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Abstract

The decisions to reduce, leave unchanged, or increase a choice variable (such
as policy interest rates) are often characterized by abundant status quo out-
comes that can be generated by different processes. The decreases and increases
may also be driven by distinct decision-making paths. Neither standard nor
zero-inflated models for ordinal responses adequately address these issues. This
paper develops a flexible mixture model with endogenously switching regimes.
Three latent regimes, which are interpreted in the interest rate setting context
as loose, neutral and tight policy stances, create separate processes for rate
hikes and cuts and overlap at a status quo outcome, generating three different
types of zeros. The new model exhibits acceptable small-sample performances
in Monte Carlo experiments, whereas traditional models deliver biased esti-
mates. In the empirical application, the new model is not only highly favored
by the statistical tests but also produces economically more meaningful infer-
ence with respect to existing models. More than one-third of the status quo
decisions are generated by the loose or tight policy stances, suggesting a high
degree of intentional interest rate smoothing.
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1 Introduction

“To do nothing is sometimes a good remedy.” — Hippocrates

Ordinal responses, when decision-makers face a choice to reduce, leave unchanged

or increase a price (consumption, rating, or policy interest rate) are often character-

ized by abundant observations in the middle no-change category. Most central banks

adjust policy rates by discrete increments (multiples of a quarter of a percent), and

no-change decisions commonly constitute an absolute majority.1 The preponderance

of status quo responses (zeros) in many data sets suggests that zeros may emerge

from fundamentally different behavioral mechanisms. For instance, the policy rates

of many central banks typically remain unchanged in three different circumstances,

namely: in periods of policy tightening; in periods of maintaining between rate rever-

sals; and in periods of easing (see Figure 1).2 Many of the zeros, situated between rate

hikes during policy tightening, are likely to be driven by different economic conditions

compared with many of those that are situated between cuts during policy easing.

Many of the zeros, clustered between rate reversals during maintaining periods, are

also likely to differ from status quo decisions during periods of easing or tightening.

Figure 1. The policy rate remains unchanged in different circumstances: during the
periods of policy easing, maintaining and tightening

Notes: ⇓/⇔/⇑ denote the periods of policy easing/maintaining/tightening. The period of easing or tigh-
tening is the period during which the rate only moves only in one direction (down or up, respectively)
between the first and last sequential unidirectional changes. The period of policy maintaining is the peri-
od between the rate reversals. The data correspond to the reference rate of the National Bank of Poland.

1For example, between 60 and 80 percent in the US Federal Reserve (Fed), the Bank of England
(BoE) and the European Central Bank (ECB).

2See Figure 9 in online Appendix E for the cases of the Fed, the BoE and the ECB.



Figure 2. The decision tree of the CNOP model

The predominance and heterogeneity of zero observations poses a problem for

standard discrete-choice methods such as the ordered probit (OP) model. This paper

develops a more flexible cross-nested ordered probit (CNOP) model that accomodates

the unobserved heterogeneity of a data-generating process (DGP) by assuming three

implicit decisions, and illustrates the model in the context of interest rate adjustments.

Figure 2 shows a two-stage decision tree of the proposed model, in which an ordinal

dependent variable (for example, a discrete change to a policy rate) can exist in three

latent regimes. The regime, that is the monetary policy stance (loose, neutral or

tight), is determined by a regime switching (or policy inclination) decision, which

serves the role of sample differentiation, and is endogenously driven by a direct policy

reaction to current economic conditions. If the policy stance is neutral, no further

actions are taken and the rate is maintained. If the stance is loose (tight), the

policymakers can cut (hike) the rate by a certain amount or leave it unchanged. These

unidirectional amount decisions determine the magnitude of the rate adjustment,

intensifying or weakening the policy inclination, and are more of an institutional

nature. The model simultaneously estimates the three OP equations, which represent

the latent decisions, and allows for a possible correlation among them. Using this

interpretation, we can classify the three types of zeros and describe how they arise:

the “always” or “neutral” zeros, which are directly generated by a neutral reaction

to economic conditions, and the two types of “not-always” zeros – the “loose” and

“tight” zeros – which are generated by loose or tight policy inclinations and are

offset by tactical and institutional reasons.

For example, despite a loose policy stance, policymakers can maintain the rate

for the following reasons. First, the rate was already lowered at the last meeting

(central banks are generally reluctant to move the rate on a frequent basis). Second,



the dissenting policymakers at the last meeting preferred the higher rate, creating an

upward pressure on the rate at the current meeting (monetary policy is commonly

conducted by a committee that is often composed of heterogeneous members). Third,

the recent “policy bias” statement of the central bank, indicating the most likely

policy direction in the immediate future, was neutral or even tightening (policymakers

are concerned about the competence and credibility of central bank communication).

Fourth, the cumulative changes to the economic indicators since the last policy rate

adjustment do not suggest policy easing (policymakers, who face uncertainty about

the economy and incur the costs in the case of the subsequent rate reversal, prefer

to wait and see and react to accumulated economic information). Finally, the policy

rate has already reached the lower zero bound.

As discussed in Section 2, the proposed three-equation models can be estimated

via maximum likelihood. The Monte Carlo experiments outlined in Section 3 suggest

reasonable performance of the new model in the small samples (two hundred observa-

tions) and demonstrate its superiority with respect to the OP model, which typically

overpredicts the most observed outcome (i.e. no-change response), produces the bi-

ased and inefficient estimates of the choice probabilities and the marginal effects of

explanatory variables on these probabilities, if the underlying DGP is heterogeneous.

The conventional OP, the middle-inflated OP (Brooks et al. 2012, Bagozzi and

Mukherjee 2012) and the new models are applied in Section 4 to explain the policy

interest rate decisions of the National Bank of Poland (NBP) using a novel panel

dataset, which contains the individual policy preferences (votes) of the Monetary

Policy Council (MPC) members and real-time macroeconomic data available at the

MPC meetings. According to the statistical tests and the information criteria, the

real-world data overwhelmingly favor the new approach, which produces substantial

improvements in statistical fit relative to the OP and middle-inflated OP models, is

capable of extracting important additional information and provides an economically

more reasonable inference.

In particular, the statistical rejection of the single-equation OP model provides

compelling empirical evidence of the presence of heterogeneity in the DGP. The av-

erage estimated probability of a neutral policy stance is 0.41, whereas the observed

frequency of status quo decisions is 0.65. Less than two-thirds of zeros seemed to

be generated by a neutral policy reaction to economic conditions; the remaining ze-

ros originate under the loose or tight policy inclination. More than fourty percent

of all outcomes in the loose and tight regimes are zeros; the amount decisions tend

to smooth the interest rate by weakening the up- and downward policy inclinations.



These findings suggest a considerable degree of deliberate interest-rate smoothing in

the decision-making process of the NBP.

As a practical matter, the same explanatory variables can have different weights

in the decisions to lower or increase the rate, which can be influenced by different

direction-specific determinants. The empirical rejection of the middle-inflated OP

model in favor of the CNOP model suggests that the effects of the explanatory vari-

ables on the decisions to reduce or raise the rate are asymmetric; combining these

two distinct decisions into one branch of the decision tree, as implemented in the

middle-inflated OP model, may seriously distort an inference.

The CNOP model also enables all variables to affect the regime switching and

amount decisions in different ways. For instance, the coefficient on the previous

change in the rate has a positive sign in the policy regime equation, whereas it has

the negative signs in the amount equations. This enables the previous policy choice

to have the same sign of the marginal effect on the probabilities of both a cut and a

hike; by contrast, the single-equation structure of the OP model implies the opposite

direction of these effects. A rate hike at the last meeting (relative to a status quo

decision) expectedly lowers the probabilities of both a cut and a hike and raises the

probability of no change according to the CNOP model; by contrast, it reduces the

probabilities of a hike and no change but counterintuitively increases the probability

of a cut according to the OP model. If a certain variable has an impact on both

latent decisions, the OP model cannot reveal the distinct effects on the probabilities

of different types of zeros (with respect to both a sign and a magnitude), incorrectly

estimates that variable’s total impact by focusing on the observed zeros, and produces

the misleading estimates of the choice probabilities and marginal effects.

