10, 20, 30 and 40.

Model Proxy QT Regular Q̃T Robust Q∗T Block Bootstrap

B=5 B=10 B=20

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Y1,t 54.70 67.64 58 69.06 55.78 67.18 18.58 36.16 41.10 59.84 48.64 66.54

Y2,t 21.98 32.4 37.44 47.18 18.04 27.68 4.14 13.32 11.34 27.04 16.30 33.74

Yt,3 87.04 92.64 95.72 97.28 85.84 91.22 74.5 87.96 84.42 93.74 84.54 94.58

Table 4: Test for uncorrelatedness under the alternative hypothesis, T = 200 over 5000

replications.
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Model Proxy QT Regular Q̃T Robust Q∗T Block Bootstrap

B=5 B=10 B=20

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Y1,2 94.86 97.44 95.94 97.84 95.24 97.60 82.30 91.74 92.96 96.48 93.76 97.28

Y2,t 49.50 60.58 69.60 77.24 37 49.90 29.92 45.30 41.48 58.28 42.2 60.98

Y3,t 98.86 99.36 99.94 99.98 98.5 99.16 99.2 99.68 98.98 99.82 97.94 99.82

Table 5: Test for uncorrelatedness under the alternative hypothesis, T = 500 over 5000

replications.

To selectM in the proxy sample method, we focus on j = 1 and useM = arg minM∈S Cφ(M),

where

Cφ(M) =
4

T

T/4∑
r=1


∣∣∣√TAT (ei·g(·; θ)−1; r)

∣∣∣2
V̂M(ωr)

− 1


2

with V̂M(ωr) =
T

M

M+r∑
s=1+r

|AT (ei·g(·; θ)−1; s)|2.

For n = 100 and n = 200 we used S = {10, . . . , 25} and for n = 500 we used S = {10, . . . , 40}.

Models under the null hypothesis

The first model is the Gaussian autoregressive process

XG
0.6,t = 0.6XG

0.6,t−1 + Zt,

with spectral density f(ω) = g(ω; θ) = (2π)−1|1 − 0.6eiω|2. The second model is the non-

Gaussian autoregressive process

Xχ
0.6,t = 0.6Xχ

0.6,t−1 + εt,

with spectral density f(ω) = g(ω; θ) = 2(2π)−1|1 − 0.6eiω|2. The third model is the non-

Gaussian autoregressive process

Xχ
0.9,t = 0.9Xχ

0.9,t−1 + εt,

with spectral density f(ω) = g(ω; θ) = 2(2π)−1|1 − 0.9eiω|2. We used the sample sizes

T = 100 and T = 500.

The result are given in Tables 6 and 7. We observe that the proxy sampling method tends

to keeps to the nominal level for both T = 100 and T = 500, with an underestimation of the

type I error for model {Xχ
0,9,t} (which is also seen for the Block bootstrap). On the other

hand for T = 100, the block bootstrap underestimates the nominal level when the block

is too small (B = 5 and 10) and over inflates the type I error when the block is too large

(B = 40 and sometimes B = 30). The ideal block length seems to be somewhere between

B = 20 − 40, though it appears to depend on the model. In the case that T = 500, the

nominal level is underestimated for all the block lengths considered.
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Model Proxy QT Block Bootstrap

B=5 B=10 B=20 B=30 B=40

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

XG
0.6,t 2.32 4.94 0.00 0.00 0.18 0.96 2.18 7.06 4.66 11.24 8.64 17.84

Xχ
0.6,t 2.24 4.4 0 0.02 0.04 0.26 0.94 3.48 2.24 6.82 4.94 13.00

Xχ
0.9,t 0.96 1.74 0 0 0 0.02 0.04 0.26 0.2 0.96 0.56 2.64

Table 6: Goodness of fit test, under the null, T=100 over 5000 replications

Model Proxy QT Block Bootstrap

B=5 B=10 B=20 B=30 B=40

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

XG
0.6,t 5.24 10.28 0 0 0.08 0.52 1.54 3.92 2.48 6 3.32 7.62

Xχ
0.6,t 5.2 9.78 0 0 0.02 0.16 0.52 1.84 0.04 0.14 2.12 6.68

Xχ
0.9,t 2.24 4.84 0 0 0 0 0 0 0.04 0.62 0.04 0.62

Table 7: Goodness of fit test, under the null, T=500 over 5000 replications

Models under the alternative hypothesis

To access the empirical power of the test we use realisations from the same models considered

in the null, namely X0.9
0.6,t, X

χ
0.6,t and Xχ

0.9,t (their corresponding spectral density functions are

given in the previous section). To each of these models we fit the spectral density function

g(ω;φ, σ) = (2π)−1σ2|1− φ exp(iω)|−2 for different values of φ and σ (though σ will always

be correctly specified). We used the sample sizes T = 100, T = 200 and T = 500.

