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1. Introduction

Threshold models are widely used in economics to model unemployment, output, output
growth, bank profits, asset prices, exchange rates, interest rates, to mention just a few.
See Hansen (2011) for a survey of many economic applications.

Pioneered by Howell Tong - see e.g. Tong (1990), threshold models with exogenous
regressors have been widely studied for more than two decades, and their asymptotic
theory is well known - see a.o. Hansen (1996, 1999, 2000) and Gonzalo and Wolf (2005)
for inference, Gonzalo and Pitarakis (2002) for multiple threshold regression and model
selection, Caner and Hansen (2001) and Gonzalo and Pitarakis (2006) for threshold
regression with unit roots, and Seo and Linton (2007), Lee et al. (2011) for discrete
choice models.

Regressor exogeneity is known to be violated in many economic applications. Nev-
ertheless, papers on threshold regression with endogeneity are relatively scarce. They
were pioneered by Caner and Hansen (2004), who show that when the threshold variable
is exogenous, but the regressors are endogenous, the threshold parameter can be esti-
mated by maximizing a two stage least squares (2SLS) criterion over the values of the
threshold variable encountered in the sample. Caner and Hansen (2004) also propose a
2SLS likelihood ratio (LR) test of the null hypothesis that threshold is equal to a certain
fixed value.

In this paper, we are interested in a different null hypothesis, of no threshold against
the alternative of one threshold. Since threshold estimation is done via 2SLS, we propose
a 2SLS-based LR test for the presence of a threshold. For each possible threshold value
γ, we compute an LR test of the null of no threshold against the alternative of one
threshold at γ, and the resulting test statistic, sup LR, maximizes the sequence of tests
over γ. This test is the 2SLS equivalent of the sup LR test of Davies (1977) and Hansen
(1996), and is also known as the sup F test in the break-point literature.

We also propose a 2SLS counterpart that is robust to heteroskedasticity, the sup Wald
test. To our knowledge, this is the first paper that proposes such tests and derives their
asymptotic distributions in threshold models with endogenous regressors.

As in Caner and Hansen (2004), we consider two cases: case 1, the first-stage of the
2SLS regression (call it reduced form) is a linear model, and case 2, it is a threshold
model itself, possibly with a different threshold parameter than the second stage. We
show that the null asymptotic distributions of the sup LR and sup Wald tests depend
on the data and on the case considered. In both cases, p-values can be computed by
straightforward simulations. Unlike in the classical hypotheses tests, when testing for
an unknown threshold, heteroskedasticity-robust sup Wald test do not have a pivotal
null distribution. That means that correcting for heteroskedasticity does not necessarily
result in better size properties for the sup Wald test compared to the sup LR test.

The properties of both tests are studied via a simulation study. p-values are generated
via a simulation method that resembles wild bootstrap and is similar to the one proposed
in Caner and Hansen (2004) for GMM sup Wald tests, and in Hansen (1996) for OLS
sup Wald tests. We find that even in the presence of heteroskedasticity, the 2SLS sup
LR has better size than both the 2SLS sup Wald and the GMM sup Wald proposed in
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Caner and Hansen (2004). This holds for both linear and threshold reduced forms. As
the sample size grows large, all tests approach their nominal sizes. They all exhibit good
power properties for moderate threshold shifts.

Our paper is closely related to two papers in the break-point literature - Hall et al.
(2012) and Boldea et al. (2014). Both papers study 2SLS-based sup LR and sup Wald
tests for a break, the first one for a linear reduced form, the second one for a reduced
form with a break. The asymptotic distributions for the break-point tests are pivotal
in the first paper and depend on the break in the reduced form in the second paper. In
contrast, we find that the asymptotic distributions of the threshold tests are non-pivotal
in both cases, a linear or a threshold reduced form.

It should be noted that we allow for endogenous regressors, but not for endogenous
threshold variables. For the latter, see Kourtellos et al. (2013). Also, to account for re-
gressor endogeneity, we make use of instruments for constructing parametric test statis-
tics for thresholds. As a result, our tests have nontrivial local power for O(T−1/2)
threshold shifts. This is in contrast with Yu (2013), who does not use instruments, but
rather local shifts around the threshold to construct a nonparametric threshold test. As
a result, his test covers more general models, at the cost of losing power in O(T−1/2)
neighborhoods.

We illustrate our tests via an empirical application in which we investigate whether
the government spending multiplier is larger in regimes where the nominal interest rate
is close to the zero lower bound. We find strong evidence for a reduced form threshold,
but all threshold tests for the equation of interest suggest no evidence of an interest rate
threshold that would induce different government spending multiplier regimes.

This paper is organized as follows. In Section 2 we present the model as well as
estimation and testing strategies. Sections 3 and 4 provide an asymptotic framework
for the proposed test statistics. Section 5 compares our tests to the existing GMM sup
Wald test. In Section 6 we illustrate the small sample properties of all the tests via
simulation. Section 7 contains the empirical application. Section 8 conclude and Section
9 contains all tables and graphs. All proofs are relegated to the Appendix.

2. Model

Our framework is a linear model with a possible threshold at γ0:

yt =
(
z>t θ

0
1z + x>1tθ

0
1x

)
1{qt≤γ0} +

(
z>t θ

0
2z + x>1tθ

0
2x

)
1{qt>γ0} + εt

= w>t θ
0
11{qt≤γ0} + w>t θ

0
21{qt>γ0} + εt

Here, yt is the dependent variable, zt is a p1 × 1-vector of endogenous and x1t a p2 × 1-
vector of exogenous variables containing the intercept, and wt = (z>t , x

>
1t)
>. We set

p1 + p2 = p. Also, qt is the exogenous threshold variable and 1{A} denotes the indicator
function on the set A. Furthermore, for i = 1, 2, θ0

iz are p1×1-vectors of slope parameters
associated with zt, θ

0
ix are p2× 1-vectors of the slope parameters associated with x1t and

γ0 ∈ Γ is the threshold parameter where Γ = [γ, γ] is its compact support. For testing,
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Γ is assumed to be a strict compact subset of the support of the random variable qt.
Note that the second equation is just a more compact way of writing the first, with
wt = (z>t , x

>
1t)
> and θ0

i = (θ0>
iz , θ

0>
ix )> being p × 1-vectors of the structural form slope

parameters, for i = 1, 2. We assume that zt is endogenous, that is, E[εt] = 0 and
E[ztεt] 6= 0, and strong instruments xt are available.

As in Caner and Hansen (2004), we consider two different specifications for the reduced
form equation: a linear reduced form (LRF), given by

zt = Π0>xt + ut,

and a threshold reduced form (TRF) given by

zt = Π0>
1 xt1{qt≤ρ0} + Π0>

2 xt1{qt>ρ0} + ut.

In both specifications for the reduced form, xt = (x>1t, x
>
2t)
> is a q × 1-vector containing

x1t, with q ≥ p, so let q = p2 + q1. That is, xt includes the exogenous variables from
the structural form (or the equation of interest) above. Here, Π0,Π0

1 and Π0
2 are q × p1-

matrices of the reduced form slope parameters and ρ0 ∈ Γ is the reduced form threshold
parameter, possibly different than γ0, with the same support Γ.

As common in the threshold literature, we assume that εt and ut are martingale
differences, i.e. E[εt|Ft] = 0 and E[ut|Ft] = 0, Ft = σ{qt−s, xt−s, ut−s−1, εt−s−1|s ≥
0}, and (x>t , z

>
t )> is measurable with respect to Ft. This assumption implies that the

threshold variable qt is exogenous, and so are the instruments xt.
Write the equations above in matrix form. To do so, define the partitioned matrices:

Xρ
1 =

(
x>t 1{qt≤ρ}

)
t=1,...,T

Xρ
2 =

(
x>t 1{qt>ρ}

)
t=1,...,T

W γ
1 =

(
w>t 1{qt≤γ}

)
t=1,...,T

W γ
2 =

(
w>t 1{qt>γ}

)
t=1,...,T

.

Also, let Y , X, Z, ε and u be the matrices stacking observations t = 1, . . . , T . Then the
linear reduced form can be written as:

Z = XΠ0 + u,

and the threshold reduced form as:

Z = Xρ0

1 Π0
1 +Xρ0

2 Π0
2 + u.

The structural form equation (the equation of interest), in the presence of a threshold
parameter γ0, is:

Y = W γ0

1 θ0
1 +W γ0

2 θ0
2 + ε.

3. Tests for Linear Reduced Form

We are interested in testing for the presence of a threshold, H0 : θ0
1 = θ0

2. The fact that γ0

is usually estimated by a 2SLS procedure in parametric models - see Caner and Hansen
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(2004) - motivates us to look at 2SLS-based test statistics, rather than the GMM-based
test statistic for the same hypothesis in Caner and Hansen (2004). We defer an extensive
discussion of the relative advantages of the 2SLS-based versus the GMM-based tests to
Section 5. For now, it suffices to notice that the GMM-based tests ignore information
about the reduced form (whether it is a threshold or not), while the 2SLS-based tests
use this information. Using valid information can result in an increase in efficiency of
parameter estimates and accuracy of 2SLS-based tests. This intuition is confirmed by
simulations in Section 6.

We propose two test statistics for H0, the sup LR and the sup Wald tests. For both
tests, we assume in this section a linear reduced form (LRF):

Z = XΠ0 + u, (3.1)

which we estimate by ordinary least-squares (OLS), so Π̂ = (X>X)−1X>Z. We estimate
the structural form:

Y = W γ0

1 θ0
1 +W γ0

2 θ0
2 + ε, (3.2)

with γ0 replaced by each possible γ ∈ Γ. Note that γ0 is a nuisance parameter that
shows up only under the alternative HA : θ0

1 − θ0
2 6= 0.

As mentioned, for constructing the test statistics, (3.2) is estimated by 2SLS. To that
end, we define the predicted endogenous regressors as:

Ẑ = XΠ̂, Ŵ =
(
Ẑ,X1

)
, (3.3)

with X1 = (x>1t)t=1,...,T .
In the second stage, for each γ ∈ Γ, we obtain the 2SLS estimators of θ0

1, θ
0
2:

θ̂γ1 =
(
Ŵ γ>

1 Ŵ γ
1

)−1 (
Ŵ γ>

1 Y
)

(3.4)

θ̂γ2 =
(
Ŵ γ>

2 Ŵ γ
2

)−1 (
Ŵ γ>

2 Y
)
. (3.5)

Note that because the predicted regressors Ŵ are already partitioned according to
1{qt≤γ}, we have Ŵ γ>

i Y = Ŵ γ>
i Yi, for i = 1, 2.

The first test statistic we propose is a sup LR test in the spirit of Davies (1977):

sup
γ∈Γ

LR2SLS
T,LRF (γ) = sup

γ∈Γ

SSR0 − SSR1(γ)

SSR1(γ)/(T − 2p)
, (3.6)

where SSR0 is the 2SLS sum of squared residuals under the null hypothesis and SSR1(γ)
the 2SLS sum of squared residuals under the alternative, that is:

SSR0 = (Y − Ŵ θ̂)>(Y − Ŵ θ̂),

SSR1(γ) = (Y γ
1 − Ŵ

γ
1 θ̂

γ
1 )>(Y γ

1 − Ŵ
γ
1 θ̂

γ
1 ) + (Y γ

2 − Ŵ
γ
2 θ̂

γ
2 )>(Y γ

2 − Ŵ
γ
2 θ̂

γ
2 ),

where θ̂ = (Ŵ>Ŵ )−1Ŵ>Y is the full-sample 2SLS estimator.

5



Note that if γ was known, this would be the usual LR test. The only difference is
that because γ is unknown, we consider the maximum of a sequence of test statistics
depending on γ, the sup LR test.

A similar OLS-based sup LR test was proposed for threshold models with exogenous
regressors in Hansen (1996). A scaled version of it is known as the sup F test in the
break-point literature - see Bai and Perron (1998) for OLS and Hall et al. (2012) for
2SLS.

For testing H0, we also propose the heteroskedasticity-robust version of this test, the
sup Wald test:

sup
γ∈Γ

W 2SLS
T,LRF (γ) = sup

γ∈Γ

[
θ̂γ1 − θ̂

γ
2

]> [
V̂ar(γ)

]−1 [
θ̂γ1 − θ̂

γ
2

]
, (3.7)

where:

V̂ar(γ) = V̂ar(θ̂γ1 ) + V̂ar(θ̂γ2 )

V̂ar(θ̂γi ) = (Ŵ γ>
i Ŵ γ

i )−1Ĥi(γ)(Ŵ γ>
i Ŵ γ

i )−1 for i = 1, 2,

Ĥ1(γ) =
T∑
t=1

ê2
t ŵtŵ

>
t 1{qt≤γ}, Ĥ2(γ) =

T∑
t=1

ê2
t ŵtŵ

>
t 1{qt>γ}.

Note that here, êt = yt − ŵ>t θ̂
γ
11{qt≤γ} − ŵ>t θ̂

γ
21{qt≤γ} are estimating the true 2SLS

error terms et = εt + (wt − ŵt)
>θ0

11{qt≤γ} + (wt − ŵt)
>θ0

21{qt>γ}, and not the original
(structural) errors εt. We do not robustify against autocorrelation, because errors εt and
ut are assumed to be martingale differences. As mentioned in Caner and Hansen (2004,
pp. 815), the martingale difference assumption is needed for identification of nonlinear
models such as threshold models, and cannot be easily dropped.

Note that the sup is taken over γ ∈ Γ, a strict compact subset of the support of the
random variable qt, which we take to be included in [γmin, γmax]. The end-points of this
interval can be (minus and plus) infinite. But we take Γ to be bounded away from the
minimum and maximum qt values observed in the sample. In practice, the end-points
of Γ are the upper and lower 15% quantiles of the empirical distribution of qt, to have
enough observations to compute θ̂γi .

The sup Wald test above was proposed in the break-point literature with endogenous
regressors by Hall et al. (2012). However, in Hall et al. (2012), its asymptotic distribution
is pivotal in the case of a LRF. Below, we show that for thresholds, the asymptotic
distributions are non-pivotal even for LRF. To see that, define

M1(γ) = E[xtx
>
t 1{qt≤γ}], M = M(γmax) = E[xtx

>
t ], and M2(γ) = M −M1(γ)

as the second moment functionals of the instruments xt.
We impose similar assumptions to Caner and Hansen (2004) below:

Assumption A.1. 1. Let vt = (εt, u
>
t )> denote the compound error term. Then

E[vt|Ft] = 0

with Ft = σ{xt−s, vt−s−1, qt−s|s ≥ 0}.
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2. The series (εt, u
>
t , x

>
t , z

>
t , qt)

> is strictly stationary and ergodic with ρ-mixing co-
efficient ρ(m) = O(m−A) for some A > a

a−1
and 1 < a ≤ 2. Also, for some

b > a,

sup
t

E‖xt‖6b
2 <∞, sup

t
E‖vt‖4b

2 <∞,

with ‖ · ‖2 being the Euclidean norm, and inf
γ∈Γ

detM1(γ) > 0.

3. The density of vt is absolutely continuous, bounded and positive everywhere.

4. The threshold variable qt has a continuous pdf f(qt) with sup
t
|f(qt)| <∞.

5. The variance of the compound error term vt is given by

E[vtv
>
t ] = Σ,

which is positive definite.

6. Assume Π0 (LRF) or Π0
1,Π

0
2 (TRF) are full rank.

As discussed before, A.1.1 is needed for threshold models, and it excludes autocorrela-
tion in the errors. However, general linear dynamics are allowed in both the equation of
interest and the reduced form. A.1.2 is standard for time series and is trivially satisfied
for many cross-section models. However, it precludes nonstationary processes. A.1.3
is needed in the TRF case in order to make asymptotic statements about the reduced
form parameters in the spirit of Chan (1993). A.1.4 requires the support of qt to be
continuous; if it is discrete, the search over Γ is easier to perform, and in practice it
is likely that the researcher would know the threshold. A.1.5 allows the errors to be
conditional heteroskedastic and finally, A.1.6 is the usual strong instrument assumption
on X.

Although the assumptions we use are standard, to our knowledge, this is the first
paper that derives the asymptotic distribution of the sup LR and sup Wald tests above.
To write the asymptotic distribution, define

GPmat,1(γ) and GPmat

as q×(p1+1)-matrices where all columns are q×1 zero mean Gaussian processes such that
the covariance kernels of GP1(γ) = vec(GPmat,1(γ)) and GP = vec(GPmat) are given by
E[(vtv

>
t ⊗ xtx>t )1{qt≤γ}] and E[(vtv

>
t ⊗ xtx>t )], respectively, and GPmat = GPmat,1(γmax).

Next, let
A0 = [Π0, S>]>

be the augmented matrix of the reduced form slope parameters, where S = [Ip2 ,0p2×q1 ],
Ip2 is the p2 × p2-identity matrix and 0p2×q1 a p2 × q1 null matrix (p2 + q1 = q). Thus,
x1t = Sxt. Define the matrices

C1(γ) = A0M1(γ)A0>, C = C1(γmax) = A0MA0> and D1(γ) = C−1C1(γ),
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and the Gaussian process:

B1(γ) = A0
[
GPmat,1(γ) θ̃0

z −M1(γ)M−1GPmat θ̌
0
z

]
where θ̃0

z = (1, θ0>
z )> and θ̌0

z = (0, θ0>
z )>. Finally, let:

E(γ) = C−1
1 (γ)B1(γ)− C−1

2 (γ)B2(γ)

where B2(γ) = B − B1(γ) with B = B1(γmax) and C2(γ) = C − C1(γ).
Then the null distribution of both tests with LRF is stated below.

Theorem 1 (Asymptotic Distributions LRF). Let Z be generated by (3.1), Y be gen-
erated by (3.2), and Ẑ be calculated by (3.3). Then1, under H0 and Assumption A.1,
(i)

sup
γ∈Γ

LR2SLS
T,LRF (γ) =⇒ sup

γ∈Γ

E>(γ)C2(γ)C−1C1(γ)E(γ)

σ2
,

where σ2 = σ2
ε + 2Σ>ε,uθ

0
z + θ0>

z Σuθ
0
z , and

(ii)

sup
γ∈Γ

W 2SLS
T,LRF (γ) =⇒ sup

γ∈Γ
E>(γ)[C−1

1 (γ)H1(γ)C−1
1 (γ) + C−1

2 (γ)H2(γ)C−1
2 (γ)]−1E(γ)

where
H1(γ) = A0E[xtx

>
t (εt + u>t θ

0
z)

2
1{qt≤γ}]A

0>

and
H2(γ) = A0E[xtx

>
t (εt + u>t θ

0
z)

2
1{qt>γ}]A

0>.