“Nobody likes change except a wet baby” – the preponderance of zero or neutral

outcomes is a common phenomenon in many fields, including economics, political

sciences, sociology, technometrics, medicine, psychology and biology. In studies of

count and non-negative ordinal data (visits to a doctor, alcohol or tobacco consump-

tion, disease lesions on plants, manufacturing defects, recreational demand, sexual

behavior, and fertility) the abundance and heterogeneity of zero observations are well

recognized. Numerous studies make a distinction between the different types of zeros

– for example, no medical appointments due to chance, doctor avoidance, lack of

insurance, or medical costs; no children due to infertility or choice; no illness due to

strong resistance or lack of infection; and a “genuine nonuser” versus a “potential

user” (for a review, see Greene and Hensher 2010 and Winkelmann 2008). Studies

of survey responses using an odd-point Likert-type scale (in which respondents must



indicate a negative, neutral or positive attitude) discuss the middle category en-

dorsement and heterogeneity of indifferent responses – a true neutral option versus

an ambivalent, uninformed, or inherently unordered “do-not-know” position that is

commonly reported as neutral (Bagozzi and Mukherjee 2012, Hernández et al. 2004,

Kulas and Stachowski 2009).

In decision-making experiments and micro-level studies of consumer choices, elec-

tion votes and other repeated choices, the prevalence of no-change decisions is often

attributed to the status quo bias – the tendency to do nothing or maintain a previ-

ous decision, athough it is not always objectively superior to other available options

(Hartman et al. 1991, Kahneman et al. 1991). It is a cognitive bias that is explained

by rational and irrational causes (Samuelson and Zeckhauser 1988). Due to the spe-

cial features of monetary policy decision-making, such as publicity and transparency,

a high level of expertise, reputation and responsibility among MPC members, and

research and administrative support, we may disregard the irrational routes of ob-

served monetary policy inertia and treat it as a rational decision. Policy inertia is

often attributed to the intentional interest-rate-smoothing behavior of a central bank

or the slow cyclical fluctuations of macroeconomic variables that exogenously drive

policy actions (for debates on the degree of monetary policy inertia and its “illusion”,

see Coibion and Gorodnichenko, 2012, and Rudebusch 2002, 2006).

2 Econometric framework

“It is highly desirable that policy practice be formalized to the maximum pos-

sible extent.” — W. Poole (2006)

The proposed CNOP model can be described as a cross-nested generalization of

a two-level nested ordered probit (NOP) model with three nests (see the upper panel

of Figure 3). In the case of unordered categorical data, in which the choices can

be grouped into the nests of similar options, the nested logit model is prevalent.

Several types of multinomial logit models with overlapping nests are proposed (Wen

and Koppelman 2001, Vovsha 1997). The (cross)-nested models, specifically designed

for the ordered alternatives, are not as common.3 The NOP econometric framework

is presented in online Appendix A. The difference between the decision trees of the

NOP and CNOP models is that all three nests of the CNOP model overlap at a no-

3Small (1987) proposed “the ordered generalized extreme value model” for ordered outcomes.
The model contains overlapping nests but each nest contains only two adjacent alternatives.



change response. In the NOP model, the decisions at both levels are observable and

we always know to which of the three nests the observed outcomes belong, whereas

the zeros are observationally equivalent in the CNOP model – we never know from

which of the three regimes the zeros originate.

Figure 3. The CNOP model is a generalization of the NOP, MIOP and ACH models

The CNOP model can also be considered as a three-part zero-inflated model. The

two-part zero-inflated models, developed to address both the abundant zeros and un-

observed heterogeneity, include the zero-inflated Poisson model (Lambert 1992) and

negative binomial model (Greene 1994) for count outcomes, as well as the zero-inflated

ordered probit (ZIOP) model (Harris and Zhao 2007) and zero-inflated proportional

odds model (Kelley and Anderson 2008) for ordinal responses. These models are

the natural extensions of the two-part (or hurdle, or split-population) mixture mod-

els, proposed by Cragg (1971) for non-negative continuous data and subsequently

developed for count data (Mullahy 1986), survival time data (Schmidt and Witte

1989), and discrete ordered time-series data (the autoregressive conditional hazard

(ACH) model of Hamilton and Jorda 2002). The two-part model combines a binary

choice model for the probability of crossing the hurdle (the upper-level participa-

tion decision) with a truncated-at-zero model for the outcomes above the hurdle (the

lower-level amount decision). Its structure is similar to the structure of the discrete

version of a sample selection model (Heckman 1979). However, in the sample selec-



tion model the first hurdle – the selection decision – determines whether a choice

variable is observed, instead of whether an activity is undertaken as in the two-part

model, in which all outcomes are actually observed and the first hurdle serves the role

of sample differentiation (Leung and Yu 1996).

The ZIOP model is suitable for explaining decisions such as the levels of con-

sumption, when the upper hurdle is naturally binary (to consume or not to consume)

and the ordinal responses are typically non-negative. Thus, the abundant zeros are

situated at one end of the ordered scale. Brooks et al. (2012) and Bagozzi and

Mukherjee (2012) modified the ZIOP model and proposed the middle-inflated or-

dered probit (MIOP) model for an ordinal outcome, which ranges from negative to

positive responses, and where an inflated outcome is situated in the middle instead of

at one end of the choice spectrum. The difference between the two-part ACH model

and the MIOP model (see the bottom panels of Figure 3) is that the two parts are

separately estimated in the former and the zero observations are excluded from the

second part; thus, the discrimination among the different typess of zeros is not ac-

commodated. In the latter, the two nests overlap, assuming two types of zeros; thus,

the probability of a zero is “inflated”.

The three-part CNOP model is a natural generalization of the two-part ZIOP

and MIOP models. A trichotomous participation decision (increase, no change, or

decrease) seems to be more realistic than a binary decision (change or no change)

if applied to ordinal data that assume negative, zero and positive values (such as

changes to policy rates). The policymakers, who are willing to adjust the rate, have

already decided the direction that they wish to move it. Combining these two distinct

decisions into one category, as implemented in the two-part models, may seriously

distort the inference, as documented in Section 4.

This section describes the econometric framework of the CNOP models, which are

designed for an ordinal dependent variable with a minimum of three different values.

For ease of exposition and without loss of generality, the observed dependent variable

is assumed to take on a finite number of discrete values j coded as {−J, ..., 0, ..., J},
where J ≥ 1 and a predominant (and potentially heterogeneous) response is coded as
zero. The prevailing outcome does not have to be in the very middle of the ordered

categories. However, if it is located at the end of the ordered scale, the three-part

CNOP model reduces to the two-part ZIOP model.

Although the new models are suitable for large cross-sectional and longitudinal

data, a sufficiently long discrete-valued time series is also applicable. The econometric

framework is presented in a panel-data framework using a double subscript, where



the index i denotes one of N cross-sectional units and the index t denotes one of T

time periods. An application to cross-sectional or time-series data is straightforward

by setting T or N to one. As an illustration, the model is interpreted in the context

of interest rate decisions that are taken repeatedly at the policy-making meetings by

each member of a monetary policy committee.

2.1 The cross-nested ordered probit model

The model assumes two stages (see Figure 2). At the first stage – the upper level

of the decision tree – the continuous latent variable r∗it represents the degree of the

policymaker i’s policy inclination. It is set at the meeting t in response to the observed

data according to a regime equation

r∗it = x
�
itβ + νit, (1)

where xit is the tth row of the observed Ti ×Kβ data matrix Xi, Ti is the number of

observations available for the individual i, β is aKβ×1 vector of unknown coefficients,
and νit is an error term that is independently and identically distributed (IID) across

i and t.

A regime-setting decision rit is coded as −1, 0, or 1, if the policymaker i’s policy
stance is respectively loose, neutral or tight. The correspondence between r∗it and rit
is given by a matching rule

rit = −1 if r∗it ≤ α1, 0 if α1 < r∗it ≤ α2, and 1 if α2 < r∗it,

where −∞ < α1 ≤ α2 <∞ are the unknown threshold parameters to be estimated.

Under the assumption that the disturbance term νit has the cumulative distrib-

ution function (CDF) F , the probabilities of each possible outcome of rit are given

by

Pr(rit = −1|xit) = Pr(r∗it ≤ α1|xit) = F (α1 − x�itβ),
Pr(rit = 0|xit) = Pr(α1 < r

∗
it ≤ α2|xit) = F (α2 − x�itβ)− F (α1 − x�itβ),

Pr(rit = 1|xit) = Pr(α2 < r
∗
it|xit) = 1− F (α2 − x�itβ).

(2)

At the second stage – the lower level of the decision tree – three latent regimes

exist. Conditional on being in the regime rit = 0, no further policy actions are taken



and the interest rate remains unchanged:

Δyit|(rit = 0) = 0.

Thus, the conditional probability of the outcome j in the neutral policy stance is

Pr(Δyit = j|rit = 0) =
�
0 for j �= 0,
1 for j = 0.