The result are given in Tables 8, 9 and 10. For all the sample sizes considered, the power

of the Block bootstrap test increases with the block length, though we recall that the largest

block size the type I errors were highly inflated. Overall, the power of the proxy sample test

is comparable (and often larger) than the power of the block bootstrap tests which use the

larger blocks.

Model Null Proxy QT Block Bootstrap

B=5 B=10 B=20 B=30 B=40

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

XG
0.6,t σ = 1, φ = 0.3 60.4 71.24 1.98 11.32 35.42 55.12 53.24 70.78 61.2 76.5 68.62 80.34

Xχ
0.6,t σ =

√
2, φ = 0.3 64.32 76.12 1.3 8.68 33.2 56.12 54.24 74.58 62.4 80.42 71.06 84.14

XG
0.6,t σ = 1, φ = 0.45 15.1 22.28 0 0 1.94 7.24 10.94 22.06 15.9 28.62 23.14 36.36

Xχ
0.6,t σ =

√
2, φ = 0.45 13.98 22.38 0 0 0.82 3.96 6.42 16.78 10.72 23.6 17.9 32.74

Xχ
0.9,t σ =

√
2, φ = 0.7 41.14 51.82 0 0 3.2 10.28 17.54 36 25.54 45.58 36.24 56.44

Table 8: Goodness of fit test, under the alternative, T=100 over 5000 replications
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Model Null Proxy QT Block Bootstrap

B=5 B=10 B=20 B=30 B=40

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

XG
0.6,t σ = 1, φ = 0.3 92.88 96.5 39.62 63.78 85.76 93.20 91.22 95.72 93.36 97.04 93.48 97.40

Xχ
0.6,t σ =

√
2, φ = 0.3 96.04 98.5 33.5 62.1 88.86 96.02 93.9 98.4 95.14 98.80 95.66 98.92

XG
0.6,t σ = 1, φ = 0.45 38.38 49.5 0 0.1 8.88 20.38 27.16 42.2 33.52 48.28 39.08 53.82

Xχ
0.6,t σ =

√
2, φ = 0.3 40.46 53.08 0 0 6.04 15.86 21.28 38.98 27.34 46.52 34.24 53.28

Xχ
0.9,t σ =

√
2, φ = 0.7 91.44 94.78 0 0 29.9 49.5 70.4 84.94 80.98 91 85.78 93.9

Table 9: Goodness of fit test, under the alternative, T=200 over 5000 replications

Model Null Proxy QT Block Bootstrap

B=5 B=10 B=20 B=30 B=40

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

XG
0.6,t σ = 1, φ = 0.3 99.98 100 98.88 99.72 100 100 100 100 100 100 100 100

Xχ
0.6,t σ =

√
2, φ = 0.3 99.98 100 99.2 99.92 100 100 100 100 99.92 100 99.92 100

XG
0.6,t σ = 1, φ = 0.45 86.90 92.52 0.18 1.54 48.88 65.62 77.36 86.7 81 89.93 82.58 90.72

Xχ
0.6,t σ =

√
2, φ = 0.45 89.92 94.22 0.06 0.56 42.16 61.88 75.60 87.44 81.94 90.8 84.24 92.26

XG
0.9,t σ =

√
2, φ = 0.7 99.96 99.98 0 0 94.46 98.12 99.86 99.96 99.9 99.98 99.92 99.98

Table 10: Goodness of fit test, under the alternative, T=500 over 5000 replications
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A Appendix

To prove the results we make heavy use of the following well known result. Suppose that

{Xt}t is an s-order stationary time series where
∑

j1,...,js−1
|jiκs(j1, . . . , js−1)| < ∞ (for 1 ≤

i ≤ s− 1). Then we have

cum [JT (ωk1), . . . , JT (ωks)] =
1

T s/2−1
Ik1+...+ks∈TZfs(ωk1 , . . . , ωks−1) +O(

1

T s/2
), (20)

see Brillinger [1981], Theorem 4.3.2, for the details.