We note that in both cases, the asymptotic distribution depends on second moment
functionals of the data and the parameters in the reduced form. Therefore, the asymp-
totic distributions are not pivotal, but can be simulated via similar techniques as pro-
posed in Caner and Hansen (2004).

We also derive the distribution of sup LR and sup Wald under the usual conditional
homoskedasticity assumption:

Assumption A.2.

E[vtv
>
t |xt, qt] = Σ =

(
Σε Σ>ε,u

Σε,u Σu

)
.

As illustrated below, we still obtain non-pivotal asymptotic distributions even when
the errors are conditional homoscedastic. But, as expected, under conditional ho-
moscedasticity, the Wald and LR tests and asymptotically equivalent.

1=⇒ denotes weak convergence in the Skorokhod-metric.
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Corollary 1 (to Theorem 1). Let Z be generated by (3.1), Y be generated by (3.2), and
Ẑ be calculated by (3.3). Then, under H0, and Assumptions A.1 and A.2,
(i)

sup
γ∈Γ

LR2SLS
T,LRF (γ) =⇒ sup

γ∈Γ

Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ(γ)

σ2

where σ2 = σ2
ε + 2Σ>ε,uθ

0
z + θ0>

z Σuθ
0
z , and

(ii)

sup
γ∈Γ

W 2SLS
T,LRF (γ) =⇒ sup

γ∈Γ

Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ(γ)

σ2

where G̃Pmat,1(γ) is a q × (p1 + 1)-matrix where all columns are independent q × 1
zero mean Gaussian processes with covariance kernel2 M1(γ), Q is the principal square

root of Σ, Ẽ(γ) = C−1
1 (γ)B̃1(γ) − C−1

2 (γ)B̃2(γ), and B̃1(γ) = A0[G̃Pmat,1(γ)Qθ̃0
z −

M1(γ)M−1G̃PmatQθ̌
0
z ].

Only when the regressors and threshold variables are independent, the asymptotic
distributions are pivotal.

Assumption A.3. The threshold variable qt and the vector of exogenous variables xt
are independent. i.e.

qt ⊥ xt ∀t = 1, 2, ..., T.

Assumption A.3 excludes, for example, cases in which the threshold variable qt is part
of the set of instrumental variables or exogenous regressors xt, and is quite restrictive.
However, it mimics break-point models, where the threshold is time, or more exactly, a
fraction of the sample size, t/T .

Corollary 2 (to Theorem 1). Let Z be generated by (3.1), Y be generated by (3.2), and
Ẑ be calculated by (3.3).Then, under H0 and Assumptions A.1, A.2, and A.3,
(i),

sup
γ∈Γ

LR2SLS
T,LRF (γ) =⇒ sup

λ∈Λε

BB>p (λ)BBp(λ)

λ(1− λ)
,

and (ii),

sup
γ∈Γ

W 2SLS
T,LRF (γ) =⇒ sup

λ∈Λε

BB>p (λ)BBp(λ)

λ(1− λ)

where BBp(λ) = BMp(λ) − λBMp(1), and BMp(·) is a p × 1-vector of independent
standard Brownian motions, λ = Prob(qt ≤ γ), and Λε = [ε1, 1 − ε2], where ε1 =
Prob(qt ≤ γ), ε2 = Prob(qt ≤ γ).

2Thus, the only difference between the two Gaussian processes G̃Pmat,1(γ) and GPmat,1(γ) lies in their
covariance functions.
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Thus, under Assumptions A.2 and A.3, the asymptotic distribution is pivotal, and it
is identical to the one obtained for break-point models - see Andrews (1993), Bai and
Perron (1998) and Hall et al. (2012) among others. This is due to similarities between
threshold and break point models; a break-point model is a special case of a threshold
model when qt = t/T .3 Critical values for these pivotal distributions can be found in
Andrews (1993) and Bai and Perron (1998). However, note that this result only holds
for conditional homoscedastic errors and threshold variables independent of regressors,
an unlikely case in practice.

4. Tests for Threshold Reduced Form

For this section, we assume that the reduced form has a threshold ρ0 (TRF), possibly
different than the structural form threshold γ0. The test statistics are computed taking
into account the TRF when computing the first stage of the 2SLS estimation.

Let the threshold reduced form (TRF) be:

Z = Xρ0

1 Π0
1 +Xρ0

2 Π0
2 + u, (4.1)

and the structural form be as before:

Y = W γ0

1 θ0
1 +W γ0

2 θ0
2 + ε. (4.2)

We estimate the TRF via least-squares threshold methods, as in e.g. Caner and Hansen
(2004):

ρ̂ = argmin
ρ∈Γ

det
(
û(ρ)>û(ρ)

)
,

where û(ρ) = Z − Xρ
1 Π̂1(ρ) − Xρ

2 Π̂2(ρ), and Π̂1(ρ), Π̂2(ρ) are the OLS estimators of
Π0

1,Π
0
2 in (4.1) for a given ρ:

Π̂1(ρ) =
(
Xρ>

1 Xρ
1

)−1

Xρ>
1 Z

Π̂2(ρ) =
(
Xρ>

2 Xρ
2

)−1

Xρ>
2 Z.

With ρ̂, the reduced form slope parameter estimates are Π̂1 = Π̂1(ρ̂), Π̂2 = Π̂2(ρ̂).
Then we let

Ẑ = Π̂1Z
ρ̂
1 + Π̂2Z

ρ̂
2 , Ŵ =

(
Ẑ,X1

)
, (4.3)

where X ρ̂
1 and X ρ̂

2 are defined as above with ρ̂ instead of ρ. The computation of θ̂γ1 , θ̂
γ
2

is then the same as in (3.4) and (3.5), but with Ŵ defined here. Similarly, the new test
statistics:

sup
γ∈Γ

LR2SLS
T,TRF (γ), sup

γ∈Γ
W 2SLS
T,TRF (γ)

are computed exactly as their LRF counterparts, but with Ŵ defined in (4.3). We
assume:
3Note, however, that break-point asymptotics cannot be obtained as a special case of threshold asymp-

totics, because generally, Assumptions A.1.2 and A.1.4 do not hold for dynamic break-point models.
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Assumption A.4 (Identifiability 1). Π0
1 6= Π0

2.

Assumption A.4 states that there is a (large) threshold effect, expressed by different
slope parameters Π0

1 and Π0
2, present in the reduced form equation. For stating the

asymptotic distributions, similar to A0 in the previous section, we define

A0
1 = [Π0

1, S
>]> and A0

2 = [Π0
2, S

>]> (4.4)

as the augmented matrices of the reduced form slope parameters. Also, define the
matrices

CA,1(γ) = A0
1M1(γ ∧ ρ0)A0>

1 + A0
2

[
M1(γ)−M1(γ ∧ ρ0)

]
A0>

2 , (4.5)

and

CA = CA,1(γmax)

= A0
1M1(ρ0)A0>

1 + A0
2M2(ρ0)A0>

2 . (4.6)

Thus, the TRF analogs to the LRF processes B1(γ) and E(γ) are:

BA,1(γ) = A0
1

[
GPmat,1(γ ∧ ρ0)θ̃0

z −M1(γ ∧ ρ0)M−1
1 (ρ0)GPmat,1(ρ0)θ̌0

z

]
+ A0

2

[(
GPmat,1(γ)− GPmat,1(γ ∧ ρ0)

)
θ̃0
z

]
− A0

2

[(
M1(γ)−M1(γ ∧ ρ0)

)
M−1

2 (ρ0)GPmat,2(ρ0)
]
. (4.7)

and
EA(γ) = C−1

A,1(γ)BA,1(γ)− C−1
A,2(γ)BA,2(γ) (4.8)

where
BA,2(γ) = BA − BA,1(γ)

with
BA = BA(γmax) = A0

1GPmat,1(ρ0)(θ̃0
z − θ̌0

z) + A0
2GPmat,2(ρ0)(θ̃0

z − θ̌0
z).

Last, the TRF analogs to the LRF covariance matrices H1(γ) and H2(γ) are:

HA,1(γ) = A0
1E[xtx

>
t (εt + u>t θ

0
z)

2
1{qt≤γ∧ρ0}]A

0>
1

+ A0
2E[xtx

>
t (εt + u>t θ

0
z)

2(1{qt≤γ} − 1{qt≤γ∧ρ0})]A
0>
2 (4.9)

and

HA,2(γ) = A0
2E[xtx

>
t (εt + u>t θ

0
z)

2
1{qt≥γ∨ρ0}]A

0>
2

+ A0
1E[xtx

>
t (εt + u>t θ

0
z)

2(1{qt>γ} − 1{qt≥γ∨ρ0})]A
0>
1 (4.10)

The more complicated expressions in this case stem from the fact that the relative
location between each potential structural form threshold parameter γ and the true
reduced form threshold parameter ρ0 influences the asymptotic distribution of our tests.
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Theorem 2 (Asymptotic Distributions TRF). Let Z be generated by (4.1), Y be gener-
ated by (4.2), and Ẑ be calculated by (4.3).Then, under H0, and Assumptions A.1 and
A.4,
(i)

sup
γ∈Γ

LR2SLS
T,TRF (γ) =⇒ sup

γ∈Γ

E>A (γ)CA,2(γ)C−1
A CA,1(γ)EA(γ)

σ2
,

and (ii)

sup
γ∈Γ

W 2SLS
T,TRF (γ) =⇒ sup

γ∈Γ
E>A (γ)

[
C−1
A,1(γ)HA,1(γ)C−1

A,1(γ) +C−1
A,2(γ)HA,2(γ)C−1

A,2(γ)
]−1

EA(γ).

Under conditional homoscedasticity, we show below that the classical asymptotic
equivalence between Wald and LR tests still holds, even for a TRF. To this extend
define the Gaussian processes

ẼA(γ) = C−1
A,1(γ)B̃A,1(γ)− C−1

A,2(γ)B̃A,2(γ)

and

B̃A,1(γ) = A0
1

[
G̃Pmat,1(γ ∧ ρ0)Qθ̃0

z −M1(γ ∧ ρ0)M−1
1 (ρ0)G̃Pmat,1(ρ0)Qθ̌0

z

]
+ A0

2

[
G̃Pmat,1(γ)Q− G̃Pmat,1(γ ∧ ρ0)Qθ̃0

z

]
+ A0

2

[
(M1(γ)−M1(γ ∧ ρ0))M−1

2 (ρ0)G̃Pmat,2(ρ0)
]

where G̃Pmat,1(γ) is a q × (p1 + 1) matrix where all columns are independent q × 1 zero
mean Gaussian processes with covariance kernel M1(γ).4 Then we have:

Corollary 3 (to Theorem 2). Let Z be generated by (4.1), Y be generated by (4.2), and
Ẑ be calculated by (4.3).Then, under H0, and Assumptions A.1, A.2 and A.4,
(i)

sup
γ∈Γ

LR2SLS
T,TRF (γ) =⇒ sup

γ∈Γ

Ẽ>A (γ)CA,2(γ)DA,1(γ)ẼA(γ)

σ2
,

and (ii)

sup
γ∈Γ

W 2SLS
T,TRF (γ) =⇒ sup

γ∈Γ

Ẽ>A (γ)CA,2(γ)DA,1(γ)ẼA(γ)

σ2
.

As in Boldea et al. (2014), the asymptotic distributions are non-pivotal, and don’t
simplify under Assumption A.3. This is not an issue in practice, because the p-values
can still be obtained by simulation techniques, as we discuss in Section 6.

4Thus, the only difference between the two Gaussian processes G̃Pmat,1(γ) and GPmat,1(γ) lies again
in their covariance functions.
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5. Comparison to sup Wald GMM

In contrast to our paper, Caner and Hansen (2004) propose testing for a threshold using
a GMM-based Wald test. In particular, instead of using 2SLS, they use two-step GMM
estimation. Specifically, for each γ ∈ Γ, one estimates θ0

i in (4.2), for i = 1, 2, as:

θ̂γi,GMM =
(
W γ>
i Xγ

i Ω̂−1
i,GMM(γ)Xγ>

i W γ
i

)−1 (
W γ>
i Xγ

i Ω̂−1
i,GMM(γ)Xγ>

i Y
)

with estimated variance-covariances:

V̂ar
(
θ̂γi,GMM

)
=
(
W γ>
i Xγ

i Ω̂−1
i,GMM(γ)Xγ>

i W γ
i

)−1

,

and estimated long-run variances:

Ω̂1,GMM(γ) =
T∑
t=1

ε̂2txtx
>
t 1{qt≤γ}, Ω̂2,GMM(γ) =

T∑
t=1

ε̂2txtx
>
t 1{qt>γ},

where ε̂ = y− Ŵ γ
1 θ̃1,GMM(γ)− Ŵ γ

2 θ̃2,GMM(γ), and θ̃i,GMM(γ) are some preliminary first
step GMM estimators of (4.2) for a given γ.

With these definitions, the sup GMM Wald test statistic in Caner and Hansen (2004)
for H0, at each γ, is:

WT,GMM(γ) = [θ̂γ1,GMM − θ̂
γ
2,GMM ]>{V̂ar[θ̂γ1,GMM ] + V̂ar[θ̂γ2,GMM ]}−1[θ̂γ1,GMM − θ̂

γ
2,GMM ].

The sup Wald test is then sup
γ∈Γ

WT,GMM(γ). Define

Ω1,GMM(γ) = E[xtx
>
t ε

2
t1{qt≤γ}], Ω2,GMM(γ) = E[xtx

>
t ε

2
t1{qt>γ}],

and Vi(γ) =
[
Ni(γ)Ω−1

i,GMM(γ)N>i (γ)
]−1

, Ni(γ) = plim[T−1W γ>
i Xγ

i ]. Also, let GP1(γ)

be a q × 1 zero mean Gaussian process with covariance kernel E[GP1(γ1)GP>1 (γ2)] =
Ω1(γ1 ∧ γ2), and GP = lim

γ→∞
GP1(γ). Then, Caner and Hansen (2004) show:

Theorem 3 (Asymptotic distribution sup Wald GMM). Let Z be generated by (3.1) or
(4.1), and Y be generated by (4.2). Then, under H0, and Assumptions A.1 and A.4,

sup
γ∈Γ

WGMM
T (γ) =⇒ sup

γ∈Γ

[
V1(γ)N1(γ)Ω−1

1 (γ)GP1(γ)− V2(γ)N2(γ)Ω−1
2 (γ)GP2(γ)

]>
× [V1(γ) + V2(γ)]−1

×
[
V1(γ)N1(γ)Ω−1

1 (γ)GP1(γ)− V2(γ)N2(γ)Ω−1
2 (γ)GP2(γ)

]
.

The proof is in Caner and Hansen (2004), and presumably this test is proposed there
for two reasons.

The first reason may be that the asymptotic distribution of the GMM-based test does
not depend on whether the reduced form is a linear or a threshold model, while our

13



asymptotic distributions do. This may be fine if the tests behave well and the only
purpose is to test for a threshold. However, researchers are only interested in pre-testing
for a threshold so that they can later estimate the structural form, and so if the test
rejects, one still has to estimates the threshold parameter γ0 by 2SLS. Moreover, two-
step GMM estimators are routinely computed with first-step 2SLS estimates. In this
case, a decision between using LRF and TRF may still be desirable.

The second reason may be that the GMM estimates are known to be more efficient
compared to 2SLS in regular (smooth) models. So for example, for a linear regression,
if a sample is used to pre-estimate a reduced form to compute 2SLS, and the same
sample is used for GMM estimates, then the latter are asymptotically more efficient.
However, in this paper we do not have a smooth model. We don’t use the same sample
to compute 2SLS and GMM estimates. For example, for LRF, we use the whole sample
to compute the first-stage of the 2SLS estimators θ̂γi , but only a sub-sample to compute

GMM estimates θ̂γi,GMM . Similarly, for TRF, we use a different sample to compute the

first-stage of the 2SLS estimates then for θ̂γi,GMM . Using different sub-samples makes the
connection between 2SLS and GMM estimates break down; they are no longer a special
case of the other, and so this motivates us to look at both GMM- and 2SLS-based tests.
Moreover, as emphasized in Antoine and Boldea (2014) and Magnusson and Mavroeidis
(2013), knowledge of reduced form discontinuities is valid information that can lead to
more efficient estimation and testing.

Note that the 2SLS and GMM-based tests in general have different asymptotic dis-
tributions; the 2SLS distributions are not special cases of the GMM ones. But under
Assumption A.2 and LRF, all the distributions are the same.

Corollary 4 (Corollary to Theorem 3). Let Z be generated by (3.1) or (4.1), and Y be
generated by (4.2). Then, under H0, and Assumptions A.1, A.3 and A.4,

sup
γ∈Γ

WGMM
T (γ) =⇒ sup

λ∈Λε

BB>p (λ)BBp(λ)

λ(1− λ)

This corollary shows that in the special case of independence of the regressors and
threshold variables, the sup Wald GMM asymptotic distribution is pivotal. For our
tests, the same holds for linear reduced form. For threshold reduced form, we observe
that the critical values are lower, and it may be because our tests are using additional
valid information about the TRF.

6. Simulations

In this chapter, we investigate the small sample properties of our proposed test statistics.
To do so, we describe how to simulate the p-values of our tests based on the asymptotic
distribution, and we describe our data generating processes in 6.1. In sections 6.2 and
6.3 we present results on empirical sizes and powers of our tests.
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6.1. P -value Simulation and Data Generating Process

First, we lay out our approach to simulate empirical sizes and powers. Afterwards, we
present the data generating process (DGP).