(3)

Conditional on being in the regime rit = ±1 (”±” denotes either ”+” or ”−”,
i.e., a tight or loose policy stance), a continuous latent variable Δy∗it, representing the

desired change to the rate, is determined by the direction-specific amount equations

Δy∗it|(z±it , rit = ±1) = z±�it γ± + ε±it , (4)

where γ± is a Kγ× 1 vector of unknown coefficients, z±it is the tth row of the observed
Ti ×Kγ data matrix Z±i , and ε±it is an IID error term with the CDF F±.

The discrete change to the rate Δyit is determined according to the rule

Δyit|(z±it , rit = ±1) = j if μ±j−1 < Δy∗it|(z±it , rit = ±1) ≤ μ±j for j = 0,±1, ...,±J ,

where −∞ ≡ μ−−J−1 ≤ μ−−J ≤ ... ≤ μ−−1 ≤ μ−0 ≡ ∞ and −∞ ≡ μ+−1 ≤ μ+0 ≤ ... ≤
μ+J−1 ≤ μ+J ≡ ∞ are the 2J unknown thresholds to be estimated.

The conditional probability of the outcome j can be computed as

Pr(Δyit = j|z±it , rit = ±1)

=

⎧⎪⎨⎪⎩
1
2
(1− rit)[F−(μ−j − z−�it γ−)− F−(μ−j−1 − z−�it γ−)] if j < 0,
F±(μ±j − z±�it γ±)− F±(μ±j−1 − z±�it γ±) if j = 0,
1
2
(1 + rit)[F

+(μ+j − z+�it γ+)− F+(μ+j−1 − z+�it γ+)] if j > 0.
(5)

Assuming that νit, ε−it and ε+it are independent, the full probabilities are given by

combining the probabilities in (2), (3) and (5):

Pr(Δyit = j|xit, z−it , z+it) =

⎧⎪⎨⎪⎩
Ij≤0 Pr(rit = −1|xit) Pr(Δyit = j|z−it , rit = −1)
+Ij=0 Pr(rit = 0|xit) Pr(Δyit = j|xit, rit = 0)
+Ij≥0 Pr(rit = 1|xit) Pr(Δyit = j|z+it , rit = 1)



=

⎧⎪⎨⎪⎩
Ij≤0F (α1 − x�itβ)[F−(μ−j − z−�it γ−)− F−(μ−j−1 − z−�it γ−)]
+Ij=0[F (α2 − x�itβ)− F (α1 − x�itβ)]
+Ij≥0[1− F (α2 − x�itβ)][F+(μ+j − z+�it γ+)− F+(μ+j−1 − z+�it γ+)],

(6)

where Ij≥0 is an indicator function such that Ij≥0 = 1 if j ≥ 0, and Ij≥0 = 0 if j < 0
(analogous for Ij=0 and Ij≤0).

I assume that F , F− and F+are standard normal. The model is not identi-

fied without some extra (arbitrary) assumptions. I also assume that the intercept

components of β, γ− and γ+ are zero. The probabilities in (6), however, are ab-

solutely estimable – they are invariant to the identifying assumptions – and can

be estimated using a partial (pooled) ML estimator of the vector of the parameters

θ = (α�,β�,μ−�,γ−�,μ+�,γ+�)� that solves

max
θ�Θ

N�
i=1

T�
t=1

J�
j=−J

qitj ln[Pr(Δyit = j|xit, z−it , z+it ,θ)], (7)

where qitj is an indicator function such that qitj = 1 if Δyit = j and qitj = 0 otherwise.

All parameters in θ are separately identified (up to scale) via the functional form

due to the nonlinearity of the OP equations. In practice, however, the standard

normal CDF is often an approximately linear function over an extensive range of its

argument. Thus, the simultaneous estimation of three equations may be subject to

the collinearity and weak identification problems, if X, Z− and Z+ have all (or too

many) variables in common. In this case, exclusion restrictions may be necessary to

prevent weak identification. The specifications with the complete overlap of variables

in the three latent equations are unlikely to be of empirical interest and supported

by the data.

Using the fixed T and N →∞ asymptotics, the estimator in (7) is consistent and

square-root-asymptotically normal without any additional assumptions besides the

standard identification, regularity and stationarity assumptions, provided the density

of Δyit|xit, z−it , z+it is correctly specified. In contrast to the full ML estimator, in which
the full conditional density of ΔYi|Xi,Z

−
i ,Z

+
i is assumed to be correctly specified

under the null, the partial ML estimator works even if the error terms νit, ε−it and

ε+it are autocorrelated, and Xi, Z−i and Z
+
i contain the lags of the covariates and



the lagged Δyit (see Wooldridge 2010, pp. 486-490). However, the usual asymptotic

standard errors and test statistics obtained from the pooled estimation are only valid

under the assumption of no serial correlation among the disturbance terms. Without

dynamic completeness, the standard errors must be adjusted for serial dependence,

for example, by using a robust to density misspecification sandwich estimator of the

asymptotic variance of θ

Avar(�θ) = �− N�
i=1

T�
t=1

Hit(�θ)	−1� N�
i=1



T�
t=1

sit(�θ) T�
t=1

sit(�θ)��	�− N�
i=1

T�
t=1

Hit(�θ)	−1 ,
(8)

where sit(�θ) is the score vector and Hit(�θ) is the expected Hessian (see Wooldridge
2010, pp. 490-492). The asymptotic standard errors of �θ are the square roots of the
diagonal elements of (8).

2.2 The correlated cross-nested ordered probit model

The CNOP model can be extended by relaxing the assumption that the mechanisms

generating the regime and amount decisions are independent, i.e. that the error

terms ν, ε− and ε+ are uncorrelated. To obtain a correlated version of the model

(CNOPc), I assume that (ν, ε−) and (ν, ε+) follow the standardized bivariate normal

distributions with the correlation coefficients ρ− and ρ+, respectively. This correlation

may emerge, for instance, from the common but unobserved covariates.

The probabilities to observe an outcome j for the CNOPc model can be written

as

Pr(Δyit = j|z−it , z+it ,xit)

=

⎧⎪⎨⎪⎩
Ij≤0[F2(α1 − x�itβ;μ−j − z−�it γ−;ρ−)− F2(α1 − x�itβ;μ−j−1 − z−�it γ−; ρ−)]
+Ij=0[F (α2 − x�itβ)− F (α1 − x�itβ)]
+Ij≥0[F2(x�itβ − α2;μ

+
j − z+�it γ+;−ρ+)− F2(x�itβ − α2;μ

+
j−1 − z+�it γ+;−ρ+)],

(9)

where F2(φ1;φ2;ξ) is the CDF of the standardized bivariate normal distribution of the

two random variables φ1 and φ2 with the correlation coefficient ξ. To estimate the

CNOPc model by the partial ML, we have to solve (7) by replacing the probabilities



in (6) with the probabilities in (9) and redefining the parameter vector θ as θ =

(α�,β�,μ−�,γ−�,μ+�,γ+�, ρ−, ρ+)�.

2.3 Partial effects

The partial effect (PE) of a continuous covariate on the probability of each discrete

choice is computed as the partial derivative with respect to this covariate, holding

all other covariates fixed. For a discrete-valued covariate, the PE is computed as the

change in the probabilities when this covariate changes by one increment and all other

covariates are fixed. To facilitate the PE derivation, the matrices of the covariates

and the corresponding vectors of the parameters can be partitioned as

X = (W,P,M, �X), Z+ = (W,P,V, �Z+), Z− = (W,M,V, �Z−),
β = (β�w,β

�
p,β

�
m,
�β�)�, γ+ = (γ+�w,γ+�p,γ+�v,�γ+�)�, γ−= (γ−�w ,γ−�m,γ−�v,�γ−�)�,

where W only includes the variables common to X, Z+ and Z−; P only includes

the variables common to both X and Z+, which are not in Z−; M only includes the

variables common to both X and Z−, but not in Z+; V only includes the variables

common to both Z− and Z+, but not in X; and �X, �Z+ and �Z− only include the
unique variables that only appear in one of the latent equations.