A.1 Proofs for Section 2

PROOF of Lemma 2.1 This immediately follows from (20) and the Lipschitz continuity

of f and φ which allows the sum to be replaced by an integral. 2

PROOF of Theorem 2.1 We first derive expressions for cov[AT (φ; r1), AT (φ; r2)] and

cov[AT (φ; r1), AT (φ; r2)] from which we can deduce the covariance of <AT (φ; r) and =AT (φ; r).

To simplify notation we denote Jk = JT (ωk). By using indecomposable partitions and
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(20) we have

T cov[AT (φ; r1), AT (φ; r2)]

=
1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)cov[Jk1Jk1+r1 , Jk1Jk1+r1 ]

=
1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)

(
cov[Jk1 , Jk2 ]cov[Jk1+r1 , Jk2+r2 ]

+cov[Jk1 , Jk2+r2 ]cov[Jk1+r1 , Jk2 ] + cum[Jk1 , Jk1+r1 , Jk2 , Jk2+r2 ]

)
=

1

T

T∑
k=1

φ(ωk)φ(ωk)f(ωk)f(ωk+r1)δr1=r2 +
1

T

T∑
k=1

φ(ωk)φ(−ωk+r)f(ωk)f(ωk+r1)δr1=r2

+
1

T 2

T∑
k1,k2=1

φ(ωk1)φ(ωk2)f4(ωk1 ,−ωk1+r,−ωk2)δr1,r2
)

+O(T−1).

Thus we see that if r1 6= r2, then |T cov[AT (φ; r1), AT (φ; r2)]| = O(T−1). On the other hand if

r1 = r2 we replace the sum above with an integral to give Tvar[AT (φ; r1)] = V (ωr)+O(T−1).

We apply the same arguments to T cov[AT (φ; r1), AT (φ; r2)] to give

T cov[AT (φ; r1), AT (φ; r2)]

=
1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)cov[Jk1Jk1+r1 , Jk1Jk1+r1 ]

=
1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)

(
cov[Jk1 , Jk2 ]cov[Jk1+r1 , Jk2+r2 ]

+cov[Jk1 , Jk2+r2 ]cov[Jk1+r1 , Jk2+r2 ] + cum[Jk1 , Jk1+r1 , Jk2 , Jk2+r2 ]

)
=

1

T

T∑
k=1

φ(ωk)φ(−ωk)f(ωk)f(ωk+r1)δr1=−r2,T−r2 +
1

T

T∑
k=1

φ(ωk)φ(−ωk+r)f(ωk)f(ωk+r1)δr1=−r2,T−r2

+
1

T 2

T∑
k1,k2=1

φ(ωk1)φ(ωk2)f4(ωk1 ,−ωk1+r,−ωk2)δr1=−r2,T−r2

)
+O(T−1).

Since 0 < r1, r2 < T/2, the above implies that T cov[AT (φ; r1), AT (φ; r2)] = O(T−1).

Finally, by using the identities <AT (φ; r) = 1
2
(AT (φ; r1) + AT (φ; r1)) and =AT (φ; r) =

−i
2

(AT (φ; r1)− AT (φ; r1)) and the above the result immediately follows. 2

Next we state a result which will be useful in the subsequent proofs.
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Lemma A.1 Suppose that {Xt} is an 2n-order stationary time series where for 2 ≤ s ≤ 2n,∑
j1,...,js−1

|jiκs(j1, . . . , js−1)| <∞ (for 1 ≤ i ≤ s− 1). Then we have

cum[
√
TAT (φ; r1), . . . ,

√
TAT (φ; rn)] = O

(
1

T n/2−1

)
.

PROOF The proof immediately follows from using indecomposible partitions and (20). 2

We make use of Lemma A.1 below.

PROOF of Lemma 2.2 To prove (7) we note that

cov[|
√
TAT (φ; r1)|2, |

√
TAT (φ; r2)|2] =

∣∣∣cov[
√
TAT (φ; r1),

√
TAT (φ; r2)]

∣∣∣2
+
∣∣∣cov[

√
TAT (φ; r1),

√
TAT (φ; r2)]

∣∣∣2 + T 2cum4

(
AT (φ; r1), AT (φ; r1), AT (φ; r2), AT (φ; r2)

)
.

Thus we see that (7) follows immediately from the above, Theorem 2.1 and Lemma 2.2. To

prove (8) we use the classical variance bias decomposition

E
(
V̂ (0)− V (0)

)2

= var[V̂ (0)] +
[
E[V̂ (0)]− V (0)

]2

.