P -value Simulation As shown in Sections 3–4, the asymptotic distributions of the
proposed test statistics are non-standard and thus, need to be simulated. For that, we
follow Hansen (1996): Because of almost sure convergence of the moment functionals the
‘middle’ parts of the proposed test statistics (i.e. all except E(γ) for a LRF, respectively
EA(γ) for a TRF) are replaced by their sample analogs and kept fixed conditionally
on the sample. So, e.g. we replace M1(γ) by 1

T

∑T
t=1 xtx

>
t 1{qt≤γ}. Moreover, unknown

parameters are replaced by their 2SLS estimators as described in sections 3 and 4.
However, the Gaussian processes need to be simulated. We approximate them by

ĜPmat,1(γ) = T−1/2Xγ>
1 v̂∗ ≈ GPmat,1(γ) (6.1)

where v̂∗ = v̂ � η with η = (ηt, ..., ηt)t=1,...,T , ηt
iid∼ N (0, 1), being a T × p1-matrix,

v̂ = (ε̂, û>)> where ε̂ and û are the estimated original (structural) and reduced form
errors, and � denotes the Hadamard product.

The approximation in (6.1) is justified by Hansen (1996, Theorem 2) and Lemma 1 in
the Appendix (in the sense that the approximation is a weak convergence result when
the bootstrap sample and the sample size grows large). It resembles the wild parametric
bootstrap technique for heteroskedastic errors, and we apply it to homoskedastic errors
as well.

Instead of simulating the asymptotic distributions directly and computing critical
values we rather simulate p-values following Hansen (1996) by applying the p-value
transformation. This works as follows:5:

1. draw η as described above

2. set v̂∗ = v̂ � η

3. set ĜPmat,1(γ) = T−1/2Xγ>
1 v̂∗

4. set g(γ) as described in Theorem 1, respectively Theorem 2. g(γ) denotes the
(simulated) asymptotic point-wise test statistic under consideration

5. set G = sup
γ∈Γ

g(γ)

6. repeat steps 1–5, say J times and obtain a sample (G1, ..., GJ) of observations from
the simulated asymptotic distribution of the test statistic.

5In contrast to the suggestion of an i.i.d. bootstrap in Hansen (1996), we do a wild bootstrap, because
we find this translates in better empirical sizes.
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7. set the simulated p-value p̂ as

p̂ =
1

J

J∑
j=1

1{Gj>Ĝ} (6.2)

where Ĝ denotes the corresponding sample test statistic

In order to obtain empirical sizes α̂ for a nominal significance level α we repeat the
above procedure under H0, say MC, times and set

α̂ =
1

MC

MC∑
k=1

1{p̂k≤α}. (6.3)

The empirical power is obtained analogously with the DGP under HA.

Data Generating Process The DGP used in our simulations is defined as follows:

yt = ztθ
0
z + θ0

x1
+ εt

= w>t θ
0 + εt (6.4)

zt = (Π0
1,1 + Π0

1,2xt)1{qt≤ρ0} + (Π0
2,1 + Π0

2,2xt)1{qt>ρ0} + ut (6.5)

where xt
iid∼ N (1, 1) and qt = xt + 1. We set the parameters as follows:

• θ0
z = θ0

x1
= 1.

• Π0
1 = (Π0

1,1, Π0
1,2)> = (1, 1)>.

• Π0
2 = (Π0

2,1, Π0
2,2)> = (1, b)>, where we allow b ∈ {0.5, 1, 1.5, 2, 2.5}. Note that

b = 1 corresponds to the LRF case.

• ρ0 = 1.75.

Lastly, we set εt = νt · xt/
√

2 with(
νt
ut

)
iid∼ N

((
0
0

)
,

(
1 0.5

0.5 1

))
. (6.6)

This specification induces conditional heteroskedasticity. Moreover, we divide in the
construction of εt by

√
2 in order to have an unconditional variance of 1 for εt. We do

this to be able to ompare to the case of conditional homoskedasticity in which we simply
set εt = νt.

6

Last, due to extensive computational burden, we carry out 500 simulations to obtain
single p-values and 1000 Monte Carlo repetitions (i.e. we simulate 1000 p-values).

6Results without the division with
√

2 are similar and available upon request.
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6.2. Size

This section presents empirical sizes obtained for our tests as well as for the GMM sup
Wald test in Caner and Hansen (2004) under the DGP and p-value simulations described
above. Table 9.1 displays the results.
In case of conditional heteroskedasticity, the results show that in small samples, the
2SLS sup LR test is correctly sized, and clearly superior to both the 2SLS sup Wald
and GMM sup Wald test. That the 2SLS sup LR test has better size properties than
the GMM sup tests should not come as a surprise, because the 2SLS estimator use more
information about the reduced form compared to the GMM sup Wald test. In particular,
it uses TRF and LRF to compute the first-stage, while GMM ignores this information
altogether. However, the result that the sup LR test also outperforms the 2SLS sup
Wald test is somewhat surprising.
In case of conditional homoskedastic errors the results are similar. Thus, in finite sam-
ples, the estimates are less accurate, resulting in poorer size properties. Again, the 2SLS
sup LR seems to be correctly sized, while the 2SLS sup Wald is oversized. It seems that
robustifying against heteroskedasticity backfires both in the case of heteroskedasticity
and homoskedasticity, resulting in small sample size distortions for the Wald test. How-
ever, notice that the Wald size distortions are smaller in the homoskedastic case. In
both cases, these distortions go away as the sample size grows large (T = 1000).

6.3. Power

In this section, we present the empirical (size corrected) power of the three tests. We
slightly alter the DGP in (6.4) while leaving everything else equal. In particular we set

yt = w>t θ
0
11{qt≤γ0} + w>t θ

0
21{qt>γ0} + εt (6.7)

with θ0
1 = (1, 1)> as before and θ0

2 = (a, c)> with a ∈ {1, 2} and c ∈ {1.25, 1.5, 2}. This
allows us to investigate how the power varies with the threshold size, measured by a and
c. We set γ0 = 2.25 and we only consider conditionally homoskedastic errors with LRF
and two cases of a TRF for brevity.7

In order to parsimoniously display our results we follow Davidson and MacKinnon (1998,
Section 6) and plot size-power curves. That is, we plot all possible sizes between 0 and
1 on the x-axis. Those sizes are true empirical sizes in the sense that they are computed
based on (simulated) empirical critical values and the empirical distribution function of
the test statistics. On the y-axis we plot the size adjusted power which is calculated
using the empirical critical values.

6.3.1. Linear Reduced Form

In this subsection, we consider the LRF case. Figure 9.1 displays size corrected power
curves for the case of no threshold effect in the intercept of the structural form, i.e. for

7Simulations in progress for other cases.
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a = 1, and Figure 9.2 for a threshold effect in the intercept of the structural form, i.e.
for a = 2.

As expected, all three tests have larger power as the sample size increases and as the
threshold size increases. The first effect can, e.g. be seen in the upper left subplot of
Figure 9.1. The second effect is evident in the lower right suplot, as all power curves
jump close to one as the size becomes strictly positive.

So, as expected, the power increases with the threshold size. Furthermore, a threshold
effect in the intercept (Figure 9.2), which can be viewed as a larger threshold, leads to
an increase in size-adjusted power of all three tests. The GMM Wald test seems to have
larger size-corrected power but this effect vanishes as (i) the sample size increases or (ii)
as the threshold effect in the slope parameter increases.

6.3.2. Threshold Reduced Form

In this subsection, we consider the TRF case. Figures 9.3 and 9.4 display size corrected
power curves for the case of no threshold effect in the intercept of the structural form,
i.e. for a = 1, and a small, respectively big threshold effect in the reduced form, i.e. for
b = 1.5, respectively b = 2.5. Moreover, Figures 9.5 and 9.6 display power curves for the
case of an additional threshold effect in the structural form intercept given both cases
of a TRF.

Comparing Figures 9.3 and 9.4, respectively Figures 9.5 and 9.6 suggest that the
magnitude of the reduced form threshold effect does not affect the power properties
of the considered tests since power patterns between Figures 9.3 and 9.4, respectively
Figures 9.5 and 9.6 are quite similar. Moreover, comparing Figures 9.3 and 9.4 with
Figures 9.5 and 9.6 it seems that the size of the structural form threshold effect has a
much bigger influence on the power of the tests. This is also corroborated if we compare
the TRF results to the LRF results. Overall, all three tests seem to have reasonably
large size-corrected power if the threshold is moderate to large.

7. Empirical Application

In this section, we test whether the government spending multiplier - measured as the
percentage increase in output when government spending increases by 1% - changes in
the presence of different interest rate regimes. For example, the multiplier is expected to
be larger in the recent crisis if the transmission mechanism is largely demand-driven - see
e.g. Eggertsson (2010) and Christiano et al. (2011). When the nominal interest rates are
close to the zero lower bound (ZLB) or in general below a certain threshold, government
spending should be more effective in increasing growth, since higher consumption and
investment are facilitated by a low real interest rate (potentially through higher infla-
tion). On the other hand, if in the present crisis, the transmission mechanism is driven
by supply, and despite the low nominal interest rate, government spending crowds out
private investment, the multiplier is small. We use the following specification, in line
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with Hall (2009) and Kraay (2012), but allowing for two potential interest rate regimes:

yt − yt−1

yt−1

=

(
α1 + β1

gt − gt−1

yt−1

)
1{rt−1≤γ0} +

(
α2 + β2

gt − gt−1

yt−1

)
1{rt−1>γ0} + εt, (7.1)

where yt and gt denote real GDP and government spending per capita, respectively,
α1, α2 are constants, β1, β2 are the multipliers in the two regimes, and εt is an error term
that satisfies Assumption A.1. rt denotes the Federal Funds Rate and γ0 is the unknown
potential threshold-parameter.

We are interested in testing whether the multipliers in (7.1) are indeed different in
different interest rate regimes, that is, whether we have a interest-rate driven threshold
γ0. Since zt = gt−gt−1

yt−1
is endogenous as output shocks can influence spending in the

same quarter, we instrument it as in Ramey (2011), with one quarter-ahead government
spending forecast errors, SPFt, from the Survey of Professional Forecasters.8 Thus, we
specify the reduced form (with a potential threshold at ρ0) as:

gt − gt−1

yt−1

= (Π1,1 + Π1,2SPFt)1{rt−1≤ρ0} + (Π2,1 + Π2,2SPFt)1{rt−1>ρ0} + ut. (7.2)

We use quarterly US data spanning 1969Q1-2014Q4, with the real GDP and govern-
ment spending from the Bureau of Economic Analysis9, the federal funds rate from the
Fed St. Louis10 and the government spending forecasts from the Philadelphia Fed.11

The data includes the current ZLB regime, as can be seen from the federal funds rate
plot in Figure 9.7.

Since our sample includes the Volcker period, part of which is characterized by un-
usually high interest rates and volatile economic conditions, we consider three samples
for our analysis: the full-sample 1969Q2-2014Q4, and the sub-samples 1969Q2–1984Q4,
respectively 1985Q1–2014Q4. Since low interest rates are mostly near the end of our
sample, but we wish to allow for a low interest rate regime, we consider two cut-off
points for testing for a threshold in (7.1): the 15% and the 5% quantiles of the empirical
distribution of rt−1.

We first test whether the reduced form is a threshold model (TRF) or a linear model
(LRF) by the methods proposed in Hansen (1996). Based on the results, we estimate
the LRF or TRF and test for a threshold in (7.1) using the 2SLS LR and Wald threshold
tests proposed in this paper, as well as the GMM Wald test in Caner and Hansen (2004).

Tables 9.2-9.4 present results for all the three samples considered. Regardless of the
cut-off, or whether we use the full-sample or the post 1985 sample, we find that the
reduced form has a threshold at ρ0 below 7.

For the structural form in (7.1), estimated on the whole sample, we find weak evidence
for a threshold effect: none of the threshold tests reject at the 1% level. At the 5% level,

8See Ramey (2011) for more discussion on instrument validity of SPFt, and a description of how the
forecast errors were quantified.

9Accessed February 2015.
10Accessed February 2015.
11Accessed February 2015.
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all tests reject, but the 2SLS LR test, which we found in simulations to be closest to
its nominal size, is close to the 5% level, whether we use a 15% cut-off or 5% cut-off in
calculating our tests. Furthermore, the threshold estimator reflects a very high interest
rate regime, sensitive to the cut-off choice, and not close to the ZLB. This prompts us
to investigate the samples 1968Q1-1984Q4 (unusually high interest rates) and 1985Q1-
2014Q4 (not so high interest rates) separately.12

Table 9.3 shows that all three threshold tests do not reject the null of no threshold
regime for the period of 1985 onwards. That is, we find no evidence that a ZLB or any
other interest rate regime in our sample changes the government spending multiplier or
the effectiveness of the government spending on output growth.

We find that the government spending multiplier 2SLS and GMM estimators are close
to each other, significant, and around 0.12.13 Thus, an increase in government spending
of 1% of real GDP will increase growth by 0.12%. Our estimates are small and in
line with Hall (2009, Sample 1960–2008). They are much smaller than in Nakamura
and Steinsson (2014), who find an (open economy) multiplier of about 1.5. Eggertsson
(2010) and Christiano et al. (2011) argue that in the neighborhood of the ZLB, when
monetary policy is less effective, fiscal stimulus lowers real interest rates by raising
inflation, resulting in potentially large multipliers. However, in the recent crisis, the US
inflation has remained low and stable, which may explain why we don’t find a larger
multiplier near the ZLB.

8. Conclusion

In this paper, we propose two novel threshold tests for linear models with endogenous
regressors, a sup LR and a sup Wald test. These tests are based on 2SLS and explicitly
account for a possible threshold effect in the reduced form. We derive the asymptotic
distributions of our tests, which are non-pivotal but can be computed by methods similar
to the wild bootstrap. Our simulation study shows that our sup LR test behaves well in
small samples, and its size and power compare favorably to an existing GMM based sup
Wald test. We find that the sup LR is correctly sized for small samples, compared to
the Wald tests which are both oversized. In terms of power, all tests have comparable
and large power when the threshold size is moderate (about half of the variance of the
error). Moreover, the power properties of the proposed tests are in line with the findings
of Hall et al. (2012) for break-point models.

We apply our method to assess whether the US government spending multiplier is
larger in regimes with nominal interest rates that are low or near the zero lower bound.

12 The Volcker period results in Table 9.4 are presented for completeness, but the sample size is small,
and care should be used in interpreting those results.

13Note that the 2SLS standard errors we obtain, based on asymptotic results, are larger than the GMM
standard errors (formulae for the asymptotic 2SLS standard errors for a TRF are available upon
request). Preliminary simulation results (also available upon request) indicate that this might be
due to poor asymptotic approximations to the 2SLS standard errors in finite samples and not the
classical result that GMM is more efficient. As already mentioned earlier, Antoine and Boldea (2014)
find that 2SLS can be more efficient than GMM in threshold models.
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All the threshold tests we employ suggest that the US government spending multiplier
for output growth did not change near the zero lower bound or any other interest rate
regime.

9. Tables and Figures
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Table 9.2: Estimation Results Full Sample

Sample 1969Q2–2014Q4

Cut-Off 15% Cut-Off 5%
γmin = 1.95 and γmax = 9.46 γmin = 0.15 and γmax = 13.58

RF Results

p-Wald 0.0000 0.0000

Π̂1,1 0.0029 0.0029

Π̂1,2 0.4226 0.4226

Π̂2,1 0.0068 0.0068

Π̂2,2 0.5253 0.5253
ρ̂ 6.7000 6.7000

No. of obs.
total 183 183 183 183 183 183

rt−1 ≤ ρ̂ 124 124 124 124 124 124
rt−1 > ρ̂ 59 59 59 59 59 59

SF Results

LR2SLS W 2SLS WGMM LR2SLS W 2SLS WGMM

p-value 0.0430 0.0220 0.0540 0.0480 0.0240 0.0180

β̂1 0.1715 0.1715 0.0853 0.0878 0.0878 0.0904
(0.12460) (0.12460) (0.00600) (0.11510) (0.11510) (0.0061)

α̂1 0.0072 0.0072 0.0065 0.0072 0.0072 0.0061
(0.00100) (0.00100) (0.00005) (0.00100) (0.00100) (0.00005)

β̂2 -0.2049 -0.2049 – 0.5434 0.5434 0.5172
(0.27170) (0.27170) – (0.56290) (0.56290) (0.0273)

α̂2 0.0044 0.0044 – -0.0065 -0.0065 -0.0053
(0.00310) (0.00310) – (0.00670) (0.00670) (0.0003)

γ̂ 8.8000 8.8000 – 10.9500 10.9500 10.9500
95%-CI for γ̂ [6.8400; 9.3500] – [8.8000 : 12.6900]

No. of obs.
total 183 183 183 183 183 183

rt−1 ≤ γ̂ 148 148 148 169 169 169
rt−1 > γ̂ 35 35 35 14 14 14

1 Standard errors in parentheses.
2 γmin and γmax are the min. and max. rt−1 over which the threshold models are estimated.
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Table 9.3: Estimation Results Subsample 1985Q1–2014Q4

Sample 1985Q1–2014Q4

Cut-Off 15% Cut-Off 5%
γmin = 1.02 and γmax = 7.74 γmin = 0.12 and γmax = 8.48

RF Results

p-Wald 0.0000 0.0000

Π̂1,1 0.0027 0.0027

Π̂1,2 0.4285 0.4285

Π̂2,1 0.0078 0.0078

Π̂2,2 0.5713 0.5713
ρ̂ 6.4700 6.4700

No. of obs.
total 120 120 120 120 120 120

rt−1 ≤ ρ̂ 97 97 97 97 97 97
rt−1 > ρ̂ 23 23 23 23 23 23

SF Results

LR2SLS W 2SLS WGMM LR2SLS W 2SLS WGMM

p-value 0.4290 0.6010 0.7230 0.4830 0.8320 0.7180

β̂1 0.1146 0.1146 0.1242 0.1146 0.1146 0.1242
(0.0672) (0.0672) (0.0069) (0.0672) (0.0672) (0.0069)

α̂1 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061
(0.0005) (0.0005) (0.00005) (0.0005) (0.0005) (0.00005)

β̂2 – – – – – –
– – – – – –

α̂2 – – – – – –
– – – – – –

γ̂ – – – – – –
95%-CI for γ̂ – – – – – –

No. of obs.
total 120 120 120 120 120 120

rt−1 ≤ γ̂ – – – – – –
rt−1 > γ̂ – – – – – –

1 Standard errors in parentheses.
2 γmin and γmax are the min. and max. rt−1 over which the threshold models are estimated.