A matrix of covariates X∗ and the vectors of the parameters for X∗ can be written

as

X∗ = (W,P,M, �X,V, �Z+, �Z−), β∗ = (β�w,β�p,β�m, �β�,0�,0�,0�)�,
γ+∗ = (γ+�w,γ

+�
p,0

�,0�,γ+�v,�γ+�,0�)�, γ−∗ = (γ−�w,0�,γ−�m,0�,γ−�v,0�,�γ−�)�.
The PE of the row vector x∗it on the full probabilities in (9) can be computed for

the CNOPc model as

PE
Pr(Δyit=j)

=



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ij=0[f(α2 − x�itβ)− f(α1 − x�itβ)]β∗ + Ij≥0
��
F

�
x�itβ−α2+ρ+(μ+j−1−z+�it γ+)√

1−(ρ+)2

�
f(μ+j−1

−z+�it γ+)− F
�
x�itβ−α2+ρ+(μ+j −z+�it γ+)√

1−(ρ+)2

�
f(μ+j − z+�it γ+)

�
γ+

∗

+

�
F

�
μ+j −z+�it γ++ρ+(x�itβ−α2)√

1−(ρ+)2

�
− F

�
μ+j−1−z+�it γ++ρ+(x�itβ−α2)√

1−(ρ+)2

��
f(x�itβ − α2)β

∗
�

+Ij≤0

��
F

�
α1−x�itβ−ρ−(μ−j−1−z−�it γ−)√
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where f is the probability density function of the standard normal distribution F .

The PE for the CNOP model are obtained by setting ρ− = ρ+ = 0. The asymptotic

standard errors of the PE are computed using the Delta method as the square roots

of the diagonal elements of

Avar( PE(θ)
Pr(Δyit=j)

) = ∇θPE(θ)
Pr(Δyit=j)

)Avar(�θ)∇θPE(θ)
Pr(Δyit=j)

)�.

2.4 Comparison of competing models

The choice of the formal statistical test to compare the performance of the competing

models is dependent on whether they are nested in each other. The NOP and CNOP

models are nested in the NOPc and CNOPc models, respectively, as their uncorrelated

special cases. The NOP model is nested in the CNOP model (given that each latent

equation of the latter contains all covariates in the corresponding equations of the

former). The latter becomes a NOP model if all coefficients on the extra CNOP

variables (if any) are fixed to zero and if μ−−1 → ∞ and μ+0 → −∞; therefore,
Pr(y+it = 0|z+it , rit = 1) → 0 and Pr(y−it = 0|z−it , rit = −1) → 0, which can be

computationally implemented by letting μ−−1 and μ+0 be equal to the largest and

smallest numbers, respectively, that are available for the estimation software. Thus,

testing the NOP versus NOPc, the NOP versus CNOP, the NOP versus CNOPc, the

NOPc versus CNOPc, and the CNOP versus CNOPc model can be performed with

a test for nested hypotheses, such as the likelihood ratio (LR) test.

In general, the OP and MIOP models are not nested in the NOP, NOPc, CNOP

or CNOPc models and vice versa. However, these models are not strictly non-nested.



All six models overlap under certain parameter restrictions if their slope coefficients

are restricted to zero and only the thresholds are estimated. Therefore, testing the

OP versus any of the two-level models, the MIOP versus the NOP, NOPc, CNOP and

CNOPc models and the NOPc versus CNOP model (which overlap if both reduce to

the NOPmodel) can be conducted with a test for non-nested overlapping models, such

as the Vuong test (Vuong 1989). It utilizes the statistical significance between the

differences in the log likelihoods. Online Appendix C provides the details about the

Vuong test and computation of the informational criteria and noise-to-signal ratios.

An interesting special case when the CNOP and CNOPc models nest the MIOP

model occurs under certain parameter restrictions (see online Appendix B for the

details) provided (i) the dependent variable only has three outcome categories, (ii)

Z+ and Z− contain all covariates in the MIOP participation equation, and (iii) X

includes all covariates in the MIOP amount equation. In this case, a test of the CNOP

versus MIOP model can be performed using the LR test, which can be interpreted as

a misspecification test for the latter.

The MIOP reduces to the OP model if (i) the amount equation of the former

contains all covariates in the latter, (ii) all coefficients in the participation equation

of the former are fixed to zero, and (iii) the threshold parameter in the participation

equation is infinitely small to ensure that all observations always occur in the “change”

regime. In this special case, a test of the MIOP versus OPmodel can also be performed

using the LR test.

3 Finite sample performance

I conducted the extensive Monte Carlo experiments to illustrate and compare the

finite sample performance of the ML estimators in the competing models, namely,

to assess the bias and uncertainty of the estimates (and their asymptotic standard

errors), the performance of the LR and Vuong tests and the model selection criteria,

and the effects of the exclusion restrictions. The details of Monte Carlo design and

the results of these simulations are discussed in online Appendix D. To save the space

here, I only provide a brief summary of Monte Carlo design and main findings.

Five different DGP were simulated: OP, NOP, NOPc, CNOP, and CNOPc. For

each DGP, 3000 repeated samples with 250, 500 and 1000 observations were gen-

erated. Under each DGP and for each sample size, several competing models were

estimated, always including the OP and NOP models as the benchmarks. Simulations



demonstrate that the PE estimates from the OP and NOP models are biased when

the underlying DGP is characterized by the three types of zeros, and that the CNOP

and CNOPc estimates systematically provide superior probability coverage as well

as less bias (see Table 1). The CNOP and CNOPc models under the true OP DGP

perform much better than the OP model under the CNOP and CNOPc DGP; as

the sample size increases, the relative performance of the CNOP and CNOPc models

under the OP DGP improves, whereas the OP and NOP estimates under the CNOP

and CNOPc DGP remain biased. I found that it requires two-three times more ob-

servations for the three-part models to achieve the same accuracy for the estimated

parameters as the OP model (if all models are correctly specified). As long as the

number of observations per parameter exceeds 25, the asymptotic distribution is a

reasonable approximation of the finite sample distribution; in the smaller samples,

the distribution of the standard error estimates is skewed to the right.

Table 1. Selected Monte Carlo results: the CNOP and NOP estimates are consistent
under the OP DGP, whereas the OP and NOP estimates remain biased under the
CNOP DGP as the sample size increases

True DGP:

Estimated model: OP NOP OP NOP CNOP

250 42 25 21 36 36 28 23
500 83 50 42 71 71 56 45
1000 167 100 83 143 143 111 91

250 0.25 0.45 1.48 34.63 32.81 0.62 0.82
500 0.22 0.31 0.99 34.75 32.93 0.25 0.40
1000 0.09 0.20 0.78 34.50 32.89 0.16 0.15

250 2.06 2.95 3.71 4.86 4.44 1.96 2.34
500 1.43 2.04 2.48 4.69 4.34 1.34 1.62
1000 1.01 1.44 1.73 4.59 4.27 0.96 1.11

250 93.2 92.0 90.4 36.0 45.9 91.0 90.3
500 94.2 93.4 92.2 20.5 35.3 93.0 92.4
1000 94.6 94.0 93.0 13.2 27.3 94.1 93.7

CNOPc

CNOP

CNOP

Obs/par

Bias

RMSE

CP, %

Sample
size

OP

Notes: No overlap scenario (each covariate belongs only to one equation). Obs/par is the number of ob-
servations per parameter. Bias is the difference between the estimated and true values of the PE, avera-
ged over all replications and multiplied by 100. RMSE is the root mean square error of the estimated
PE relative to their true values, averaged over all replications and multiplied by 100. CP is the empirical
coverage probability, computed as the percentage of times the estimated asymptotic 95% confidence
intervals cover the true values of the PE.



In addition, to assess the effect of exclusion restrictions, three different scenarios

of the overlap among the covariates in the specifications of the three latent equations

in (1) and (4) were simulated: “no overlap” (each covariate belongs only to one

equation), “partial overlap” (each covariate belongs to two equations) and “complete

overlap” (all three equations have the same set of covariates). I found that, not

surprisingly, the greater is the number of exclusion restrictions, the more accurate

are the estimates: in the case of the substantial overlap among the covariates in the

three latent equations, the asymptotic estimator can experience problems with the

convergence and the invertibility of the Hessian if the sample size is small (fewer than

35 observations per parameter).

4 An application to the policy interest rate

“... monetary economists should embark on a program of continuous improve-

ment and enhanced precision of the Fed’s monetary rule.” - W. Poole (2006)

I apply the OP, MIOP, CNOP and CNOPc models to explain the systematic com-

ponents of the NBP policy rate decisions, and employ a novel panel of the individual

policy preferences of the MPC members and the vintages of the real-time economic

data available to the public one day prior to each policy-setting meeting during the

period from February 1998 to April 2014.

4.1 Data

After the adoption of direct inflation targeting in 1998, the NBP policy rate – the

reference rate4 – may be undoubtedly treated as a principal instrument of Polish

monetary policy. The reference rate is administratively set by the MPC, which con-

sists of ten members who make policy rate decisions by formal voting once per month

(since 2010, eleven times per year). The Council members are appointed for a non-

renewable term of six years but the Chair may serve for two consecutive terms.5

The MPC always moves policy rates by discrete adjustments – multiples of 25

basis points (bp), i.e. a quarter of one percent. At a policy meeting, each MPC mem-

ber can express his preferred adjustment to the rate and make a proposition to be

4The rate on the 28-day (from 1998 to 2003), 14-day (from 2003 to 2005) and 7-day (since 2005
to present) NBP money market bills.