To bound var[V̂ (0)] we note that

V̂ (0) =
1

M2

M∑
r1,r2=1

( ∣∣∣cov[
√
TAT (φ; r1),

√
TAT (φ; r2)]

∣∣∣2 = O(M−1 + T−1),

where the last line follows immediately from (7). By using Corollary 2.1 we can show that

|E[V̂ (0)]− V (0)| = O(M/T ). Altogether, this gives the desired result. 2

PROOF of Lemma 2.3 By using a Taylor expansion we have

AT (φθ̂; r) = AT (φθ; r) +
(
θ̂T − θ

)
AT (∇θφθ; r) +

(
θ̂T − θ

)2 1

T

T∑
k=1

∇2
θφ(ωk; θ)cθ=θ̄kJT (ωk)JT (ωk+r),

where θ̄k lies between θ and θ̂. Thus∣∣∣AT (φθ̂; r)− AT (φθ; r)−
(
θ̂T − θ

)
AT (∇θφθ; r)

∣∣∣ = Op(T
−2).

Therefore

V̂θ̂ =
T

M

M∑
r=1

|AT (φθ; r)|2 + |θ̂T − θ|2︸ ︷︷ ︸
Op(T−1)

T

M

M∑
r=1

|AT (∇θφθ; r)|2︸ ︷︷ ︸
=Op(1), by Lemma 2.2

+Op(T
−1)

=
T

M

M∑
r=1

|AT (φθ; r)|2 +Op(T
−1). (21)

By using Lemma 2.2 we have E( T
M

∑M
r=1 |AT (φθ; r)|2−Vθ)2 = O(M−1 +M/T ), thus by using

this and (21) we obtain the result. 2
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A.2 Proofs for Section 3.1

To prove Theorem 3.1 we use the following definition

Vj1,j2(ωr) =
1

2π

∫ 2π

0

f(ω)f(ω + ωr)
(
φj1(ω)φj2(ω) + φj1(ω)φj2(ω + ωr)

)
dω +

1

(2π)2

∫ 2π

0

∫ 2π

0

φj1(ω1)φj2(ω2)f4(ω1,−ω1 − ωr, ω2)dω1dω2 +O(T−1).

The following lemma facilitates the proof of Theorem 3.1.

Lemma A.2 Suppose that {Xt} is an 16-order stationary time series where for 2 ≤ s ≤ 16,∑
j1,...,js−1

|jiκs(j1, . . . , js−1)| <∞ (for 1 ≤ i ≤ s− 1). Then we have

T cov [AT (φj1 ; 0), AT (φj2 ; 0)] = Vj1,j2 +O(T−1)

T cov
[
AT (φj1 ; 0), AT (φj2 ; 0)

]
= Vj1,j2 +O(T−1). (22)

For all 0 < r1, r2 < T/2 we have

T cov [AT (φj1 ; r1), AT (φj2 ; r2)] =

{
Vj1,j2(ωr) +O(T−1) r1 = r2

O(T−1) r1 6= r2

T cov
[
AT (φj1 ; r1), AT (φj2 ; r2)

]
= O(T−1). (23)

For all 0 ≤ r1, r2, r3, r4 < T/2 we have

T 2cum [AT (φj1 ; r1), AT (φj2 ; r2), AT (φj3 ; r3), AT (φj4 ; r4)] = O(T−1). (24)

For 0 < r < T/2 and 0 < r1, r2 < T/2 we have

T 2cov[AT (φj1 ; r1)2, AT (φj2 ; r2)2] =

{
2Vj1,j2(ωr)

2 +O(T−1) r1 = r2(= r)

O(T−1) r1 6= r2

(25)

T 2cov[AT (φj1 ; r1)2, AT (φj2 ; r2)AT (φ2; r2)] = O(T−1) (26)

T 2cov[|AT (φj1 ; r1)|2, |AT (φj2 ; r2)|2] =

{
Vj1,j2(ωr)

2 +O(T−1)

O(T−1)
(27)

Finally

|Vj1,j2(ωr)− Vj1,j2 | ≤ K|r|T−1, (28)

where K is a finite constant.