24



Table 9.4: Estimation Results Subsample 1969Q2–1984Q4

Sample 1969Q2–1984Q4

Cut-Off 15% Cut-Off 5%
γmin = 4.87 and γmax = 12.69 γmin = 4.30 and γmax = 15.85

RF Results

p-Wald 0.8800 0.9060

Π̂1,1 0.0052 0.0052

Π̂1,2 0.4739 0.4739

Π̂2,1 – –

Π̂2,2 – –
ρ̂ – –

No. of obs.
total 63 63 63 63 63 63

rt−1 ≤ ρ̂ – – – – – –
rt−1 > ρ̂ – – – – – –

SF Results

LR2SLS W 2SLS WGMM LR2SLS W 2SLS WGMM

p-value 0.0040 0.0000 0.0000 0.0020 0.0000 0.0000

β̂1 0.3850 0.3850 0.3874 0.3850 0.3850 0.3874
(0.18730) (0.18730) (0.02330) (0.18730) (0.18730) (0.02330)

α̂1 0.0109 0.0109 0.0110 0.0109 0.0109 0.0110
(0.00160) (0.00160) (0.00020) (0.00160) (0.00160) (0.00020)

β̂2 -0.3049 -0.3049 -0.3061 -0.3049 -0.3049 -0.3061
(0.26810) (0.26810) (0.03430) (0.26810) (0.26810) (0.03430)

α̂2 0.0040 0.0040 0.0041 0.0040 0.0040 0.0041
(0.00270) (0.00270) (0.00040) (0.00270) (0.00270) (0.00040)

γ̂ 8.8000 8.8000 8.800 8.8000 8.8000 8.8000
95%-CI for γ̂ [5.5700; 11.3900] [5.5700; 11.3900]

No. of obs.
total 63 63 63 63 63 63

rt−1 ≤ γ̂ 32 32 32 32 32 32
rt−1 > γ̂ 31 31 31 31 31 31

1 Standard errors in parentheses.
2 γmin and γmax are the min. and max. rt−1 over which the threshold models are estimated.
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Figure 9.1: Size Adjusted Power Curves – No Threshold Effect in SF Intercept and LRF
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Figure 9.2: Size Adjusted Power Curves – Threshold Effect in SF Intercept and LRF
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Figure 9.3: Size Adjusted Power Curves – No Threshold Effect in SF Intercept and TRF
with Small Threshold Effect
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Figure 9.4: Size Adjusted Power Curves – No Threshold Effect in SF Intercept and TRF
with Big Threshold Effect
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Figure 9.5: Size Adjusted Power Curves – Threshold Effect in SF Intercept and TRF
with Small Threshold Effect
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Figure 9.6: Size Adjusted Power Curves – Threshold Effect in SF Intercept and TRF
with Big Threshold Effect
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Figure 9.7: Federal Funds Rate – 1969Q2–2014Q4
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Mathematical Appendix

Notation. In what follows we use the symbol K to denote a strictly positive constant.
Note that K does not need to be the same from line to line.

For any m× 1-vector x we denote by ‖x‖2 =
√∑m

i=1 x
2
i the Euclidean norm. Moreover,

for any m× n-matrix X we denote by ‖X‖F =
√

tr(X>X) the Frobenius matrix-norm.
Furthermore, we denote by Im the m×m-identity matrix and by 0m×n an m×n-matrix
of zeros.

To simplify notation we define the following sets T1(γ) = {t : 1{qt≤γ}} and T2(γ) =
{: 1{qt>γ}}. These sets partition the data according to the decision rules 1{qt≤γ} and
1{qt>γ}, respectively, and will be convenient to display sums.

Moreove, we define ε̃ = ε + (Z − Ẑ)θ0
z and s = ε + uθ0

z . Note that those quantities can
also be partitioned as ε̃γ1 = εγ1 + (Z − Ẑ)γ1θ

0
z , for example.

A. 2SLS Results involving a Linear Reduced Form

Lemma 1. Suppose Assumption A.1 holds. Then

T−1/2 vec(Xγ>
1 v) =⇒ GP1(γ)

where GP1(γ) is a zero-mean Gaussian Process with covariance function

CGP(γ1, γ2) = E[GP1(γ1)GP>1 (γ2)] = E[(vtv
>
t ⊗ xtx>t )1{qt≤(γ1∧γ2)}]

Proof of Lemma 1. Let X be a T × q-matrix and v be a T × (1 + p1)-matrix, both
satisfying Assumption 1. Further, let v:,i denote the i-th column of the matrix v. Then,
by Hansen (1996, Theorem 1)

T−1/2Xγ>
1 v:,i =⇒ GP i1(γ) (A.1)

and therefore

T−1/2 vec(Xγ>
1 v) =⇒

 GP1
1(γ)
...

GP1+p1
1 (γ)

 . (A.2)

Next, by Hansen (1996, Theorem 1) it holds that every process GP i1(γ) is a zero-mean
Gaussian Process with covariance function

CiGP(γ1, γ2) = E[xtx
>
t v

2
i,t1{qt≤(γ1∧γ2)}]. (A.3)

Similarly, it holds that

Ci,jGP(γ1, γ2) = E[GP i1(γ1)GPj>1 (γ2)] = E[xtx
>
t vi,tvj,t1{qt≤(γ1∧γ2)}]. (A.4)
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Thus, combinig (A.3) and (A.4) directly yields

CGP(γ1, γ2) = E[GP1(γ1)GP>1 (γ2)] = E[(vtv
>
t ⊗ xtx>t )1{qt≤(γ1∧γ2)}]. (A.5)

Finally, results (A.2) and (A.5) directly prove the Lemma.

Lemma 2. Suppose Assumption A.1 holds. Then

(i) T−1Ŵ γ>
1 Ŵ γ

1

p−→ A0M1(γ)A0> ≡ C1(γ)

(ii) T−1/2Ŵ γ>
1 ε̃γ1 =⇒ A0

(
GPmat,1(γ)θ̃0

z −M1(γ)M−1GPmat,1θ̌
0
z

)
≡ A0B1(γ).

Proof of Lemma 2. First, we prove claim (i) and then claim (ii).
Claim (i): The reduced form predicted values are

Ẑ = XΠ̂ (A.6)

and it holds that
T 1/2(Π̂− Π0) =

(
T−1X>X

)−1 (
T−1/2X>u

)
(A.7)

by standard OLS-derivations. By Hansen (1996, Theorem 1) it holds uniformly in γ
that

T−1Xγ>
1 Xγ

1
a.s.−−→M1(γ), and T−1X>X

a.s.−−→M. (A.8)

This implies that T−1X>X = Op(1) and thus, by Lemma 1, T−1/2X>u = Op(1). There-

fore, T 1/2(Π̂− Π0) = Op(1) and thus, Π̂− Π0 = op(1). So, uniformly in γ,

T−1Ẑγ>
1 Ẑγ

1 = Π̂>
(
T−1Xγ>

1 Xγ
1

)
Π̂

p−→ Π0>M1(γ)Π0. (A.9)

Last, it holds that

Ŵ γ
1 =

[
Ẑγ

1 Xγ
1,1

]
=
[
Xγ

1 Π̂ Xγ
1,1

]
= Xγ

1

[
Π̂ S

]
= Xγ

1 Â
>. (A.10)

Therefore, by (A.9) and (A.10) and uniformly in γ,

T−1Ŵ γ>
1 Ŵ γ

1 = Â
(
T−1Xγ>

1 Xγ
1

)
Â>

p−→ A0M1(γ)A0> ≡ C1(γ), (A.11)

proving the claim.
Claim (ii): By (A.6) it follows that

T−1/2Ẑγ>
1 ε̃γ1 = Π̂>

T−1/2Xγ>
1 (εγ1 + uγ1θ

0
z)︸ ︷︷ ︸

=a

−T−1/2Xγ>
1 Xγ

1 (Π̂− Π0)θ0
z︸ ︷︷ ︸

=b

 . (A.12)

Next, we show the limiting behavior of the term denoted by a and afterwards the limiting
behavior of b.
Rewriting term a directly yields

T−1/2Xγ>
1 (εγ1 + uγ1θ

0
z) = T−1/2[Xγ>

1 εγ1 , X
γ>
1 uγ1 ]θ̃0

z (A.13)
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and thus, by Lemma 1, uniformly in γ:

T−1/2[Xγ>
1 εγ1 , X

γ>
1 uγ1 ]θ̃0

z =⇒ GPmat,1(γ)θ̃0
z . (A.14)

By (A.7) term b in (A.12) satisfies

T−1/2Xγ>
1 Xγ

1 (Π̂− Π0)θ0
z =

(
T−1Xγ>

1 Xγ
1

) (
T−1X>X

)−1 (
T−1/2X>uθ0

z

)
. (A.15)

Next, note that

T−1/2X>uθ0
z = T−1/2X>ε · 0 + T−1/2X>uθ0

z

= T−1/2[X>ε,X>u]θ̌0
z (A.16)

So, by (A.8) and (A.14)–(A.16), uniformly in γ,

T−1/2Xγ>
1 Xγ

1 (Π̂− Π0)θ0
z =⇒M1(γ)M−1GPmat,1θ̌

0
z . (A.17)

Last, because Π̂>(a − b) = Π0>(a − b) + op(1), (A.14) and (A.17) together with (A.12)
yield uniformly in γ

T−1/2Ẑγ>
1 ε̃γ1 =⇒ Π0>

(
GPmat,1(γ)θ̃0

z −M1(γ)M−1GPmat,1θ̌
0
z

)
≡ Π0>B1(γ). (A.18)

Last, because Ŵ γ
1 =

[
Ẑγ

1 Xγ
1,1

]
= Xγ

1 Â
> (see (A.10)) it immediately follows with (A.18)

that, uniformly in γ,
T−1/2Ŵ γ>

1 ε̃γ1 =⇒ A0B1(γ), (A.19)

proving claim (ii).

Proof of Theorem 1. In order to show the statement of Theorem 1, we first prove it
for the sup Wald test and afterwards for the sup LR test.

sup Wald Test: The Wald-type test statistic is given by

W 2SLS
T (γ) = T 1/2(θ̂γ1 − θ̂

γ
2 )>[T Var(θ̂γ1 ) + T Var(θ̂γ2 )]−1T 1/2(θ̂γ1 − θ̂

γ
2 )

This proof is done in two parts: In part (i) we prove that T 1/2(θ̂γ1−θ̂
γ
2 ) =⇒ C−1

1 (γ)A0B1(γ)−
C−1

2 (γ)A0B2(γ) ≡ E(γ) uniformly in γ and in part (ii) that T Var(θ̂γ1 ) + T Var(θ̂γ2 )
p−→

C−1
1 (γ)H1(γ)C−1

1 (γ) + C−1
2 (γ)H2(γ)C−1

2 (γ) uniformly in γ. Parts (i) and (ii) together
with the continuous mapping theorem and weak convergence (uniformly in γ) then im-
mediately yield the claim.

Part (i). For i = 1, 2, we have by construction

θ̂γi =
(
Ŵ γ>
i Ŵ γ

i

)−1 (
Ŵ γ>
i Y

)
=
(
Ŵ γ>
i Ŵ γ

i

)−1 (
Ŵ γ>
i (Wθ0 + ε)

)
=
(
Ŵ γ>
i Ŵ γ

i

)−1 (
Ŵ γ>
i (Wθ0 + ε+ Ẑθ0

z − Ẑθ0
z)
)

=
(
Ŵ γ>
i Ŵ γ

i

)−1 (
Ŵ γ>
i (Ŵθ0 + ε+ Zθ0

z − Ẑθ0
z)
)

= θ0 +
(
Ŵ γ>
i Ŵ γ

i

)−1 (
Ŵ γ>
i ε̃γi

)
. (A.20)
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Therefore,

T 1/2(θ̂γ1 − θ̂
γ
2 ) =

(
T−1Ŵ γ>

1 Ŵ γ
1

)−1 (
T−1/2Ŵ γ>

1 ε̃γ1

)
−
(
T−1Ŵ γ>

2 Ŵ γ
2

)−1 (
T−1/2Ŵ γ>

2 ε̃γ2

)
. (A.21)

By Lemma 2 it holds, uniformly in γ, that

T−1Ŵ γ>
i Ŵ γ

i

p−→ Ci(γ) and T−1/2Ŵ γ>
i ε̃γi =⇒ A0Bi(γ). (A.22)

Thus, uniformly in γ,

T 1/2(θ̂γ1 − θ̂
γ
2 ) =

(
T−1Ŵ γ>

1 Ŵ γ
1

)−1 (
T−1/2Ŵ γ>

1 ε̃γ1

)
−
(
T−1Ŵ γ>

2 Ŵ γ
2

)−1 (
T−1/2Ŵ γ>

2 ε̃γ2

)
=⇒ C−1

1 (γ)A0B1(γ)− C−1
2 (γ)A0B2(γ) ≡ E(γ). (A.23)

Part (ii). Note that

T Var(θ̂γi ) =
(
T−1Ŵ γ>

i Ŵ γ
i

)−1
(
T−1

∑
Ti(γ)

ŵtŵ
>
t ê

2
t

)(
T−1Ŵ γ>

i Ŵ γ
i

)−1

.

By Lemma 2 and the continuous mapping theorem it holds uniformly in γ that(
T−1Ŵ γ>

i Ŵ γ
i

)−1 p−→ C−1
i (γ). (A.24)

So, we are left to show that

.

T−1
∑
T1(γ)

ŵtŵ
>
t ê

2
t

p−→ A0E[xtx
>
t {εt + u>t θ

0
z}2

1{qt≤γ}]A
0>

T−1
∑
T2(γ)

ŵtŵ
>
t ê

2
t

p−→ A0E[xtx
>
t {εt + u>t θ

0
z}2

1{qt>γ}]A
0>

(A.25)

To do so, we will show that

T−1
∑
Ti(γ)

ŵtŵ
>
t ê

2
t = A0

(
T−1

∑
Ti(γ)

xtx
>
t {εt + u>t θ

0
z}2

)
A0> + op(1). (A.26)

Based on the statement in (A.26) the claim then follows immediately.
First, note that ŵt = Âxt = A0xt + op(1) and thus that

T−1
∑
Ti(γ)

ŵtŵ
>
t ê

2
t = Â

(
T−1

∑
Ti(γ)

xtx
>
t ê

2
t

)
Â>

= A0

(
T−1

∑
Ti(γ)

xtx
>
t ê

2
t

)
A0> + op(1), (A.27)
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since Â = A0 + op(1) uniformly in γ, and we expect the whole sum to be at most of
order Op(1).
Next, we rewrite the expression for the residuals, êt, in such a way that (A.26) follows.
By construction

êt = (yt − ŵ>t θ̂
γ
1 )1{qt≤γ} + (yt − ŵ>t θ̂

γ
2 )1{qt>γ} (A.28)

and therefore,
ê2
t = (yt − ŵ>t θ̂

γ
1 )2

1{qt≤γ} + (yt − ŵ>t θ̂
γ
2 )2

1{qt>γ} (A.29)

because the mixed term includes 1{qt≤γ} · 1{qt>γ} = 0.
Using (A.29), quantity (A.27) can be written as

T−1
∑
Ti(γ)

ŵtŵ
>
t ê

2
t = A0

(
T−1

∑
Ti(γ)

xtx
>
t ê

2
t

)
A0> + op(1)

= A0

(
T−1

∑
Ti(γ)

xtx
>
t (yt − ŵ>t θ̂

γ
i )2

)
A0> + op(1)

≡ A0BA0> + op(1). (A.30)

Next, under H0, (yt − ŵ>t θ̂
γ
i )2 can be further rewritten as

(yt − ŵ>t θ̂
γ
i )2 = (w>t θ

0 + εt − ŵ>t θ̂
γ
i )2

= (ŵ>t (θ0 − θ̂γi ) + εt + (zt − ẑt)>θ0
z)

2

= (ŵ>t (θ0 − θ̂γi ) + ε̃t)
2

= ε̃2t + 2ε̃tŵ
>
t (θ0 − θ̂γi ) + (θ0 − θ̂γi )>ŵtŵ

>
t (θ0 − θ̂γi ). (A.31)

Therefore, quantity B from (A.30) reads as

B = T−1
∑
Ti(γ)

xtx
>
t ε̃

2
t

+ 2T−1
∑
Ti(γ)

xtx
>
t ε̃tx

>
t A

0>(θ0 − θ̂γi )

+ T−1
∑
Ti(γ)

xtx
>
t (θ0 − θ̂γi )>A0xtx

>
t A

0>(θ0 − θ̂γi ) + op(1) (A.32)

since Â = A0 + op(1) uniformly in γ, and we expect the sums to be at most of oder
Op(1).
Next, we show that the last two terms on the right-hand side of (A.32) converge in
probability to zero, uniformly in γ:
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The last term in (A.32) is bounded by14∥∥∥∥T−1
∑
Ti(γ)

xtx
>
t (θ0 − θ̂γi )>A0xtx

>
t A

0>(θ0 − θ̂γi )

∥∥∥∥
F

≤T−1
∑
Ti(γ)

‖xtx>t (θ0 − θ̂γi )>A0xtx
>
t A

0>(θ0 − θ̂γi )‖F

=T−1
∑
Ti(γ)

‖xtx>t ‖F · |(θ0 − θ̂γi )>A0xt|2

=T−1
∑
Ti(γ)

‖xt‖2
2 · |(θ0 − θ̂γi )>A0xt|2

≤T−1
∑
Ti(γ)

‖xt‖2
2 · ‖θ0 − θ̂γi ‖2

2 · ‖A0xt‖2
2

≤‖θ0 − θ̂γi ‖2
2 · ‖A0‖2

F

(
T−1

∑
Ti(γ)

‖xt‖4
2

)
p−→0,

where convergence holds because ‖θ0 − θ̂γi ‖2 = op(1) by Lemma 2, ‖A0‖F = O(1)
by Assumption A.1.2 and T−1

∑
Ti(γ) ‖xt‖4

2 = Op(1), uniformly in γ. To see the last
statement consider

P
(
T−1

∑
Ti(γ)

‖xt‖4
2 > K

)
≤

E
[∑

Ti(γ) ‖xt‖4
2

]
TK

=

∑
Ti(γ) E‖xt‖4

2

TK

≤
∑
Ti(γ) supt E‖xt‖4

2

TK

≤ supt E‖xt‖4
2

K

where supt E‖xt‖4
2 ≤ supt E‖xt‖4b

2 <∞ for some b > 1 by Assumption A.1.2. Thus, the
last expression can be made arbitrarily small uniformly in T by choosing K sufficiently
large. Hence, T−1

∑
Ti(γ) ‖xt‖4

2 is uniformly tight, or equivalently, of order Op(1).