5The first and second terms lasted, respectively, from February 1998 through January 2004 and
from February 2004 through January 2010. The third term began in February 2010.



voted on. If no proposition is made, no voting occurs and the rate remains unchanged.

Otherwise, the Chair selects the largest proposed move and the members vote on it;

the Chair has the casting vote if there is no majority. If the first voted proposition

commands a majority, the other propositions are not voted on; otherwise, the mem-

bers vote on the alternative proposal (if any). The available voting records report all

proposed motions (but do not report who made the motions) and all individual votes,

for or against (but do not explicitly indicate the desired rate change of the members

who voted against). This information enables us to identify the direction of dissent,

i.e. whether a dissenting policymaker prefers the higher or lower rate. It also enables

us to identify the desired amount of change (if any), if only one or no proposition

is made. Fortunately, only a few cases (less than 0.8% of all observations) exist in

which more than one motion is proposed and the largest move is passed. In these

cases, I conjecture which dissenting members prefer the alternative smaller move(s)

and which members prefer a status quo by considering their previous rate-setting

behaviors.

From 1998 to mid-2002, the rate of inflation in Poland decreased from 14% to 2%;

since this period, it has fluctuated in range of 0.3%—4.8%. The current NBP inflation

target of 2.5%±1% was established in January 2004 and was not changed after this

date. Since May 2002, the policy rate changed 36 times by 25 bp, 12 times by 50

bp, and two times by 75 bp. Previously, it was more volatile in response to more

volatile inflation; the rate changed two times by 50 bp, eight times by 100 bp, seven

times by 150 bp, and three times by 250 bp. To provide a reliable statistical inference

with these data limitations, the individual policy preferences (reported in Table 19 in

online Appendix E) are consolidated into three categories: increase, no change and

decrease. The sample contains the desired policy actions expressed during the first

round of voting (if any) by 31 policymakers at 190 MPC meetings. The two MPC

members (Wiesiołek and Osiatyński) are excluded from the sample because they were

involved in policy decisions on two and six occasions, respectively. Among the 1719

observations employed in the estimations, the policymakers preferred to leave the rate

unchanged 1125 times (65%), to increase the rate 253 times (15%) and to reduce it 341

times (20%). Table 2 provides the definitions and sources of all variables. The sample

descriptive statistics are summarized in Table 20 in online Appendix E. All employed

macroeconomic variables are stationary at the 0.01 significance level according to the

augmented Dickey-Fuller unit root test, as shown in Table 21 in online Appendix E.



Table 2. Definitions of the variables

y i
Dependent variable - change to the NBP reference rate, preferred by MPC member i  and consolidated into
three categories: 1 if an increase, 0 if no change, -1 if a decrease (NBP and AC).

cpi Monthly change to the consumer price index (CPI), annual rate in percent (GUS).

cpi tar cpi  if CPI is above the NBP inflation target, and zero otherwise (GUS and NBP).

ecbr Change to the European Central Bank policy rate (since 2/1999, in 1998 - to the Bundesbank policy rate, and
zero in 1/1999), announced at the last policy meeting, annualized percent (ECB and Bundesbank).

rate i Change to the NBP reference rate, preferred by MPC member i , annualized percent (NBP and AC).

spread
Difference between the 1-year and 1-week Poland interbank offer rate, 5-business-day moving average,
annualized percent (Thompson Reuters).

bias
Indicator of ''policy bias'' or ''balance of risks'' statements of the MPC: -1 if ''easing'', 0 if ''neutral'', and 1 if
''restrictive'' (NBP and AC).

dissent i
Measure of dissent of MPC member i  at a meeting, equal to -1/0/1 if member i prefers the lower/same/higher
interest rate than the rate set by the MPC (NBP and AC).

I 2002 One since 4/2002, and zero otherwise.

I 2010 One since 2/2010, and zero otherwise.

Mnemonics Variable description (source of data)

Notes: GUS - Central Statistical Office of Poland, AC - author's calculations.

4.2 Model specification

Given the NBP strategy of direct inflation targeting, the policy regime decision in

the CNOP model is assumed to be driven by a direct reaction to the changes in the

economic conditions controlled by: (i) Δcpit – the recent monthly change to the

current rate of inflation; (ii) Δcpitart , which is equivalent to Δcpit if the inflation is

above the target, and zero otherwise (to allow for an asymmetric reaction to inflation

changes depending on whether the inflation rate is above or below the target); (iii)

Δecbrt – the change to the ECB policy rate made at the last policy meeting (as a

proxy for the recent economic trends in the European Union); (iv-v) Δcpitart I
2010
t and

ΔecbrtI
2010
t , where I2010t is an indicator variable, which is which is one since February

2010, and zero otherwise (to allow for a different policy reaction in the post-crisis

period during the third MPC term); (vi) spreadt – the spread between the long-

and short-term market interest rates (as a low-dimension market-based aggregator of

publicly available information on inflationary expectations that are not reflected in

the current inflation rate); (vii) Δratei,t−1 – the original (unconsolidated) change to

the policy rate proposed by the MPC member i at the previous meeting (sequential

decisions are not independent – the recent policy choice affects subsequent actions);

and (viii) biast−1 – an indicator of the “policy bias” or “balance of risks“ statements



of the MPC at the previous meeting (to address the policymakers’ concerns about

the competence and credibility of central bank communication). The expected sign of

the coefficients on these variables is positive – the larger is the value of a covariate,

the larger is the probability of a tight policy stance and the smaller is the probability

of a loose stance.

The amount decisions, which fine-tune and smooth the rate, are conditional on

the tight or loose policy stance and controlled by (i) Δratei,t−1 (the larger is the

hike/cut at the previous meeting, the lower is the probability of the second hike/cut

in a row); (ii) biast−1 (the tightening/easing bias is expected to increase/decrease the

probability of a higher rate); (iii) spreadt (the rate hike is much more likely if the

12-month interbank rate is above the 1-week rate, rather than vice versa); (iv) the

indicator variable I2002t , which is one since April 2002, and zero otherwise (to account

for higher levels and stronger moves in the inflation and the policy rate prior to April

2002); and I2010t (to allow for a different policy reaction during the third MPC term).

The expected sign of the coefficients is positive for spreadt and biast−1, negative for

Δratei,t−1, and should be opposite in the tight and loose regimes for I2002t and I2010t :

a positive sign in the tight stance but a negative sign in the loose stance enable rate

moves to be triggered by smaller changes to the explanatory variables after April 2002

and February 2010, respectively.

There are no inter-individual differences in the values of the macroeconomic ex-

planatory variables. To better account for the individual heterogeneity of policy pref-

erences (not fully controlled by Δratei,t−1), I augment this specification by including

the individual fixed effects (FE). For parsimony reasons, I only allow for variation

in the intercepts – thirty individual dummy variables are included in each latent

equation.6 Slope heterogeneity is not a concern because our interest is the estimation

of the average effects of the explanatory variables, not the individual policy reactions.

Under the assumption that the slope coefficients randomly differ across the individ-

uals, the pooled ML estimator yields consistent estimates of these aggregate effects

while simultaneously providing a greater statistical power and a more reliable infer-

ence. We should not expect any significant fixed T asymptotic bias of our estimator;

with our temporal size (Ti is 55 on average) we are in the realm of a time-series

analysis.7

6A dummy for Gronkiewicz-Waltz, who was the first MPC Chair (1998—2000) and the only MPC
member in the sample who never dissented, and I2010t are omitted to avoid the dummy variable trap.

7Using Monte Carlo simulations, Greene (2004) investigated bias in the discrete-choice panel
models, including the OP model. As T increases from 2 to 20, the 160% bias reduces to 6%.