PROOF The proof of (22) and (23) is identical to the proof of Theorem 2.1, thus we omit

the details. The proof of (24) follows from Lemma A.1, thus we omit the details. To prove
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(25) we use indecomposable partitions to decompose the term in the product of covariances

and a fourth order cumulant term. Specifically

T 2cov[AT (φj1 ; r)
2, AT (φj2 ; r2)2]

= 2T 2|cov[AT (φj1 ; r1), AT (φj1 ; r2)]|2 + T 2cum[AT (φj1 ; r1), AT (φj1 ; r1), AT (φj1 ; r2), AT (φj1 ; r2)].

By using (23) we obtain (25). A similar proof applies to (26)-(27).

Finally, to prove (28) we simply use the Lipschitz continuity of f , f4 and φj. Thus we

have proved the result. 2

PROOF of Theorem 3.1 To prove (i), we note that under both the null and alternative

the following expansion is valid

E[ST ] = T

L∑
j=1

E |(AT (φj)− E[AT (φj)) + E[AT (φj)]|2

= T
L∑
j=1

E |(AT (φj)− E[AT (φj)) + E[AT (φj)]|2

= T
L∑
j=1

var[AT (φj)] +
L∑
j=1

|E[AT (φj)]|2 . (29)

Using that under the null E[AT (φj)] = 0, and substituting this into the above we have

E[ST ] = T
L∑
j=1

var[
√
TAT (φj)] =

L∑
j=1

Vj,j +O(T−1),

where the last line follows from (23). This gives (ia). To prove (ib) we note that

E[ST,R(r)] =
T

2

L∑
j=1

var
[
AT (φj; r) + AT (φj; r)

]
+
T

2

L∑
j=1

∣∣∣E(AT (φj; r) + AT (φj; r)
)∣∣∣2 .

Under both the null and alternative E[AT (φj; r)] = O(T−1) for 0 < r < T/2. Thus

E[ST,R(r)] =
T

2

L∑
j=1

(
2var[

√
TAT (φj; r)] + 2<cov[

√
TAT (φj; r),

√
TAT (φj; r)]

)
+O(T−1)

=
L∑
j=1

Vj,j +O(T−1),

thus proving (ib).
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To prove (iia) we note that since AT (φj) is real and under the null E[AT (φj)], then

expanding var[ST ] gives

var[ST ] = T 2

L∑
j1,j2=1

cov
(
|
√
TAT (φj1)|2, |

√
TAT (φj2)|2

)
= T 2

L∑
j1,j2=1

(
2cov[

√
TAT (φj1),

√
TAT (φj2)]

2 +

T 2cum[AT (φj1), AT (φj1), AT (φj1), AT (φj2), AT (φj1)]

)
= 2

L∑
j1,j2=1

V 2
j1,j2

+O(T−1),

where the last line follows from (23) and (24). Thus proving (iia).

We now prove (iib), where we derive an expression for cov[|<AT (φj1 ; r)|2, |<AT (φj2 ; r)|2].

To simplify notation let AT (r) = AT (φj; r). Using this notation we write <AT (φj; r) =
1
2
(AT (r) + AT (r)) and

|<AT (φj; r)|2 =
1

4

(
AT (r)2 + AT (r)AT (r) + AT (r)AT (r) + AT (r)

2
)
.

Thus

cov[|<AT (φj; r1)|2, |<AT (φj; r2)|2] =
1

16
cov
[
AT (r1)2 + AT (r1)AT (r1) + AT (r1)AT (r1) + AT (r1)

2
,

AT (r2)2 + AT (r2)AT (r2) + AT (r2)AT (r2) + AT (r2)
2]
.

Thus by using (25)-(27) we have

cov[|
√
T<AT (φj; r1)|2, |

√
T<AT (φj; r2)|2] =

{
1
2

∑L
j1,j2=1 Vj1,j2(ωr) +O(T−1) r1 = r1

O(T−1) r1 6= r2

Now we recall that ST,R(r) = 2T
∑L

j=1 |<AT (φj; r)|2, thus by using the above and (28) we

have

cov[ST,R(r1), ST,R(r2)] =

{
2
∑L

j1,j2=1 Vj1,j2 +O(T−1 + |r|T−1) r1 = r2(= r)

O(T−1) r1 6= r2.

The same arguments apply to cov[ST,R(r1), ST,R(r2)] and cov[ST,R(r1), ST,I(r2)], which gives

us (iib).

To prove (iii) we use the same method used to prove (ii) together with Lemma A.1. 2
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Figure 1: Cross-validation criterion for the sample autocovariance function Cei·(M) at lag

one for the Gaussian autoregressive time series Xt = 1.5Xt−1−0.75Xt−2 +εt where T = 200.
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