By the same arguments, the second term on the RHS of equation (A.32) can be bounded

14Note that for u, v ∈ Rn×1 it holds that ‖uv>‖F = ‖u‖2 · ‖v‖2 because ‖uv>‖F =
√∑

i

∑
j |uivj |2 =√∑

i

∑
j |ui|2|vj |2 =

√∑
i |ui|2

∑
j |vj |2 =

√∑
i |ui|2

√∑
j |vj |2 = ‖u‖2 · ‖v‖2. Moreover, the

Frobenius matrix norm is compatible with the Euclidean vector norm, i.e. for some m × n-matrix
A and some n × 1-vector x holds that ‖Ax‖2 ≤ ‖A‖F ‖x‖2. This can easily be shown by applying
the definitions of the respective norms and the Cauchy-Schwartz inequality.
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by ∥∥∥T−1
∑
Ti(γ)

xtx
>
t ε̃tx

>
t A

0>(θ0 − θ̂γi )
∥∥∥
F

≤‖θ0 − θ̂γi ‖2 · ‖A0‖F

T−1
∑
Ti(γ)

‖xt‖3
2|ε̃t|


≤‖θ0 − θ̂γi ‖2 · ‖A0‖F

T−1
∑
Ti(γ)

‖xt‖3
2|εt|+ ‖θ0

z‖2T
−1
∑
Ti(γ)

‖xt‖3
2‖zt − ẑt‖2


≤‖θ0 − θ̂γi ‖2 · ‖A0‖F

T−1
∑
Ti(γ)

‖xt‖3
2|εt|+ ‖θ0

z‖2 · ‖Π0 − Π̂‖FT−1
∑
Ti(γ)

‖xt‖3
2‖ut‖2


p−→0

where the last statement holds because ‖θ0 − θ̂γi ‖2 = op(1) and ‖Π0 − Π̂‖F = op(1) by
Lemma 2, ‖A0‖F = Op(1) by construction, T−1

∑
Ti(γ) ‖xt‖3

2|εt| = Op(1), and T−1
∑
Ti(γ) ‖xt‖3

2|ut| =
Op(1), uniformly in γ. To see the last two statements consider:

P

T−1
∑
Ti(γ)

‖xt‖3
2|εt| > K

 ≤ E

[ ∑
Ti(γ)

‖xt‖3
2|εt|

]
TK

≤ supt E[‖xt‖3
2|εt|]

K

≤
supt

(
E[‖xt‖6

2]E[|εt|2]
)1/2

K

and

P

T−1
∑
Ti(γ)

‖xt‖3
2‖ut‖2 > K

 ≤ E

[ ∑
Ti(γ)

‖xt‖3
2‖ut‖2

]
TK

≤ supt E[‖xt‖3
2‖ut‖2]

K

≤
supt

(
E[‖xt‖6

2]E[‖ut‖2
2]
)1/2

K

where supt E‖xt‖6
2 ≤ supt E‖xt‖6b

2 <∞, supt E|εt|2 ≤ supt E|εt|4b <∞ and supt E‖ut‖2
2 ≤

supt E‖ut‖4b
2 < ∞ by Assumption A.1.2. Thus, the last expressions can be made arbi-

trarily small uniformly in T by choosing K sufficiently large. Hence, T−1
∑
Ti(γ) ‖xt‖3

2|ε̃t|
is of order Op(1).
Therefore, (A.30) simplifies to

T−1
∑
Ti(γ)

ŵtŵ
>
t ê

2
t = A0

(
T−1

∑
Ti(γ)

xtx
>
t ε̃

2
t

)
A0> + op(1). (A.33)
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Last,

ε̃2t =
[
εt + (zt − ẑt)>θ0

z

]2
=
[
εt + (Π0>xt + ut − Π̂>xt)

>θ0
z

]2

=
[
εt + u>t θ

0
z + x>t (Π0 − Π̂)θ0

z

]2

=
[
st + x>t (Π0 − Π̂)θ0

z

]2

(A.34)

Therefore,

T−1
∑
Ti(γ)

ŵtŵ
>
t ê

2
t = A0

(
T−1

∑
Ti(γ)

xtx
>
t s

2
t

)
A0>

+ 2A0

(
T−1

∑
Ti(γ)

xtx
>
t stx

>
t (Π0 − Π̂)θ0

z

)
A0>

+ A0

(
T−1

∑
Ti(γ)

xtx
>
t θ

0>
z (Π0 − Π̂)xtx

>
t (Π0 − Π̂)θ0

z

)
A0> + op(1). (A.35)

It can now be shown that the last two expressions on the right-hand-side of (A.35)
converge in probability to zero, uniformly in γ. For the thirs term we find:∥∥∥∥T−1

∑
Ti(γ)

xtx
>
t θ

0>
z (Π0 − Π̂)xtx

>
t (Π0 − Π̂)θ0

z

∥∥∥∥
F

≤T−1
∑
Ti(γ)

‖xtx>t θ0>
z (Π0 − Π̂)xtx

>
t (Π0 − Π̂)θ0

z‖F

=T−1
∑
Ti(γ)

‖xtx>t ‖F · |x>t (Π0 − Π̂)θ0
z |2

=T−1
∑
Ti(γ)

‖xt‖2
2 · |x>t (Π0 − Π̂)θ0

z |2

≤T−1
∑
Ti(γ)

‖xt‖2
2 · ‖xt‖2

2 · ‖(Π0 − Π̂)θ0
z‖2

2

≤
(
T−1

∑
Ti(γ)

‖xt‖4
2

)
‖Π0 − Π̂‖2

F · ‖θ0
z‖2

2

where ‖θ0
z‖2 = O(1) by construction, ‖Π0 − Π̂‖ = op(1) by Lemma 2 and, as already

shown, T−1
∑
Ti(γ) ‖xt‖4

2 = Op(1) uniformly in γ.
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Similarly, we find for the second term on the RHS of (A.35):∥∥∥T−1
∑
Ti(γ)

xtx
>
t stx

>
t (Π0 − Π̂)θ0

z

∥∥∥
F

≤‖Π0 − Π̂‖F · ‖θ0
z‖2T

−1
∑
Ti(γ)

‖xt‖3
2|st|

≤‖Π0 − Π̂‖F · ‖θ0
z‖2

T−1
∑
Ti(γ)

‖xt‖3
2|εt|+ ‖θ0

z‖2T
−1
∑
Ti(γ)

‖xt‖3
2‖ut‖2


p−→0

where ‖θ0
z‖2 = O(1) by construction, ‖Π0 − Π̂‖F = op(1) by Lemma 2 and, as already

shown, T−1
∑
Ti(γ) ‖xt‖3

2|εt| = Op(1) and T−1
∑
Ti(γ) ‖xt‖3

2‖ut‖2 = Op(1) uniformly in γ.

Thus, (A.35) can be restated as

T−1
∑
Ti(γ)

ŵtŵ
>
t ê

2
t = A0

(
T−1

∑
Ti(γ)

xtx
>
t s

2
t

)
A0> + op(1), (A.36)

and therefore, uniformly in γ

T−1
∑
T1(γ)

ŵtŵ
>
t ê

2
t

p−→ A0E[xtx
>
t {εt + u>t θ

0
z}2

1{qt≤γ}]A
0> (A.37)

T−1
∑
T2(γ)

ŵtŵ
>
t ê

2
t

p−→ A0E[xtx
>
t {εt + u>t θ

0
z}2

1{qt>γ}]A
0>. (A.38)

Results (A.23), (A.24), (A.37) and (A.38) then yield the claim by continuity of the
involved terms and weak convergence (uniformly in γ) using the continuous mapping
theorem.

sup LR Test: This proof is done in two parts: Part (i) shows that T−1SSR1(γ)
p−→ σ2

and part (ii) shows that SSR0 − SSR1(γ) =⇒ E>(γ)C2(γ)D1(γ)E(γ).
Part (i). The scaled sum of squared residuals of the restricted model, SSR1(γ), are

given by

T−1SSR1(γ) = T−1[Y γ
1 − Ŵ

γ
1 θ̂

γ
1 ]>[Y γ

1 − Ŵ
γ
1 θ̂

γ
1 ]

+ T−1[Y γ
2 − Ŵ

γ
2 θ̂

γ
2 ]>[Y γ

2 − Ŵ
γ
2 θ̂

γ
2 ]

= T−1[Ŵ γ
1 (θ0 − θ̂γ1 ) + ε̃γ1 ]>[Ŵ γ

1 (θ0 − θ̂γ1 ) + ε̃γ1 ]

+ T−1[Ŵ γ
2 (θ0 − θ̂γ2 ) + ε̃γ2 ]>[Ŵ γ

2 (θ0 − θ̂γ2 ) + ε̃γ2 ]

= T−1ε̃>ε̃

+ 2(T−1ε̃γ>1 Ŵ γ
1 )(θ0 − θ̂γ1 ) + (θ0 − θ̂γ1 )>(T−1Ŵ γ>

1 Ŵ γ
1 )(θ0 − θ̂γ1 )

+ 2(T−1ε̃γ>2 Ŵ γ
2 )(θ0 − θ̂γ2 ) + (θ0 − θ̂γ2 )>(T−1Ŵ γ>

2 Ŵ γ
2 )(θ0 − θ̂γ2 ).

(A.39)
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Next, by Lemma 2, for i = 1, 2, T−1Ŵ γ>
i ε̃γi = op(1) and T−1Ŵ γ>

i Ŵ γ
i = Op(1) uniformly

in γ. This implies that

θ̂γi − θ0 = (T−1Ŵ γ>
i Ŵ γ

i )−1(Ŵ γ>
i ε̃γi ) = Op(1)op(1) = op(1) (A.40)

and therefore, (A.39) simpliefies to

T−1SSR1(γ) = T−1ε̃>ε̃+ op(1). (A.41)

Thus, (A.41) can be written as

T−1SSR1(γ) = T−1s>s+ 2(T−1s>X)(Π0 − Π̂)θ0
z

+ θ0>
z (Π0 − Π̂)X>X(Π0 − Π̂)θ0

z + op(1) (A.42)

where Π̂−Π0 = (T−1X>X)−1(T−1X>u) = Op(1)op(1) = op(1) and T−1s>X = op(1) by
Lemma 2, uniformly in γ. Thus, (A.42) simplifies to

T−1SSR1(γ) = T−1s>s+ op(1)

= T−1ε>ε+ 2(T−1ε>u)θ0
z + θ0>

z (T−1u>u)θ0
z + op(1)

p−→ σ2
ε + 2Σ>ε,uθ

0
z + θ0>

z Σuθ
0
z ≡ σ2 (A.43)

uniformly in γ. This proves part (i).
Part (ii). We have

SSR0 − SSR1(γ) = [Y γ
1 − Ŵ

γ
1 θ̂]
>[Y γ

1 − Ŵ
γ
1 θ̂]− [Y γ

1 − Ŵ
γ
1 θ̂

γ
1 ]>[Y γ

1 − Ŵ
γ
1 θ̂

γ
1 ]

+ [Y γ
2 − Ŵ

γ
2 θ̂]
>[Y γ

2 − Ŵ
γ
2 θ̂]− [Y γ

2 − Ŵ
γ
2 θ̂

γ
2 ]>[Y γ

2 − Ŵ
γ
2 θ̂

γ
2 ] (A.44)

Now, for i = 1, 2,

[Y γ
i − Ŵ

γ
i θ̂]
>[Y γ

i − Ŵ
γ
i θ̂]

−[Y γ
i − Ŵ

γ
i θ̂

γ
i ]>[Y γ

i − Ŵ
γ
i θ̂

γ
i ] = Y γ>

i Y γ
i − 2θ̂>Ŵ γ>

i Y γ
i + θ̂>Ŵ γ>

i Ŵ γ
i θ̂

− Y γ>
i Y γ

i + 2θ̂γ>i Ŵ γ
i − θ̂

γ>
i Ŵ γ>

i Ŵ γ
i θ̂

γ
i

= [θ̂γi − θ̂]>Ŵ
γ>
i [2Y γ

i − Ŵ
γ
i θ̂ − Ŵ

γ
i θ̂

γ
i ]

= T 1/2[θ̂γi − θ̂]>
[
2(T−1/2Ŵ γ>

i ε̃γi )

−(T−1Ŵ γ>
i Ŵ γ

i )(T 1/2(θ̂ − θ0))

−(T−1Ŵ γ>
i Ŵ γ

i )(T 1/2(θ̂γi − θ0))
]
. (A.45)

Next, we show the asymptotic behavior of the terms on the right hand side of (A.45)
which then concludes the proof together with (A.43), (A.44), the continuous mapping
theorem and weak convergence (uniformly in γ).
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It holds that

(T−1Ŵ>Ŵ )(T 1/2(θ̂ − θ0))

=T−1/2Ŵ>ε̃

=T−1/2Ŵ γ>
1 ε̃γ1 + T−1/2Ŵ γ>

1 ε̃γ1

=(T−1Ŵ γ>
1 Ŵ γ

1 )(T 1/2(θ̂γ1 − θ0)) + (T−1Ŵ γ>
2 Ŵ γ

2 )(T 1/2(θ̂γ2 − θ0)) (A.46)

and by Lemma 2 that, uniformly in γ for i = 1, 2,

T−1Ŵ γ>
i Ŵ γ

i

p−→ Ci(γ). (A.47)

Futhermore, define β̂ = T 1/2(θ̂−θ0), β̂i = T 1/2(θ̂γi −θ0) and Di(γ) = C−1Ci(γ) (i = 1, 2).
Then, (A.46) can be restated as

β̂ = D1(γ)β̂1 +D2(γ)β̂2 + op(1). (A.48)

Moreover, note that

T 1/2(θ̂γ1 − θ̂) = β̂1 − β̂ = D2(γ)(β̂1 − β̂2) + op(1) (A.49)

T 1/2(θ̂γ2 − θ̂) = β̂2 − β̂ = −D1(γ)(β̂1 − β̂2) + op(1) (A.50)

T−1/2Ŵ γ>
i ε̃γi = Ci(γ)β̂i + op(1) (A.51)

by (A.48) and Lemma 2.
So, using (A.46)–(A.49) and (A.51), for i = 1 quantity (A.45) can be written as

(β̂1 − β̂2)>D>2 (γ)
[
2C1(γ)β̂1 − C1(γ)β̂ − C1(γ)β̂1

]
+ op(1)

=(β̂1 − β̂2)>D>2 (γ)C1(γ)(β̂1 − β̂) + op(1)

=(β̂1 − β̂2)>D>2 (γ)C1(γ)D2(γ)(β̂1 − β̂2) + op(1). (A.52)

Similarly, using (A.46)–(A.48) and (A.50)–(A.51), for i = 2 quantity (A.45) can be
stated as

(β̂1 − β̂2)>D>1 (γ)C2(γ)D1(γ)(β̂1 − β̂2) + op(1). (A.53)

So, using (A.45), (A.52) and (A.53), quantity (A.44) can be restated as

SSR0 − SSR1(γ) = (β̂1 − β̂2)>D>2 (γ)C1(γ)D2(γ)(β̂1 − β̂2)

+ (β̂1 − β̂2)>D>1 (γ)C2(γ)D1(γ)(β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)>
[
(Ip −D>1 (γ))C1(γ)(Ip −D1(γ))

+D>1 (γ)(C − C1(γ))D1(γ)
]

(β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)>
[
C1(γ)− 2C1(γ)D1(γ) +D>1 (γ)C1(γ)D1(γ)

+D>1 (γ)CD1(γ)−D>1 (γ)C1(γ)D1(γ)
]

(β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)> [C1(γ)− C1(γ)D1(γ)] (β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)>C2(γ)D1(γ)(β̂1 − β̂2) + op(1). (A.54)
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Last, by Lemma 2 it holds, uniformly in γ, that

β̂1 − β̂2 = (T−1Ŵ γ>
1 Ŵ γ

1 )−1(T−1/2Ŵ γ>
1 ε̃γ1)− (T−1Ŵ γ>

2 Ŵ γ
2 )−1(T−1/2Ŵ γ>

2 ε̃γ2)

=⇒ C−1
1 (γ)A0B1(γ)− C−1

2 (γ)A0B2(γ) ≡ E(γ). (A.55)

So, combining (A.54) and (A.55) yields

SSR0 − SSR1(γ) =⇒ E>(γ)C2(γ)D1(γ)E(γ) (A.56)

which in turn with (A.43), the continuous mapping theorem and weak convergence
(uniformly in γ) proves the claim.

Proof of Corollary 1. We will first show the claim for the sup LR-test and after-
wards for the sup Wald-test.

sup LR-test. In order to show the claim in this, we only need to show that
E(γ) = Ẽ(γ) under Assumptions A.1 and A.2. Or in other words, that GPmat,1(γ) =
G̃Pmat,1(γ)Q15:
The covariance kernel of GP1(γ) is given as E[GP1(γ1)GP>1 (γ2)] = E[(vtv

>
t ⊗xtx>t )1{qt≤γ1∧γ2}]

by Lemma 1. Under Assumption A.2 this expression can be simplified to

E[(vtv
>
t ⊗ xtx>t )1{qt≤γ1∧γ2}] = E

[
E[(vtv

>
t ⊗ xtx>t )1{qt≤γ1∧γ2}|xt, qt]

]
= E

[
E[vtv

>
t |xt, qt]⊗ xtx>t 1{qt≤γ1∧γ2}

]
= E

[
Σ⊗ xtx>t 1{qt≤γ1∧γ2}

]
= Σ⊗M1(γ1, γ2). (A.57)

Note that Q denotes the principal square root of Σ, i.e. Q1/2Q1/2 = Σ. Then, (A.57)
can be restated as

E[(vtv
>
t ⊗ xtx>t )1{qt≤γ1∧γ2}] = Σ⊗M1(γ1 ∧ γ2)

= (Q⊗M1(γ1 ∧ γ2))(Q⊗ I)

= (Q⊗ I)(I ⊗M1(γ1 ∧ γ2))(Q⊗ I). (A.58)

On the other hand, the covariance kernel of (Q⊗ I)G̃P1(γ) = vec(G̃Pmat,1(γ)Q) is given
by

E[(Q⊗ I)G̃P1(γ1)G̃P>1 (γ2)(Q⊗ I)] = (Q⊗ I)E[G̃P1(γ1)G̃P>1 (γ2)](Q⊗ I)

= (Q⊗ I)(I ⊗M1(γ1 ∧ γ2))(Q⊗ I) (A.59)

because E[G̃P1(γ1)G̃P>1 (γ2)] = I ⊗M1(γ1 ∧ γ2) by definition of G̃P1(γ). Thus, combing
(A.58) and (A.59) yields the desired result since Gaussian processes are uniquely defined
through their mean and covariance functions.