The fixed effects are more appropriate than the random effects because we do not

have a sample of individuals who were randomly obtained from a large population

but instead possess a full set of the MPC members. However, the FE specification

with its 110 parameters is likely subject to a weak identification problem: fewer

than 16 observations per parameter are contained in the sample, and the sets of

the covariates in the three latent equations overlap substantially. To prevent an

overparameterization and obtain more reliable estimates, I also estimated a more

parsimonious specification. I constructed the individual-specific variable dissenti,t,

which indicates a direction of member i’s dissent at a meeting t: it is equal to 1/0/-

1, if the member prefers the higher/same/lower rate than the MPC. The lags of

dissenti,t reflect the dynamics of the deviation of member i’s desired rate from the

rate set by the MPC at the previous meetings. I included three lags in the regime

equation, two lags in the amount equation under the loose regime, and three lags

under the tight regime (with the expected positive sign of all coefficients; if a member

preferred a higher/lower policy rate at the previous meeting, he is likely to be more

hawkish/dovish at the subsequent meetings).8

4.3 Estimation results

The three lags of dissenti,t adequately capture the heterogeneity of policy prefer-

ences. The alternative specification has a slightly lower log likelihood than the FE

specification (-629.2 vs -626.2), but far fewer parameters (30 vs 110), and is strongly

preferred by the information criteria (the AIC is 1318 vs 1472, the BIC is 1482 vs

2072). The FE specification is heavily overparameterized: fourty individual dum-

mies have a coefficient that is not statistically significantly different from zero at the

0.05 level, as reported in Table 23 in online Appendix E. Therefore, the specification

with the lags of dissenti,t (henceforth the baseline specification) was employed in

the further analysis. It saves 80 degrees of freedom, has an advantage of a greater

statistical power, and can produce more efficient estimates of interest. Importantly,

the estimated policy reactions to economic conditions are robust to different ways

of accounting for individual heterogeneity: the coefficients of all common variables

in the regime equation and of all but three variables in the amount equations are

remarkably similar in both specifications.

8The third lag of dissenti,t is not included in the amount equation under the loose regime because
its coefficient is not statistically significantly different from zero at the 0.22 level (see Table 22 in
online Appendix E) and the LR test fails to reject its redundancy (the p-value is 0.31).



Table 3. Modeling changes to policy rate: the coefficients from the CNOP model

Loose regime Tight regime

cpi t -0.22 (0.24)

cpi t
tar 7.99 (1.11)***

cpi t
tar*I t

2010 -7.75 (1.16)***
ecbr t 11.02 (1.73)***

ecbr t*I t
2010 -9.58 (1.78)***

rate i,t-1 2.44 (0.44)*** -1.08 (0.16)*** -3.10 (0.55)***
spread t 1.93 (0.17)*** 0.70 (0.14)*** 0.67 (0.18)***
dissent i,t-1 0.66 (0.17)*** 1.64 (0.32)*** 1.62 (0.28)***
dissent i,t-2 0.23 (0.17) 0.74 (0.15)*** 0.47 (0.23)**
dissent i,t-3 0.51 (0.14)*** 0.78 (0.28)***
bias t-1 0.51 (0.14)*** 6.99 (0.56)*** 2.02 (0.21)***

I t
2002 -1.37 (0.28)*** 0.80 (0.21)***

I t
2010 -6.93 (0.73)*** 1.42 (0.54)***

threshold 1 -1.27 (0.12)*** -0.79 (0.25)*** 2.51 (0.32)***
threshold 2 2.50 (0.19)***

Variables Policy regime
equation

Amount equations

Notes: For the definitions of the variables refer to Table 2. ***/**/* denote the statistical significance at
the 1/5/10 percent level. The robust asymptotic standard errors are shown in parentheses.

As shown in Table 3, all coefficients from the baseline specification have an ex-

pected sign and are statistically significant at the 0.01 level, with the exception of

the coefficient on dissenti,t−2 (the p-value is 0.17) and Δcpit (the p-value is 0.35) in

the regime equation. Only the signs of the coefficients – not their values – are of

practical interest. The values are only identified up to scale, whereas the signs un-

ambiguously imply the signs of the PE on the probabilities of a rate hike or cut. Our

expectation that the policy reaction to changes in inflation is dependent on whether

inflation level is above or below the target is confirmed: the reaction is not statistically

significant if the inflation is below the target.

Observing a large fraction of zeros does not always indicate that existing mod-

els are unsuitable. We can test which alternative model is favored by real-world

data: (i) the standard OP model (including all covariates from the CNOP model;

see Table 4); (ii) the two-part MIOP model (in which its dichotomous participation

equation includes all covariates in the CNOP dichotomous amount equations and



the trichotomous amount equation includes all covariates in the CNOP trichotomous

regime equation; see Table 4); (iii) the three-part CNOP model (with the baseline

specification); and (iv) the correlated version of the CNOP model (see Table 24 in

online Appendix E). The NOP model is not listed because, in the case of the three

outcome categories, it reduces to the OP model.

Table 4. Modeling changes to policy rate: the coefficients from the OP and MIOP
models

          OP

Participation equation Amount equation

cpi t 0.26 (0.11)** -0.14 (0.18)

cpi t
tar 0.97 (0.17)*** 2.43 (0.72)***

cpi t
tar*I t

2010 -0.45 (0.28) -1.72 (0.84)**
ecbr t 1.80 (0.25)*** 4.25 (0.43)***

ecbr t *I t
2010 -0.08 (0.59) -2.83 (0.68)***

rate i,t-1 -0.60 (0.08)*** 0.11 (0.17) -0.27 (0.60)
spread t 0.77 (0.06)*** -0.04 (0.08) 1.44 (0.12)***
dissent i,t-1 1.16 (0.11)*** -0.28 (0.35) 1.32 (0.19)***
dissent i,t-2 0.42 (0.10)*** -0.04 (0.19) 0.47 (0.13)***
dissent i,t-3 0.45 (0.09)*** -0.13 (0.19) 0.58 (0.12)***
bias t-1 1.20 (0.06)*** -0.02 (0.38) 1.30 (0.09)***

I t
2002 -0.22 (0.11)** 1.55 (0.31)***

I t
2010 0.18 (0.09)** 0.89 (0.94)

threshold 1 -1.37 (0.09)*** 0.01 (0.17) -1.20 (0.14)***
threshold 2 2.37 (0.11)*** 2.99 (0.12)***

Variables
MIOP

Notes: For the definitions of the variables refer to Table 2. ***/**/* denote the statistical significance at
the 1/5/10 percent level. The robust asymptotic standard errors are shown in parentheses.

Table 5 shows the summary statistics and comparison of the five competing mod-

els. The two- and three-equation models demonstrate a significant increase in the

likelihood compared to the single-equation OP model. The CNOP and CNOPc mod-

els are overwhelmingly superior to the OP and MIOP models according to all infor-

mation criteria and are favored by the Vuong tests (at the significance level 10-20).

The CNOPc model exhibits an insignificant increase in the likelihood compared with

the CNOP according to the LR test (the p-value is 0.999). The CNOP model is

preferred by all information criteria. I also estimated it with the same set of variables



in both amount equations (by including dissenti,t−3 under the loose regime) to test

whether the rate hikes and cuts are generated by different processes. In our case with

only three outcome categories of the dependent variable, the CNOP nests the MIOP

model under certain “symmetrical” restrictions on the parameters in the amount

equations (see online Appendix B for the discussion). The LR test strongly rejects

the symmetrical restrictions and prefers the CNOP model (the p-value is 10-37).

Table 5. Comparison of competing models: the CNOP model is favored by real-world
data

Model OP MIOP CNOP CNOPc
Log likelihood -813.3 -758.2 -629.2 -629.2
# of parameters 15 22 30 32
AIC 1656.5 1560.4 1318.3 1322.3
BIC 1738.3 1680.3 1481.8 1496.7
Hit rate 0.77 0.80 0.83 0.83
Vuong test vs OP -3.97*** -11.02*** -11.02***
Vuong test vs MIOP -9.38*** -9.37***
LR test vs CNOP 0.002

Notes: ***/**/* denote the statistical significance at the 1/5/10 percent level.

Table 6. Comparison of competing models: the CNOP model has better hit rates
and noise-to-signal ratios

OP MIOP CNOP OP MIOP CNOP
Decrease 0.60 0.71 0.78 0.12 0.07 0.06
No change 0.87 0.89 0.89 0.48 0.42 0.31
Increase 0.56 0.51 0.64 0.06 0.07 0.06

Actual outcome
Hit rate Adjusted noise-to-signal ratio

Notes: A particular choice is predicted if its predicted probability exceeds the predicted probabilities of
the alternatives. An “adjusted noise-to-signal” ratio, introduced by Kaminsky and Reinhart (1999), is
defined in online Appendix C.

The CNOP model also demonstrates a substantial improvement in the percentage

of correct predictions (for rate cuts and hikes) and noise-to-signal ratios (for cuts and



zeros), as shown in Table 6. The noise-to-signal ratios for hikes and the hit rates

for zeros are similar across the three models, although slightly better in the CNOP

model. Interestingly, the OP and MOP models predict more zeros (1224 and 1228)

than the CNOP model (1171), but they correctly predict only 977 and 1004 zeros,

respectively, whereas the CNOP model correctly predicts 1005 zeros.