15We will do this by showing that their covariance functions are the same. Hence, because both
processes have mean zero, equality follows due to the fact that Gaussian processes are uniquely
defined through their mean and covariance functions.
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sup Wald-test. In order to show the claim for this case, we are left to show that
[C−1

1 (γ)H1(γ)C−1
1 (γ)+C−1

2 (γ)H2(γ)C−1
2 (γ)]−1 = σ−2C2(γ)C−1C1(γ) under Assumptions

A.1 and A.2. The equality of E(γ) and Ẽ(γ) has already been shown in the previous
part of the proof.
Under assumption A.2 it follows for H1(γ) that

H1(γ) = A0E[xtx
>
t {εt + u>t θ

0
z}2

1{qt≤γ}]A
0>

= A0E
[
E[xtx

>
t {εt + u>t θ

0
z}2

1{qt≤γ}|xt, qt]
]
A0>

= A0E
[
xtx
>
t 1{qt≤γ}E[(εt + u>t θ

0
z)

2|xt, qt]
]
A0>

= A0E[xtx
>
t 1{qt≤γ}(σ

2
ε + 2Σ>ε,uθ

0
z + θ0>

z Σuθ
0
z)]A

0>

= σ2A0M1(γ)A0>

= σ2C1(γ). (A.60)

Similarly, for H2(γ) it holds under Assumption A.2 that

H2(γ) = σ2C2(γ). (A.61)

Therefore, using (A.60) and (A.61), it follows that

[C−1
1 (γ)H1(γ)C−1

1 (γ) + C−1
2 (γ)H2(γ)C−1

2 (γ)]−1 = [σ2C−1
1 (γ) + σ2C−1

2 (γ)]−1

= σ−2[C−1
1 (γ) + C−1

2 (γ)]−1. (A.62)

Having (A.62) we are left to show that [C−1
1 (γ) +C−1

2 (γ)]−1 = C2(γ)C−1C1(γ) or equiv-
alently that C−1

1 (γ) + C−1
2 (γ) = C−1

1 (γ)CC−1
2 (γ). To do so, we will rewrite expression

(A.62) and make use of the Kailath identity in line 516 (cf. Kailath (1980)):

C−1
1 (γ) + C−1

2 (γ) = C−1
1 (γ) + [C − CC−1C1(γ)]−1

= C−1
1 (γ) + [C(I − C−1C1(γ))]−1

= C−1
1 (γ) + [I − C−1C1(γ)]−1C−1

= C−1
1 (γ)− C−1

1 (γ)(−C1(γ))[I + C−1C1(γ)C−1
1 (γ)(−C1(γ))]C−1C1(γ)C−1

1 (γ)

= [C1(γ)− C1(γ)C−1C1(γ)]−1

= [(I − C1(γ)C−1)C1(γ)]−1

= [(C − C1(γ))C−1C1(γ)]−1

= C−1
1 (γ)C−1C−1

2 (γ). (A.63)

Finally, equations (A.60)–(A.63) yield the desired result that

E>(γ)[C−1
1 (γ)H1(γ)C−1

1 (γ) + C−1
2 (γ)H2(γ)C−1

2 (γ)]−1E(γ) =
Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ(γ)

σ2

16The Kailath identity reads as follows:
Let A be a non-singular n×n, B an n×k and D an k×n matrix such that A+BD is non-singular.

Then,
(A+BD)−1 = A−1 −A−1B(I +DA−1B)−1DA−1.

In our case set A = C1(γ), B = −C1(γ) and D = C−1C1(γ) to apply the identity.
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under Assumption A.2 and therefore, proving the claim.

Proof of Corollary 2. First we note that by Assumption A.1.4 it follows that Prob(qt ≤
γ) = G(γ) is continuous. Further, we will replace the threshold parameter γ by an equiv-
alent value, say λ, defined on the open unit interval (0; 1). To see how this works, note
first that Γ ⊂ (γmin, γmax). Then, Prob(qt ≤ γmin) = 0 and Prob(qt ≤ γmax) = 1. Sup-
pose now, that Γ can be defined in terms of a cut-off value, say the κ-th quantile, i.e.
Γ = [γκ, γ1−κ]. Then equivalently, we have Prob(qt ≤ γ) = λ for all γ ∈ Γ where λ is
uniformly distributed on Λκ = (κ; 1− κ), i.e λ ∼ U(Λκ).
Now, by Assumption A.3, we have that

M1(γ1 ∧ γ2) = E[xtx
>
t 1{qt≤γ1∧γ2}] = E[xtx

>
t ]E[1{qt≤γ1∧γ2}] = min{λ1, λ2}M. (A.64)

This also implies that

M1(γ) = λM (A.65a)

C1(γ) = A0M1(γ)A0> = λA0MA0> = λC (A.65b)

M2(γ) = (1− λ)M (A.65c)

C2(γ) = A0M2(γ)A0> = (1− λ)A0MA0> = (1− λ)C. (A.65d)

Moreover, (A.64) implies that –under Assumptions A.2 and A.3– the Gaussian process
GP1(γ) can be restated as

GP1(γ) = (Q⊗ I)G̃P1(γ) = (Q⊗M1/2)BM1(λ) ⇐⇒ GPmat,1(γ) = M1/2BMmat,1(λ)Q
(A.66)

where BM1(λ) denotes a q(p1 + 1) × 1-Brownian motion on the open unit interval,
implying that B1(γ) can be restated in terms of λ as B1(λ) (we will see the exact
expression later in this proof).
Therefore, we obtain

E>(γ)C2(γ)C−1C1(γ)E(γ) = [C−1
1 (γ)B1(γ)− C−1

2 (γ)B2(γ)]>

× C2(γ)C−1C1(γ)

× [C−1
1 (γ)B1(γ)− C−1

2 (γ)B2(γ)]

=
1

λ(1− λ)
[C−1B1(λ)− λC−1B1(1)]>

× C[C−1B1(λ)− λC−1B1(1)]

=
1

λ(1− λ)
[C−1/2B1(λ)− λC−1/2B1(1)]>

× [C−1/2B1(λ)− λC−1/2B1(1)]. (A.67)

Next, we show that the term C−1/2B1(λ) equals in distribution [(Qθ̃0
z)
> ⊗ I]BM1(λ)−

λ[(θ̌0
z)
>⊗I]BM1(1). Because of (A.65a) and (A.66) it follows that B1(λ) = A0[GPmat,1(γ)θ̃0

z−
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M1(γ)M−1GPmat,1θ̌
0
z ] = A0[M1/2BMmat,1(λ)Qθ̃0

z − λM1/2BMmat,1(1)Qθ̌0
z ]. Further, re-

call that C = A0MA0>. Thus:

C−1/2B1(λ) = (A0MA0>)−1/2A0M1/2BMmat,1(λ)Qθ̃0
z

− λ(A0MA0>)−1/2A0M1/2BMmat,1(1)Qθ̌0
z

= [(Qθ̃0
z)
> ⊗ (A0MA0>)−1/2AM1/2]BM1(λ)

− λ[(Qθ̌0
z)
> ⊗ (A0MA0>)−1/2AM1/2]BM1(1)

= Φ− λΨ (A.68)

where

Φ ∼ N
(

0, [(Qθ̃0
z)
> ⊗ (A0MA0>)−1/2AM1/2][(Qθ̃0

z)⊗M1/2A0>(A0MA0>)−1/2]
)

= N
(

0, [(Qθ̃0
z)
>(Qθ̃0

z)]⊗ I
)

(A.69a)

Ψ ∼ N
(
0, [(Qθ̌0

z)
> ⊗ (A0MA0>)−1/2AM1/2][(Qθ̌0

z)⊗M1/2A0>(A0MA0>)−1/2]
)

= N
(
0, [(Qθ̌0

z)
>(Qθ̌0

z)]⊗ I
)
. (A.69b)

Thus, it holds that

Φ
D
= [(Qθ̃0

z)
> ⊗ I]BM1(λ) (A.70a)

Ψ
D
= [(Qθ̌0

z)
> ⊗ I]BM1(1) (A.70b)

implying for (A.68) that

C−1/2B1(λ)
D
= [(Qθ̃0

z)
> ⊗ I]BM1(λ)− λ[(Qθ̌0

z)
> ⊗ I]BM1(1). (A.71)

So, we have that

C−1/2B1(λ)− λC−1/2B1(1)
D
= [(Qθ̃0

z)
> ⊗ I]BM1(λ)− λ[(Qθ̌0

z)
> ⊗ I]BM1(1)

− λ[(Qθ̃0
z)
> ⊗ I]BM1(1) + λ[(Qθ̌0

z)
> ⊗ I]BM1(1)

= [(Qθ̃0
z)
> ⊗ I]BM1(λ)− λ[(Qθ̃0

z)
> ⊗ I]BM1(1) (A.72)

Using (A.72), (A.67) can be written as

E>(γ)C2(γ)C−1C1(γ)E(γ)
D
=

{
[(Qθ̃0

z)
> ⊗ I]BB(λ)

}> {
[(Qθ̃0

z)
> ⊗ I]BB(λ)

}
λ(1− λ)

(A.73)

where BB(λ) = BM1(λ)− λBM1(1).
Finally, to show the claim we need to divide (A.73) by σ2 = θ̃0>

z Σθ̃0
z = (Qθ̃0

z)
>(Qθ̃0

z) and
obtain

E>(γ)C2(γ)C−1C1(γ)E(γ)

σ2

D
=

{
[(Qθ̃0

z)
> ⊗ I]BB(λ)

}> {
[(Qθ̃0

z)
> ⊗ I]BB(λ)

}
λ(1− λ)(Qθ̃0

z)
>(Qθ̃0

z)

=

{
[(Qθ̃0

z)
> ⊗ I]BB(λ)

}> {
[(Qθ̃0

z)
> ⊗ I]BB(λ)

}
λ(1− λ)(Qθ̃0

z)
>(Qθ̃0

z)
. (A.74)
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Further, note that

[(Qθ̃0
z)
> ⊗ I]BB(λ)

[(Qθ̃0
z)
>(Qθ̃0

z)]
1/2

= [[(Qθ̃0
z)
>(Qθ̃0

z)]
−1/2(Qθ̃0

z)
> ⊗ I]BB(λ)

∼ N
(

0, [(Qθ̃0
z)
>(Qθ̃0

z)]
−1/2(Qθ̃0

z)
>(Qθ̃0

z)[(Qθ̃
0
z)
>(Qθ̃0

z)]
−1/2 ⊗ I

)
= N (0, I). (A.75)

Therefore, it holds that

E>(γ)C2(γ)C−1C1(γ)E(γ)

σ2

D
=
BB>(λ)BB(λ)

λ(1− λ)
, (A.76)

proving the claim.

B. 2SLS Results involving a Threshold Reduced Form

Lemma 3. Under Assumption A.1, T (ρ̂− ρ0) = Op(1), T 1/2(Π̂i−Π0
i ) = Op(1), i = 1, 2

and that the distribution is as if ρ0 was known we have that

T 1/2 vec(Π̂i(ρ
0)− Π0

i )
D−→ N (0, Vi)

holds. Further, V1 = (Ip1 ⊗M−1
1 (ρ0))E[(utu

>
t ⊗ xtx>t )1{qt≤ρ0}](Ip1 ⊗M−1

1 (ρ0)) and V2 =
(Ip1 ⊗M−1

2 (ρ0))E[(utu
>
t ⊗ xtx>t )1{qt>ρ0}](Ip1 ⊗M−1

2 (ρ0)).

Proof of Lemma 3. We will prove the statement for T 1/2 vec(Π̂1(ρ0)−Π0
1). The proof

for T 1/2 vec(Π̂2(ρ0)−Π0
2) follows similar arguments and is therefore omitted for brevity.

By construction

Π̂1(ρ0) = (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 Z)

= (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 Xρ0

1 Π0
1 +Xρ0>

1 Xρ0

2 Π0
2 +Xρ0>

1 u)

= Π0
1 + (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 )

where the last equality holds because Xρ0>
1 Xρ0

2 = 0. So, the “cross”-terms cancel.
Hence,

T 1/2 vec(Π̂1(ρ0)− Π0
1) = vec

(
(T−1Xρ0>

1 Xρ0

1 )−1(T−1/2Xρ0>
1 u)

)
= (Ip1 ⊗ (T−1Xρ0>

1 Xρ0

1 )−1) vec(T 1/2(Xρ0>
1 uρ

0

1 )).

Next, (T−1Xρ0>
1 Xρ0

1 )−1 p−→M−1
1 (ρ0) and by Lemma 1

T 1/2 vec(Xρ>
1 uρ1) =⇒ GP1(ρ).
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Note that GP1(ρ) is a zero-mean Gaussian process with covariance function CGP(ρ1, ρ2) =
E[(utu

>
t ⊗ xtx>t )1{qt≤ρ1∧ρ2}]. Therefore,

T 1/2 vec(Π̂1(ρ0)− Π0
1) =⇒ (Ip1 ⊗M−1

1 (ρ0))GP1(ρ0).

Because GP1(ρ0) denotes the Gaussian process at a particular value ρ0 it follows that
GP1(ρ0) ∼ N (0,E[utu

>
t ⊗ xtx>t 1{qt≤ρ0}]) and therefore,

T 1/2 vec(Π̂1(ρ0)− Π0
1)
D−→ (Ip1 ⊗M−1

1 (ρ0))N (0,E[utu
>
t ⊗ xtx>t 1{qt≤ρ0}]),

which concludes the proof.

Lemma 4. Suppose Assumption A.1 holds. Then, under H0,

T−1Ŵ γ>
1 Ŵ γ

1

p−→ A0
1M1(γ ∧ ρ0)A0>

1 + A0
2(M1(γ)−M1(γ ∧ ρ0))A0>

2 ≡ CA,1(γ)

and

T−1/2Ŵ γ>
1 ε̃γ1 =⇒ A0

1

[
GPmat,1(γ)θ̃0

z −M1(γ ∧ ρ0)M−1
1 (ρ0)GPmat,1(ρ0)θ̌0

z

]
+ A0

2

[
(GPmat,1(γ)− GPmat,1(γ ∧ ρ0))θ̃0

z

− (M1(γ)−M1(γ ∧ ρ0))M−1
2 (ρ0)GPmat,2(ρ0)θ̌0

z

]
≡ BA,1(γ)

Proof of Lemma 4. This proof is done in two parts: First, we show the asymptotic
behavior of T−1Ŵ γ>

1 Ŵ γ
1 and afterwards the asymptotic behavior of T−1/2Ŵ γ>

1 ε̃γ1 .
Also, it will be helpful during the proofs to consider three cases: Case (a) assumes that
γ < ρ0, Case (b) that γ = ρ0 and Case (c) that γ > ρ0. There are two sub-cases within
each case:

• In case (a) it follows that γ < ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2 and γ =
ρ0 +O(1) by construction. This implies two sub-cases: (a.1) with γ < ρ̂ ≤ ρ0 and
(a.2) with γ < ρ0 < ρ̂.

• In case (b) there are two sub-cases: (b.1) with γ = ρ0 ≤ ρ̂ and (b.2) with ρ̂ < γ = ρ0

• In case (c) it follows that γ > ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2 and γ =
ρ0 +O(1) by construction. This implies two sub-cases: (c.1) with ρ̂ ≤ ρ0 < γ and
(c.2) with ρ0 < ρ̂ < γ.