To give the MIOP model additional chances, I also estimated it (a) including all

CNOP covariates in both parts (the log likelihood is -725.1; see Table 25 in online

Appendix E) and (b) taking additionally all covariates in the participation equation

by their absolute values to account for the binary (change or no change) nature of

the first-stage decision (the log likelihood is -713.6; see Table 26 in online Appendix

E). In both cases, the CNOP remains overwhelmingly superior to the MIOP model

according to the information criteria9 and Vuong tests (at the significance level 10-9).

The model comparison relies heavily on statistical criteria. Are we simply fine-

tuning the OP and MIOP models or are the resulting improvements economically

meaningful? The three models produce a conflicting inference and have incompatible

and opposite estimates of the effect of some explanatory variables on choice probabil-

ities. The most striking differences across the models are in the effects of the previous

change to the rate Δratei,t−1.

We expect a positive coefficient on Δratei,t−1 in the OP model. In the case of a

rate hike, the probability of a hike/cut at the next meeting should be larger/smaller

than for the case of a cut. The coefficient has a negative sign in the OP model, which

nonsensically implies that the larger is the proposed hike at the last meeting, the more

likely is a cut at the next meeting. The CNOP model assumes that the rate change is

the combined result of the two distinct decisions, on which a given variable may have

different and even opposite effects. We expect a high level of persistency in the latent

policy regime due to the slow cyclical fluctuations of macroeconomic indicators, which

exogenously drive the policy stance. Central banks are typically conservative and

dislike frequent reversals in the direction of movement in interest rates. Therefore, we

expect a positive coefficient onΔratei,t−1 in the policy regime equation. Policymakers

are cautious and tend to wait and see after they have moved the rate; an adjustment

is typically followed by a status quo decision. The CNOP amount decisions are

unidirectional, either non-positive or non-negative, if the policy stance is loose or

tight, respectively. Thus, we expect a negative coefficient on Δratei,t−1 in the amount

equations. The coefficient has a positive sign in the regime equation but the negative

9The AIC and BIC are 1318 and 1482 for the CNOP model but only 1508 and 1666 for the MIOP
model in the case (a) and 1485 and 1643 in the case (b), respectively.



signs in the amount equations, which implies that the larger is the hike at the last

meeting, the larger is the probability of a tight regime at the next meeting and,

conditional on the tight/loose stance, the smaller is the probability of a hike/cut and

the larger is the probability of no change.

Table 7. Comparison of competing models: the CNOP model provides the eco-
nomically more meaningful estimates of the partial effects of Δratei,t−1 on choice
probabilities

OP MIOP CNOP

Pr( y i,t  = "increase") -0.003 (0.001)*** -0.001 (0.001) 0.000 (0.000)

Pr( y i,t  = "no change") -0.021 (0.003)*** -0.009 (0.010) 0.084 (0.024)***

Pr( y i,t  = "decrease") 0.025 (0.004)*** 0.009 (0.010) -0.084 (0.024)***

Notes: ***/**/* denote the statistical significance at the 1/5/10 percent level. The robust asymptotic
standard errors are shown in parentheses. The partial effects are computed as a change in the probabi-
lities when Δratei,t−1 changes from -25 bp to 0 bp, the inflation rate is above the target, and the other
variables are fixed at their sample median values.

The differences in the PE of Δratei,t−1 on the choice probabilities obtained across

the three models are intriguing: the CNOP model has the opposite signs of the PE

compared with the OP and MIOP models, as shown in Table 7.10 According to the

CNOP model, if Δratei,t−1 changes from -25 to 0 bp, holding all other variables fixed,

the probability of a rate cut decreases by 0.084, the probability of a hike increases

insignificantly, and the probability of no change increases by 0.084. By contrast, the

OP and MIOP models produce a conflicting and misleading inference: the probability

of a cut increases by 0.025 and 0.009, the probability of a hike decreases by 0.003 and

0.001, and the probability of no change decreases by 0.021 and 0.009, respectively.

The impact of Δratei,t−1 on choice probabilities from the three models is also

graphically compared in Figure 4. The predicted probabilities exhibit sharp con-

tradictions. For example, if the policy bias is easing and Δratei,t−1 increases, the

probability of no change increases in the CNOP model but decreases in the OP and

MIOP models. Similarly, the three models make a conflicting inference regarding the

probability of a rate reduction. The OP and MIOP models fail to provide an accu-

rate assessment of the relationship between the explanatory variables and outcome

10The partial effects of all explanatory variables are reported in Table 27 in online Appendix E.



probabilities and produce an absurd inference. The capability of the CNOP model

to disentangle the opposite directions of the effect of Δratei,t−1 on the regime and

amount decisions produces an economically more reasonable inference.

Figure 4. Comparison of competing models: the CNOP model provides the more
reasonable estimates of choice probabilities

Notes: The probabilities are computed for the range of the preferred change to the rate Δratei,t−1 and
two values of biast−1 (easing and neutral) at the last MPC meeting, if the inflation rate is above the
target and the other variables are fixed at their sample median values.

Figure 5 shows the estimated probabilities of latent policy regimes, which are aver-

aged for each meeting across all MPC members. The probability profiles differ consid-

erably in the periods of policy easing, maintaining and tightening, as demostrated in

Figure 6. Averaged over all meetings, the probabilities of the loose, neutral and tight

policy stances are 0.33, 0.41 and 0.26, respectively, whereas the observed frequencies

of the cuts, no-change decisions and hikes are 0.20, 0.65 and 0.15, respectively. All

the zeros are not generated by a neutral policy stance.



Figure 5. Actual policy decisions and estimated probabilities of latent policy regimes

Figure 6. Probabilities of latent regimes in different policy periods remarkably differ

Notes: The estimates are obtained from the baseline CNOP model. For the definitions of the policy
periods, refer to Figure 1.



These findings are refined in Figure 7, which reports the decomposition of uncon-

ditional probability of no change into three conditional parts, Pr(Δyi,t = 0|ri,t = −1),
Pr(Δyi,t = 0|ri,t = 0) and Pr(Δyi,t = 0|ri,t = 1), which correspond to the loose, neu-
tral and tight zeros. This decomposition substantially varies and, as we hypothesized,

the identified three types of zeros are unproportionally distributed across different pol-

icy periods. During policy easing and tightening, the fractions of neutral zeros are

0.47 and 0.63, respectively. The fraction of neutral zeros is only 0.70 even among the

zeros that are clustered between the rate reversals during policy maintaining. For the

entire sample, the portions of the loose, neutral and tight zeros are 0.20, 0.62 and

0.18, respectively.11 According to the CNOP model, less than two-thirds of the status

quo decisions appeared to be generated by a neutral policy reaction to the economic

conditions. The policy-making process in the NBP appears to be inertial by choice:

40% and 44% of all outcomes in the loose and tight regimes, respectively, are the

zeros.

Figure 7. The decomposition of Pr(Δyi,t=0) into the probabilities conditional on the
loose, neutral or tight regimes remarkably differs in different policy periods

Notes: The estimates are obtained from the baseline CNOP model. For the definitions of the policy
periods, refer to Figure 1.

The PE on the unconditional probability of no change can also be decomposed

into three components. For example, the 0.084 (with the 0.024 robust standard error)

PE of Δratei,t−1 on Pr(Δyi,t = 0) is the combined result of the -0.098 (0.025), 0.178

(0.040) and 0.003 (0.002) effects conditional on the loose, neutral and tight policy

regimes, respectively (see Table 29 in online Appendix E). To graphically illustrate

how the decomposition of Pr(Δyi,t = 0) is dependent on data, it can be plotted as a

function of two explanatory variables, holding all others fixed. Fot example, Figure
11The average predicted probability of a no-change decision during the observed no-change out-

comes is decomposed similar as 0.19/0.64/0.17 (see Table 28 in online Appendix E).



8 shows that if the individual policy choice at the last MPC meeting was to leave

the rate unchanged, the inflation is above the target, the last ECB policy decision

was a 25-bp cut, and the other variables are fixed at their sample median values,

then Pr(Δyi,t = 0) is composed, on average, of 88% of loose and 12% of neutral zeros.

However, if the ECB left the policy rate unchanged, then it is composed of 6% of loose

and 94% of neutral zeros. If the ECB decision was a 25-bp hike, then Pr(Δyit = 0)

is composed of 49% of neutral and 51% of tight zeros.

Figure 8. The decomposition of Pr(Δyi,t=0) into three components conditional on
the loose, neutral and tight policy regimes as a function of policy rate choice at the
last MPC meeting Δratei,t−1 and recent ECB policy decision Δecbrt

Notes: The probabilities are computed for the range of Δratei,t−1 and three values of ecbrt, if the infla-
tion rate is above the target, holding all other variables at their sample median values. The estimates
are obtained from the baseline CNOP model. For the definitions of the variables, refer to Table 2.

4.4 Sensitivity analysis

The sensitivity of the obtained empirical results is examined along several dimen-

sions. All key empirical findings – the parameter estimates from the CNOP model

(see Table 30 in online Appendix F), the comparison of the PE estimates from the OP,

MIOP and CNOP models (see Table 31 in online Appendix F) and the model per-

formance comparison (see Table 32 in online Appendix F) – are highly robust with

respect to the following modifications of the baseline specification: (a) alternative de-

finitions of the individual policy rate preferences (the individual preferences expressed

in the last voting round versus the first round (if any) as in the baseline specifica-

tion; this modification affected the definitions of the dependent variable Δyi,t and

several explanatory variables: Δratei,t−1, dissenti,t−1, dissenti,t−2 and dissenti,t−3);



(b) alternative definition of the previous policy choice (the rate change set by the

MPC versus the individual preferred rate change as in the baseline specification); (c)

alternative indicator of the policy bias (the two separate 0/1 indicators for the easing

and restrictive biases versus one -1/0/1 indicator as in the baseline specification); (d)

different measures of inflation (the measures of the expected and core inflation versus

the current headline inflation as in the baseline specification); (e) different maturities

of short-term rates in the spread between the one-year and short-term market inter-

est rates (the one-month and two-week Poland interbank offer rates and the NBP

reference rate versus the one-week rate as in the baseline specification); (f) inclusion

of the different measures of the economic activity as a potentially influential omitted

variable (the various monthly indicators from the Business Tendency Survey of the

NBP); (g) use of the different subsamples (elimination of the third term of the MPC,

i.e. the last 51 meetings after January 2010; elimination of high-inflation period prior

to April 2002, i.e. the first 49 meetings of the first term of the MPC).

5 Concluding remarks

“The model is often smarter than you are. ...(T)he act of putting your thoughts

together into a coherent model often forces you into conclusions you never

intended...” — Paul Krugman (1999)

Ordinal dependent variables with negative, zero and positive values are often

characterized by abundant observations in the middle neutral category. Observing

a large fraction of zeros does not necessarily imply that conventional discrete-choice

models are not suitable. If zeros are generated by different groups of population

or by separate decision-making processes and positive and negative outcomes are

driven by the distinct forces, treating all observations as originating from the same

data-generating process and applying a standard single-equation model would be a

misspecification. The standard models are hindered by overfitting of the most popular

choice; in addition, a failure of the data homogeneity assumption and the way, in

which zero values are treated, usually result in the biased and inefficient estimates of

the choice probabilities and the marginal effects of the explanatory variables on these

probabilities.

To address these issues, this paper develops a new mixture model with overlap-

ping latent regimes by combining three ordered probit equations. In the empirical

application to policy interest rate, the new model not only demonstrates that the



presence of heterogeneity in the data generating process is convincing and dominates

the conventional models but also provides a qualitatively different and economically

more reasonable inference.

The proposed cross-nested ordered probit model can be applied to a variety of

datasets (changes to consumption, prices, or rankings) and survey responses (when re-

spondents are asked to indicate a negative, neutral or positive attitude). The GAUSS

codes and replication files are available upon request.
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Grzegorz Szafrański, and Francis Vella, as well as the participants of the MOOD con-

ference in Rome, the ESEM conference in Málaga, the IAAE conference in London,

the ESAM conference in Hobart, and the seminars at the National Bank of Poland,

the University of Bologna, the New Economic School and the Higher School of Eco-

nomics in Moscow, and the University of Melbourne for the useful discussions and

comments on the previous versions of this paper.

References

Bagozzi, B. E., Mukherjee, B., 2012. A mixture model for middle category inflation

in ordered survey responses. Political Analysis 20, 369-386.

Brooks, R., Harris, M. N., Spencer, C., 2012. Inflated ordered outcomes. Economics

Letters 117(3), 683-686.

Coibion, O., Gorodnichenko, Y., 2012. Why are target interest rate changes so per-

sistent? American Economic Journal — Macroeconomics 4, 126-162.

Cragg, J. G., 1971. Some statistical models for limited dependent variables with

application to the demand for durable goods. Econometrica 39(5), 829-844.

Greene, W. H., 1994. Accounting for excess zeros and sample selection in Poisson

and negative binomial regression models. Working Paper No. 94-10, Department

of Economics, Stern School of Business, New York University.



Greene, W. H., 2004. Convenient estimators for the panel probit model. Empirical

Economics 29(1), 21-47.

Greene, W. H., Hensher, D. A., 2010. Modeling ordered choices: A primer. Cambridge

University Press.

Hamilton, J. D., Jorda, O., 2002. A model for the federal funds rate target. Journal

of Political Economy 110(5), 1135-1167.

Harris, M. N., Zhao, X., 2007. A zero-inflated ordered probit model, with an ap-

plication to modelling tobacco consumption. Journal of Econometrics 141(2),

1073-1099.

Hartman, R. S., Doane, M., Woo, C.-K., 1991. Consumer rationality and the status

quo. The Quarterly Journal of Economics 106, February, 141-162.

Heckman, J., 1979. Sample selection bias as a specification error. Econometrica 47,

53—161.

Hernández, A., Drasgow, F., Gonzáles-Romá, V., 2004. Investigating the functioning

of a middle category by means of a mixed-measurement model. Journal of Applied

Psychology 89(4), 687-699.

Kahneman, D., Knetsch, J. L., Thaler, R. H., 1991. Anomalies: the endowment

effect, loss aversion, and status quo bias. Journal of Economic Perspectives 5(1),

193-206.

Kaminsky, G. L., Reinhart, C. M., 1999. The twin crises: the causes of banking and

balance-of-payments problems. The American Economic Review 89(3), 473-500.

Kelley, M. E., Anderson, S. J., 2008. Zero inflation in ordinal data: incorporating sus-

ceptibility to response through the use of a mixture model. Statistics in Medicine

27, 3674—3688.

Krugman, P., 1998. The accidental theorist and other dispatches from the dismal

science. W. W. Norton & Company, Inc.

Kulas, J. T., Stachowski, A. A., 2009. Middle category endorsement in odd-numbered

Likert response scales: associated item characteristics, cognitive demands, and

preferred meanings. Journal of Research in Personality 43, 489-493.

Lambert, D., 1992. Zero-inflated Poisson regression with an application to defects in

manufacturing. Technometrics 34(1), 1-14.

Leung, S. F., Yu, S., 1996. On the choice between sample selection and two-part

models. Journal of Econometrics 72, 197-229.

MacKinnon, J. G., 1996. Numerical distribution functions for unit root and cointe-

gration tests. Journal of Applied Econometrics 11, 601-618.



Mullahy, J., 1986. Specification and testing of some modified count data models.

Journal of Econometrics 33, 341-365.

Poole, W., 2006. The Fed’s monetary policy rule. Federal Reserve Bank of St. Louis

Review 88(1), 1-11.

Rudebusch, G. D., 2002. Term structure evidence on interest rate smoothing and

monetary policy inertia. Journal of Monetary Economics 49, 1161-1187.

Rudebusch, G. D., 2006. Monetary policy inertia: fact or fiction? International Jour-

nal of Central Banking 2(4), 85-135.

Samuelson, W., Zeckhauser, R., 1988. Status quo bias in decision making. Journal of

Risk and Uncertainty 1, 7-59.

Schmidt, P., Witte, A. D., 1989. Predicting criminal recidivism using “split popula-

tion” survival time models. Journal of Econometrics 40(1), 141-159.

Small, K., 1987. A discrete choice model for ordered alternatives. Econometrica 55,

409-424.

Vovsha, P., 1997. Application of cross-nested logit model to mode choice in Tel Aviv,

Israel, Metropolitan Area. Transportation Research Record 1607, 6—15.

Vuong, Q., 1989. Likelihood ratio tests for model selection and non-nested hypothe-

ses. Econometrica 57(2), 307-333.

Wen, C.-H., Koppelman, F., 2001. The generalized nested logit model. Transportation

Research B 35, 627-641.

Winkelmann, R., 2008. Econometric analysis of count data. 5th edition, Springer.

Wooldridge, J. M., 2010. Econometric analysis of cross section and panel data. 2nd

edition, MIT Press.