Claim (i). Starting with case (a), because γ < ρ̂ for both possible sub-cases, it holds
uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = Â1(T−1Xγ>
1 Xγ

1 )Â>1

= A0
1(T−1Xγ>

1 Xγ
1 )A0>

1 + op(1)
p−→ A0

1M1(γ)A0>
1 (B.1)

51



by Lemma 2.
In case (b), we first consider sub-case (b.1). Because γ ≤ ρ̂, it holds uniformly in γ that

T−1Ŵ γ>
1 ε̃γ1 = Â1(T−1Xγ>

1 Xγ
1 )Â>1

= A0
1(T−1Xγ>

1 Xγ
1 )A0>

1 + op(1)
p−→ A0

1M1(γ)A0>
1 (B.2)

by Lemma 2. In sub-case (b.2) it follows that

T−1Ŵ γ>
1 Ŵ γ

1 = T−1Ŵ ρ̂>
1 Ŵ ρ̂

1 + T−1(Ŵ γ>
1 Ŵ γ

1 − Ŵ
ρ̂>
1 Ŵ ρ̂

1 )

= Â1(T−1X ρ̂>
1 X ρ̂

1 )Â>1 + Â2(T−1Xρ0>
1 Xρ0

1 − T−1X ρ̂>
1 X ρ̂

1 )Â>2 , (B.3)

because ρ̂ < γ = ρ0. By Lemma 2 we have that ρ̂ = ρ0 +Op(T−1) and therefore,

T−1X ρ̂>
1 X ρ̂

1 = T−1

T∑
t=1

xtx
>
t 1{qt≤ρ̂}

= T−1

T∑
t=1

xtx
>
t 1{qt≤ρ0} + T−1

T∑
t=1

xtx
>
t (1{qt≤ρ̂} − 1{qt≤ρ0})

= T−1Xρ0>
1 Xρ0

1 +Op(T−1)

= T−1Xρ0>
1 Xρ0

1 + op(1). (B.4)

So, (B.3), (B.4) and Lemma 2 imply, uniformly in γ,

T−1Ŵ γ>
1 Ŵ γ

1

p−→ A0
1M1(ρ0)A0>

1 = A0
1M1(γ)A0>

1 . (B.5)

Last, we consider case (c). In sub-case (c.1) we have uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = T−1Ŵ ρ̂>
1 Ŵ ρ̂

1 + T−1(Ŵ ρ0>
1 Ŵ ρ0

1 − Ŵ
ρ̂>
1 Ŵ ρ̂

1 )

+ T−1(Ŵ γ>
1 Ŵ γ

1 − Ŵ
ρ0>
1 Ŵ ρ0

1 )

= Â1(T−1X ρ̂>
1 X ρ̂

1 )Â>1 + Â2(T−1Xρ0>
1 Xρ0

1 − T−1X ρ̂>
1 X ρ̂

1 )Â>2

+ Â2(T−1Xγ>
1 Xγ

1 − T−1Xρ0>
1 Xρ0

1 )Â>2
p−→ A0

1M1(ρ0)A0>
1 + A0

2(M1(γ)−M1(ρ0))A0>
2 (B.6)

by Lemma 2. In sub-case (c.2) it follows uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = T−1Ŵ ρ0>
1 Ŵ ρ0

1 + T−1(Ŵ ρ̂>
1 Ŵ ρ̂

1 − Ŵ
ρ0>
1 Ŵ ρ0

1 )

+ T−1(Ŵ γ>
1 Ŵ γ

1 − Ŵ
ρ̂>
1 Ŵ ρ̂

1 )

= Â1(T−1Xρ0>
1 Xρ0

1 )Â>1 + Â1(T−1X ρ̂>
1 X ρ̂

1 − T−1Xρ0>
1 Xρ0

1 )Â>1

+ Â2(T−1Xγ>
1 Xγ

1 − T−1X ρ̂>
1 X ρ̂

1 )Â>2
p−→ A0

1M1(ρ0)A0>
1 + A0

2(M1(γ)−M1(ρ0))A0>
2 . (B.7)
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So, putting results (B.1), (B.2), (B.5)–(B.7) together yields the claim.

Claim (ii). To show this claim, we present the underlying ideas for case (a). Since
cases (b) and (c) follows similar reasoning we only state the most important intermedi-
ate results to conclude the claim.
Starting with sub-case (a.1) of (a) it holds that

T−1/2Ŵ γ>
1 ε̃γ1 = Â1(T−1/2Xγ>

1 ε̃γ1)

= Â1(T−1/2Xγ>
1 (εγ1 + (Zγ

1 − Ẑ
γ
1 )θ0

z)

= Â1

[
T−1/2Xγ>

1 (εγ1 + (Xγ
1 Π0

1 + uγ1 −X
γ
1 Π̂1)θ0

z)
]

= Â1

[
T−1/2Xγ>

1 sγ1 − (T−1Xγ>
1 Xγ

1 )T 1/2(Π̂1 − Π0
1)θ0

z

]
, (B.8)

By Lemma 1 it follows that T−1/2Xγ>
1 sγ1 =⇒ GPmat,1(γ)θ̃0

z uniformly in γ where vec(GPmat,1(γ)) =
GP1(γ) with GP1(γ) as in Lemma 1 and θ̃0

z = (1, θ0>
z )>. Moreover, uniformly in γ

(T−1Xγ>
1 Xγ

1 )T 1/2(Π̂1 − Π0
1)θ0

z = (T−1Xγ>
1 Xγ

1 )(T−1X ρ̂>
1 X ρ̂

1 )−1(T−1/2X ρ̂>
1 uρ̂1)θ0

z

p−→M1(γ)M−1
1 (ρ0)GPmat,1(ρ0)θ̌0

z (B.9)

Therefore, (B.8) behaves uniformly in γ as

T−1/2Ŵ γ>
1 ε̃γ1 =⇒ A0

1

[
GPmat,1(γ)θ̃0

z −M1(γ)M−1
1 (ρ0)GPmat,1(ρ0)θ̌0

z

]
. (B.10)

As in sub-case (a.1), for sub-case (a.2) it follows that

T−1/2Ŵ γ>
1 ε̃γ1 = Â1

[
T−1/2Xγ>

1 sγ1 − (T−1Xγ>
1 Xγ

1 )T 1/2(Π̂1 − Π0
1)θ0

z

]
. (B.11)

However, in contrast to sub-case (a.1), it now holds that17

Π̂1 − Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 ) + op(1) (B.12)

because

Π̂1 = (X ρ̂>
1 X ρ̂

1 )−1(X ρ̂>
1 Z ρ̂

1 )

= (X ρ̂>
1 X ρ̂

1 )−1(Xρ0>
1 Xρ0

1 Π0
1 +Xρ0>

1 Xρ0

1 Π0
2 −X

ρ̂>
1 X ρ̂

1 Π0
2 +X ρ̂>

1 uρ̂1)

= Π0
1 + (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 ) + op(1) (B.13)

17Note that in sub-case (a.1) we could also write Π̂1−Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 ) +op(1). However,
the composition of the op(1)-term is different in both cases, as illustrated in (B.13). E.g. in (B.13)

also Xρ0>
1 Xρ0

1 Π0
2 −X

ρ̂>
1 X ρ̂

1Π0
2 is included in the op(1)-term, whereas in (a.1) this term completely

vanishes already in samples (rather than only asymptotically) because of the relative locations of γ,
ρ0 and ρ̂.
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by Lemma 2. So, putting (B.11) and (B.13) together yields uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ1 =⇒ A0

1

[
GPmat,1(γ)θ̃0

z −M1(γ)M−1
1 (ρ0)GPmat,1(ρ0)θ̃0

z

]
. (B.14)

For case (b), sub-case (b.1), it follows, as for sub-case (a.2), uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ1 = Â1

[
T−1/2Xγ>

1 sγ1 − (T−1Xγ>
1 Xγ

1 )T 1/2(Π̂1 − Π0
1)θ0

z

]
(B.15)

with
Π̂1 − Π0

1 = (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 ) + op(1). (B.16)

So, as for sub-case (a.2), uniformly in γ

T−1/2Ŵ γ>
1 ε̃γ1 =⇒ A0

1

[
GPmat,1(γ)θ̃0

z −M1(γ)M−1
1 (ρ0)GPmat,1(ρ0)θ̃0

z

]
, (B.17)

where M1(γ)M−1
1 (ρ0) cancels whenever γ = ρ0.

For sub-case (b.2) it holds uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ1 = Â1

[
T−1/2X ρ̂>

1 sρ̂1 − (T−1X ρ̂>
1 X ρ̂

1 )T 1/2(Π̂1 − Π0
1)θ0

z

]
+ Â2

[
T−1/2(Xρ0>

1 sρ
0

1 −X
ρ̂>
1 sρ̂1)− T−1(Xρ0>

1 Xρ0

1 −X
ρ̂>
1 X ρ̂

1 )T 1/2(Π̂2 − Π0
2)θ0

z

]
=⇒ A0

1

[
GPmat,1(γ)θ̃0

z − GPmat,1(γ)θ̌0
z

]
(B.18)

by Lemmata 1, 2 and (B.4).
Last, we show the claim for case (c). In sub-case (c.1) it holds uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ1 = Â1

[
T−1/2X ρ̂>

1 sρ̂1 − (T−1X ρ̂>
1 X ρ̂

1 )T 1/2(Π̂1 − Π0
1)θ0

z

]
+ Â2

[
T−1/2(Xρ0>

1 sρ
0

1 −X
ρ̂>
1 sρ̂1)− T−1(Xρ0>

1 Xρ0

1 −X
ρ̂>
1 X ρ̂

1 )T 1/2(Π̂2 − Π0
2)θ0

z

]
+ Â2

[
T−1/2(Xγ>

1 sγ1 −X
ρ0>
1 sρ

0

1 )− T−1(Xγ>
1 Xγ

1 −X
ρ0>
1 Xρ0

1 )T 1/2(Π̂2 − Π0
2)θ0

z

]
=⇒ A0

1

[
GPmat,1(ρ0)θ̃0

z − GPmat,1(ρ0)θ̌0
z

]
+ A0

2

[
GPmat,1(γ)θ̃0

z − GPmat,1(ρ0)θ̃0
z − (M1(γ)−M1(ρ0))M−1

2 (ρ0)GPmat,2(ρ0)θ̌0
z

]
,

(B.19)

where the middle term drops because T−1/2(Xρ0>
1 sρ

0

1 −X
ρ̂>
1 sρ̂1) = op(1), T−1(Xρ0>

1 Xρ0

1 −
X ρ̂>

1 X ρ̂
1 ) = op(1) and T 1/2(Π̂2 − Π0

2) = Op(1) by Lemma 2.
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Last, sub-case (c.2) yields uniformly in γ

T−1/2Ŵ γ>
1 ε̃γ1 = Â1

[
T−1/2Xρ0>

1 sρ
0

1 − (T−1Xρ0>
1 Xρ0

1 )T 1/2(Π̂1 − Π0
1)θ0

z

]
+ Â1

[
T−1/2(X ρ̂>

1 sρ̂1 −X
ρ0>
1 sρ

0

1 )− T−1(X ρ̂>
1 X ρ̂

1 −X
ρ0>
1 Xρ0

1 )T 1/2(Π̂2 − Π0
2)θ0

z

]
+ Â2

[
T−1/2(Xγ>

1 sγ1 −X
ρ̂>
1 sρ̂1)− T−1(Xγ>

1 Xγ
1 −X

ρ̂>
1 X ρ̂

1 )T 1/2(Π̂2 − Π0
2)θ0

z

]
=⇒ A0

1

[
GPmat,1(ρ0)θ̃0

z − GPmat,1(ρ0)θ̌0
z

]
+ A0

2

[
GPmat,1(γ)θ̃0

z − GPmat,1(ρ0)θ̃0
z − (M1(γ)−M1(ρ0))M−1

2 (ρ0)GPmat,2(ρ0)θ̌0
z

]
,

(B.20)

where the middle term drops because T−1/2(X ρ̂>
1 sρ̂1 −X

ρ0>
1 sρ

0

1 ) = op(1), T−1(X ρ̂>
1 X ρ̂

1 −
Xρ0>

1 Xρ0

1 ) = op(1) and T 1/2(Π̂2 − Π0
2) = Op(1) by Lemma 2.

Finally, putting (B.10), (B.14), (B.17)–(B.20) together immediately yields the claim.

Proof of Theorem 2. In order to show the statement of Theorem 2, we first prove it
for the sup LR test and afterwards for the sup Wald test.

sup LR Test: The proof of this result follows the same arguments as in the LRF case.
For brevity, we will only display the major differences to the LRF case. As in the LRF
case, we split the proof into two parts: in part (i) we will show that T−1SSR1(γ)

p−→ σ2

and in part (ii) that SSR0 − SSR1(γ) =⇒ E>A (γ)DA,2(γ)CA,1(γ)E(γ).
Part (i). As in the LRF proof (cf. equation (A.41)) it holds uniformly in γ that

T−1SSR1(γ) = T−1[Y γ
1 − Ŵ

γ
1 θ̂

γ
1 ]>[Y γ

1 − Ŵ
γ
1 θ̂

γ
1 ]

+ T−1[Y γ
2 − Ŵ

γ
2 θ̂

γ
2 ]>[Y γ

2 − Ŵ
γ
2 θ̂

γ
2 ]

= T−1[Ŵ γ
1 (θ0 − θ̂γ1 ) + ε̃γ1 ]>[Ŵ γ

1 (θ0 − θ̂γ1 ) + ε̃γ1 ]

+ T−1[Ŵ γ
2 (θ0 − θ̂γ2 ) + ε̃γ2 ]>[Ŵ γ

2 (θ0 − θ̂γ2 ) + ε̃γ2 ]

= T−1ε̃>ε̃

+ 2(T−1ε̃γ1Ŵ
γ
1 )(θ0 − θ̂γ1 ) + (θ0 − θ̂γ1 )>(T−1Ŵ γ>

1 Ŵ γ
1 )(θ0 − θ̂γ1 )

+ 2(T−1ε̃γ2Ŵ
γ
2 )(θ0 − θ̂γ2 ) + (θ0 − θ̂γ2 )>(T−1Ŵ γ>

2 Ŵ γ
2 )(θ0 − θ̂γ2 )

= T−1ε̃>ε̃+ op(1), (B.21)

where the last equality holds because, for i = 1, 2, T−1Ŵ γ>
i ε̃γi = op(1), T−1Ŵ γ>

i Ŵ γ
i =

Op(1) and θ0 − θ̂γi = (T−1Ŵ γ>
i Ŵ γ

i )−1(T−1Ŵ γ>
i ε̃γi ) = Op(1)op(1) = op(1) uniformly in γ

by Lemma 3.
Next, rewrite (B.21) as

T−1SSR1(γ) = T−1ε̃ρ
0>

1 ε̃ρ
0

1 + T−1ε̃ρ
0>

2 ε̃ρ
0

2 + op(1). (B.22)
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By construction

ε̃ρ
0

1 = ερ
0

1 + (Zρ0

1 − Ẑ
ρ0

1 )θ0
z (B.23)

and thus

ε̃ρ
0

1 =

{
sρ

0

1 +Xρ0

1 (Π0
1 − Π̂1) if ρ0 ≤ ρ̂

sρ
0

1 +Xρ0

1 (Π0
1 − Π̂1) + op(1) if ρ0 > ρ̂

(B.24)

Therefore, we obtain

T−1ε̃ρ
0>

1 ε̃ρ
0

1 = T−1sρ
0>

1 sρ
0

1 + 2(T−1sρ
0>

1 Xρ0

1 )(Π0
1 − Π̂1)

+ (Π0
1 − Π̂1)>(T−1Xρ0>

1 Xρ0

1 )(Π0
1 − Π̂1)

= T−1sρ
0>

1 sρ
0

1 + op(1) (B.25)

because T−1sρ
0>

1 Xρ0

1 = op(1) and T−1Xρ0>
1 Xρ0

1 = Op(1) by Lemma 3 and Π0
1−Π̂1 = op(1)

by Lemma 2.
Similarly, we obtain

T−1ε̃ρ
0>

2 ε̃ρ
0

2 = T−1sρ
0>

2 sρ
0

2 + op(1). (B.26)

Therefore, (B.22) reads as

T−1SSR1(γ) = T−1sρ
0>

1 sρ
0

1 + T−1sρ
0>

2 sρ
0

2 + op(1)

= T−1s>s+ op(1)
p−→ σ2

ε + 2Σ>ε,uθ
0
z + θ0>

z Σuθ
0
z ≡ σ2, (B.27)

uniformly in γ, proving part (i).

Part (ii). For this part, derivations remain as in the LRF case (up to equation
(A.46)). Utilizing Lemma 4, expressions (A.47) and (A.48) in the LRF proof become

T−1Ŵ γ>
i Ŵ γ

i

p−→ CA,i(γ) (B.28)

and
β̂ = DA,1(γ)β̂1 +DA,2(γ)β̂2 + op(1) (B.29)

by Lemma 3 with DA,1(γ) ≡ C−1
A CA,1(γ) and therefore, DA,2(γ) = C−1

A CA,2(γ) = Ip −
DA,1(γ). Consequently, equations (A.47)–(A.49) in the LRF proof are adjusted in this
fashion as well. The following derivations then remain the same.
Last, equation (A.55) from the LRF case now reads as 18

β̂1 − β̂2 = C−1
A,1(γ)BA,1(γ)− C−1

A,2(γ)BA,2(γ) ≡ EA(γ). (B.30)

Thus, as in the LRF case, it follows that

SSR0 − SSR1(γ) = (β̂1 − β̂2)>CA,2(γ)DA,1(γ)(β̂1 − β̂2) + op(1)

=⇒ E>A (γ)CA,2(γ)DA,1(γ)EA(γ) (B.31)

18A0 is replaced with A0
i , i = 1, 2, absorbed in the definition of BA,1(γ)
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uniformly in γ. Together with (B.27), (a.s.) continuity of the process EA(γ), the contin-
uous mapping theorem and weak convergence (uniformly in γ) it then follows that

sup
γ∈Γ

SSR0 − SSR1(γ)

SSR1(γ)/T
=⇒ sup

γ∈Γ

E>A (γ)CA,2(γ)DA,1(γ)EA(γ)

σ2
(B.32)

proving the claim of the theorem.

sup Wald Test: The Wald-type test statistic reads as

sup
γ∈Γ

W 2SLS
T,TRF(γ) = sup

γ∈Γ
T 1/2(θ̂γ1 − θ̂

γ
2 )>[T Var(θ̂γ1 ) + T Var(θ̂γ2 )]−1T 1/2(θ̂γ1 − θ̂

γ
2 ).

As already shown above, (pp. 28, cf. equation (B.30) with β̂i = T 1/2(θ̂γi −θ0) for i = 1, 2)
it holds uniformly in γ that

T 1/2(θ̂γ1 − θ̂
γ
2 ) =⇒ EA(γ) (B.33)

with EA(γ) as defined in (B.30).
So, we are left to derive the asymptotic behavior of

T Var(θ̂γi ) = (T−1Ŵ γ>
i Ŵ γ

i )−1
(
T−1

∑
Ti(γ)

ŵtŵ
>
t ê

2
t

)
(T−1Ŵ γ>

i Ŵ γ
i )−1, i = 1, 2.

Lemma 3 implies that
(T−1Ŵ γ>

i Ŵ γ
i )−1 p−→ C−1

A,i(γ) (B.34)

uniformly in γ and thus, the behavior of T−1
∑
Ti(γ) ŵtŵ

>
t ê

2
t is left to show.

To do so, as in the proof of Lemma 3, we consider 3 cases to facilitate exposition: Case
(a) assumes that γ < ρ0, case (b) that γ = ρ0 and case (c) that γ > ρ0. There are two
sub-cases within each case:

• In case (a) it follows that γ < ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2 and γ =
ρ0 +O(1) by construction. This implies two sub-cases: (a.1) with γ < ρ̂ ≤ ρ0 and
(a.2) with γ < ρ0 < ρ̂.

• In case (b) there are two sub-cases: (b.1) with γ = ρ0 ≤ ρ̂ and (b.2) with ρ̂ < γ = ρ0

• In case (c) it follows that γ > ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2 and γ =
ρ0 +O(1) by construction. This implies two sub-cases: (c.1) with ρ̂ ≤ ρ0 < γ and
(c.2) with ρ0 < ρ̂ < γ.

Moreover, we only provide derivations for T−1
∑

t ŵtŵ
>
t ê

2
t1{qt≤γ} for the sake of brevity.

The asymptotic behavior of T−1
∑

t ŵtŵ
>
t ê

2
t1{qt>γ} follows similar arguments and is

therefore omitted.
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Case (a). Because19 γ < ρ̂ in both sub-cases and thus, ŵt = Â1xt it follows that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = Â1

(
T−1

∑
t

xtx
>
t ê

2
t1{qt≤γ}

)
Â>1

= Â1

(
T−1

∑
t

xtx
>
t [yt − ŵ>t θ̂

γ
1 ]21{qt≤γ}

)
Â>1

= Â1

(
T−1

∑
t

xtx
>
t [ŵ>t (θ0 − θ̂γ1 ) + ε̃t]

2
1{qt≤γ}

)
Â>1 (B.35)

with ε̃t = εt + (zt − ẑz)>θ0
z . Let B = T−1

∑
t xtx

>
t [ŵ>t (θ0 − θ̂γ1 ) + ε̃t]

2
1{qt≤γ}. Then

B = T−1
∑
t

xtx
>
t ε̃

2
t1{qt≤γ}︸ ︷︷ ︸

=B1

+2T−1
∑
t

xtx
>
t ε̃tx

>
t Â
>
1 (θ0 − θ̂γ1 )1{qt≤γ}︸ ︷︷ ︸

=B2

+ T−1
∑
t

xtx
>
t (θ0 − θ̂γ1 )Â1xtx

>
t Â
>
1 (θ0 − θ̂γ1 )1{qt≤γ}︸ ︷︷ ︸

=B3

. (B.36)

Next, it can easily be shown that the terms B2 and B3 are both op(1) uniformly in γ
(cf. equation (A.32) and the subsequent arguments in the LRF case). Together with
Â1 = A0

1 + op(1) = Op(1) (as a consequence of Lemma 2) it follows that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = A0

1B1A
0>
1 + op(1). (B.37)

So, we are left to derive the asymptotic behavior of B1 for this case. First note that

ε̃t1{qt≤γ} = [εt + (zt − ẑt)>θ0
z ]1{qt≤γ}

= [εt + (Π0>
1 xt1{qt≤ρ0} + Π0>

2 xt1{qt>ρ0} + ut − Π̂>1 xt1{qt≤ρ̂} − Π̂>2 xt1{qt>ρ̂})]1{qt≤γ}

= [st + x>t (Π0
1 − Π̂1)θ0

z ]1{qt≤γ} (B.38)

because γ ≤ {ρ̂∧ρ0} implies 1{qt≤γ}1{qt≤ρ̂} = 1{qt≤γ}1{qt≤ρ0} = 1{qt≤γ} and 1{qt≤γ}1{qt>ρ̂} =
1{qt≤γ}1{qt>ρ0} = 0. Further, st = εt + u>t θ

0
z . Thus, B1 reads as

B1 = T−1
∑
t

xtx
>
t s

2
t1{qt≤γ} + 2T−1

∑
t

xtx
>
t stx

>
t (Π0

1 − Π̂1)θ0
z1{qt≤γ}

+ T−1
∑
t

xtx
>
t θ

0>
z (Π0

1 − Π̂1)>xtx
>
t (Π0

1 − Π̂1)θ0
z1{qt≤γ}. (B.39)

It can easily be shown that the last two terms on the right-hand side of this expression
are of order op(1) (cf. Equation (A.35) in the proof of Theorem 1 and the subsequent
arguments), uniformly in γ. Hence,

B1 = T−1
∑
t

xtxts
2
t1{qt≤γ} + op(1). (B.40)

19Implying that the structural form partition T1(γ) = {t : 1{qt≤γ} = 1} is a subset of the reduced form
partition T1(ρ̂) = {t : 1{qt≤ρ̂} = 1}.
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Hence, (B.36) reads as

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = A0

1

(
T−1

∑
t

xtx
>
t s

2
t1{qt≤γ}

)
A0>

1 + op(1) (B.41)

and thus, uniformly in γ,

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ}

p−→ A0
1E[xtx

>
t s

2
t1{qt≤γ}]A

0>
1 (B.42)

because the data has bounded fourth moments (at least) by Assumption A.1.2.

Case (b). Here, sub-case (b.1) with γ = ρ0 ≤ ρ̂ follows the same arguments as the
derivations of case (a). Hence, in this sub-case it also holds uniformly in γ that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ}

p−→ A0
1E[xtx

>
t s

2
t1{qt≤γ}]A

0>
1 . (B.43)

In sub-case (b.2) with ρ̂ < γ = ρ0 however, things look rather different. This is due
the fact the structural form partition T1(γ) = {t : 1{qt≤γ} = 1} is no more a subset
of the reduced form partition T1(ρ̂) = {t : 1{qt≤ρ̂} = 1}. Thus, we decompose the
partition of the sum based on 1{qt≤γ} by a partition based on 1{qt≤ρ̂} and one based on
1{qt≤γ} − 1{qt≤ρ̂}, retaining the original partition:

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = T−1

∑
t

ŵtŵ
>
t ê

2
t1{qt≤ρ̂} + T−1

∑
t

ŵtŵ
>
t ê

2
t (1{qt≤γ} − 1{qt≤ρ̂}).

(B.44)

From this it is obvious that ŵt1{qt≤ρ̂} = Â1xt1{qt≤ρ̂} and that ŵt(1{qt≤γ} − 1{qt≤ρ̂}) =

ŵt1{qt≤γ}1{qt>ρ̂} = Â2xt(1{qt≤γ} − 1{qt≤ρ̂}). Thus, (B.44) can be stated as

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = Â1

(
T−1

∑
t

xtx
>
t ê

2
t1{qt≤ρ̂}︸ ︷︷ ︸

=Ξ1

)
Â1

+ Â2

(
T−1

∑
t

xtx
>
t ê

2
t (1{qt≤γ} − 1{qt≤ρ̂})︸ ︷︷ ︸

=Ξ2

)
Â2. (B.45)

Next, we show the asymptotic behavior of the two terms Ξ1 and Ξ2. Following the
reasoning from case (a), we find for Ξ1 that, uniformly in γ,

Ξ1 = T−1
∑
t

xtx
>
t [ŵ>t (θ0 − θ̂γ1 ) + ε̃t]

2
1{qt≤ρ̂}

= T−1
∑
t

xtx
>
t ε̃

2
t1{qt≤ρ̂} + 2T−1

∑
t

xtx
>
t ε̃tx

>
t Â
>
1 (θ0 − θ̂γ1 )1{qt≤γ}

+ T−1
∑
t

xtx
>
t (θ0 − θ̂γ1 )>Â1xtx

>
t Â
>
1 (θ0 − θ̂γ1 )1{qt≤ρ̂}
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= T−1
∑
t

xtx
>
t ε̃

2
t1{qt≤ρ̂} + op(1)

= T−1
∑
t

xtxts
2
t1{qt≤ρ̂} + 2T−1

∑
t

xtx
>
t stx

>
t (Π0

1 − Π̂1)θ0
z1{qt≤ρ̂}

+ T−1
∑
t

xtx
>
t θ

0>
z (Π0

1 − Π̂1)>xtx
>
t (Π0

1 − Π̂1)θ0
z1{qt≤ρ̂} + op(1)

= T−1
∑
t

xtxts
2
t1{qt≤ρ̂} + op(1). (B.46)

Together with the facts that Â1 = A0
1 +op(1) = Op(1), that the data has bounded fourth

moments by Assumption A.1.2 and that ρ̂
p−→ ρ0 (cf. Lemma 2) it thus follows that

Â1Ξ1Â
>
1

p−→ A0
1E[xtx

>
t s

2
t1{qt≤ρ0}]A

0>
1 . (B.47)

For the term Ξ2, again by similar reasoning as in case (a) and uniformly in γ, we find
that

Ξ2 = T−1
∑
t

xtx
>
t [ŵt(θ

0 − θ̂γ1 ) + ε̃t]
2(1{qt≤γ} − 1{qt≤ρ̂})

= T−1
∑
t

xtx
>
t ε̃

2
t (1{qt≤γ} − 1{qt≤ρ̂})

+ 2T−1
∑
t

xtx
>
t ε̃tx

>
t Â
>
2 (θ0 − θ̂γ1 )(1{qt≤γ} − 1{qt≤ρ̂})

+ T−1
∑
t

xtx
>
t (θ0 − θ̂γ1 )>Â2xtx

>
t Â
>
2 (θ0 − θ̂γ1 )(1{qt≤γ} − 1{qt≤ρ̂})

= T−1
∑
t

xtx
>
t ε̃

2
t (1{qt≤γ} − 1{qt≤ρ̂}) + op(1)

= T−1
∑
t

xtx
>
t [st + x>t (Π0

1 − Π̂2)θ0
z ]

2(1{qt≤γ} − 1{qt≤ρ̂}) + op(1)

= T−1
∑
t

xtx
>
t s

2
t (1{qt≤γ} − 1{qt≤ρ̂})

+ 2T−1
∑
t

xtx
>
t stx

>
t (Π0

1 − Π̂2)θ0
z(1{qt≤γ} − 1{qt≤ρ̂})

+ T−1
∑
t

xtx
>
t θ

0>
z (Π0

1 − Π̂2)>xtx
>
t (Π0

1 − Π̂2)θ0
z(1{qt≤γ} − 1{qt≤ρ̂}) + op(1)

(B.48)

where the second equality used the fact that ŵt(1{qt≤γ} − 1{qt≤ρ̂}) = ŵt1{qt≤γ}1{qt>ρ̂} =

Â2xt1{qt≤γ}1{qt>ρ̂} = Â2xt(1{qt≤γ} − 1{qt≤ρ̂}). The third equality holds by the same
reasoning as in the LRF case (cf. Equation (A.32) and the subsequent arguments).
The fourth and fifth equalites utilize the definition of ε̃t = εt + (zt − ẑt)

>θ0
z and the

facts that zt(1{qt≤γ} − 1{qt≤ρ̂}) = zt1{qt≤γ}1{qt>ρ̂} = (Π0>
1 xt + ut)(1{qt≤γ} − 1{qt≤ρ̂}) and
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ẑt(1{qt≤γ} − 1{qt≤ρ̂}) = zt1{qt≤γ}1{qt>ρ̂} = Π̂>2 xt(1{qt≤γ} − 1{qt≤ρ̂}).
Next, it holds that ρ̂ = ρ0 +Op(T−1) by Lemma 2 and thus that, uniformly in γ,

Ξ2 = Op(T−1) (B.49)

implying that
Â2Ξ2Â

>
2

p−→ 0 (B.50)

because Â2 = A0
2 + op(1) = Op(1) by Lemma 2. Thus, combining (B.47) and (B.50)

yields that, uniformly in γ,

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ}

p−→ A0
1E[xtx

>
t s

2
t1{qt≤γ}]A

0>
1 . (B.51)

Case (c). For both sub-cases of case c it holds that the structural form partition based
on 1{qt≤γ} is not a further restriction on the (estimated) reduced form partition based on
1{qt≤ρ̂}, as in sub-case (b.2). To circumvent this problem we will use a decomposition of
the involved summation. That is, in sub-case (c.1) we will first sum over all observations
satisfying 1{qt≤ρ̂} = 1, then all observations satisfying 1{qt≤ρ0} − 1{qt≤ρ̂} = 1 and finally
all observations with 1{qt≤γ} − 1{qt≤ρ0} = 1. Similarly, in sub-case (c.2) the decomposi-
tion is based on 1{qt≤ρ0} = 1, 1{qt≤ρ̂} − 1{qt≤ρ0} = 1 and 1{qt≤γ} − 1{qt≤ρ̂} = 1.

Therefore, in sub-case (c.1) it holds that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = T−1

∑
t

ŵtŵ
>
t ê

2
t1{qt≤ρ̂}

+ T−1
∑
t

ŵtŵ
>
t ê

2
t (1{qt≤ρ0} − 1{qt≤ρ̂})

+ T−1
∑
t

ŵtŵ
>
t ê

2
t (1{qt≤γ} − 1{qt≤ρ0})

= Â1

(
T−1

∑
t

xtx
>
t ê

2
t1{qt≤ρ̂}︸ ︷︷ ︸

=D1

)
Â>1

+ Â2

(
T−1

∑
t

xtx
>
t ê

2
t (1{qt≤ρ0} − 1{qt≤ρ̂})︸ ︷︷ ︸

=D2

)
Â>2

+ Â2

(
T−1

∑
t

xtx
>
t ê

2
t (1{qt≤γ} − 1{qt≤ρ0})︸ ︷︷ ︸

=D3

)
Â>2 (B.52)

As already shown (cf. Equation (B.47)) it holds uniformly in γ that

Â1D1Â
>
1

p−→ A0
1E[xtx

>
t s

2
t1{qt≤ρ0}]A

0>
1 . (B.53)
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Moreover, as argued for (B.49) it also holds that

Â2D2Â
>
2 = op(1) (B.54)

because ρ̂ = ρ0 +Op(T−1) by Lemma 2 implying D2 = Op(T−1) and Â2 = A0
2 + op(1) by

Lemma 2.
For the remaining quantity D3 in (B.52) we find that

D3 = T−1
∑
t

xtx
>
t ε̃

2
t (1{qt≤γ} − 1{qt≤ρ0})

+ 2T−1
∑
t

xtx
>
t ε̃tx

>
t Â
>
2 (θ0 − θ̂γ1 )(1{qt≤γ} − 1{qt≤ρ0})

+ T−1
∑
t

xtx
>
t (θ0 − θ̂γ1 )>Â2xtx

>
t Â
>
2 (θ0 − θ̂γ1 )(1{qt≤γ} − 1{qt≤ρ0}) (B.55)

where the last two quantities on the right hand side are, as already shown, of order op(1)

because θ0 − θ̂γ1 = op(1) by Lemma 3 and the (scaled) sums are of order Op(1). Thus,

D3 = T−1
∑
t

xtx
>
t ε̃

2
t (1{qt≤γ} − 1{qt≤ρ0}) + op(1). (B.56)

Last, because ε̃t(1{qt≤γ} − 1{qt≤ρ0}) = [st + x>t (Π0
2 − Π̂2)θ0

z ](1{qt≤γ} − 1{qt≤ρ0}) it follows,
as before, that

D3 = T−1
∑
t

xtx
>
t s

2
t (1{qt≤γ} − 1{qt≤ρ0})

+ 2T−1
∑
t

xtx
>
t stx

>
t (Π0

2 − Π̂2)θ0
z(1{qt≤γ} − 1{qt≤ρ0})

+ T−1
∑
t

xtx
>
t θ

0>
z (Π0

2 − Π̂2)>xtx
>
t (Π0

2 − Π̂2)θ0
z(1{qt≤γ} − 1{qt≤ρ0})

= T−1
∑
t

xtx
>
t s

2
t (1{qt≤γ} − 1{qt≤ρ0}) + op(1), (B.57)

uniformly in γ.
(B.57) together with (B.52)–(B.54) and that Â2 = A0

2 + op(1) imply that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ}

p−→ A0
1E[xtx

>
t s

2
t1{qt≤ρ0}]A

0>
1

+ A0
2E[xtx

>
t s

2
t (1{qt≤γ} − 1{qt≤ρ0})]A

0>
2 . (B.58)
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In sub-case (c.2) we have that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ} = T−1

∑
t

ŵtŵ
>
t ê

2
t1{qt≤ρ0}

+ T−1
∑
t

ŵtŵ
>
t ê

2
t (1{qt≤ρ̂} − 1{qt≤ρ0})

+ T−1
∑
t

ŵtŵ
>
t ê

2
t (1{qt≤γ} − 1{qt≤ρ̂})

= Â1

(
T−1

∑
t

xtx
>
t ê

2
t1{qt≤ρ0}︸ ︷︷ ︸

=E1

)
Â>1

+ Â1

(
T−1

∑
t

xtx
>
t ê

2
t (1{qt≤ρ̂} − 1{qt≤ρ0})︸ ︷︷ ︸

=E2

)
Â>1

+ Â2

(
T−1

∑
t

xtx
>
t ê

2
t (1{qt≤γ} − 1{qt≤ρ̂})︸ ︷︷ ︸
=E3

)
Â>2 . (B.59)

Again, as already shown it holds uniformly in γ that

Â1E1Â
>
1

p−→ A0
1E[xtx

>
t s

2
t1{qt≤ρ0}]A

0>
1 (B.60)

and that
Â1E2Â

>
1 = op(1). (B.61)

For the remaining quantity E3 in (B.57) it holds uniformly in γ that

E3 = T−2
∑
t

xtx
>
t ε̃

2
t (1{qt≤γ} − 1{qt≤ρ̂})

+ 2T−1
∑
t

xtx
>
t ε̃tx

>
t Â
>
2 (θ0 − θ̂γ1 )(1{qt≤γ} − 1{qt≤ρ̂})

+ T−1
∑
t

xtx
>
t (θ0 − θ̂γ1 )>Â2xtx

>
t Â
>
2 (θ0 − θ̂γ1 )(1{qt≤γ} − 1{qt≤ρ̂})

= T−2
∑
t

xtx
>
t ε̃

2
t (1{qt≤γ} − 1{qt≤ρ̂}) + op(1) (B.62)

as before.
Next, because ε̃t(1{qt≤γ} − 1{qt≤ρ̂}) = [st + x>t (Π0

2 − Π̂2)θ0
z ](1{qt≤γ} − 1{qt≤ρ̂}) it follows
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that

E3 = T−1
∑
t

xtx
>
t s

2
t (1{qt≤γ} − 1{qt≤ρ̂})

+ 2T−1
∑
t

xtx
>
t stx

>
t (Π0

2 − Π̂2)θ0
z(1{qt≤γ} − 1{qt≤ρ̂})

+ 2T−1
∑
t

xtx
>
t θ

0>
z (Π0

2 − Π̂2)>xtx
>
t (Π0

2 − Π̂2)θ0
z(1{qt≤γ} − 1{qt≤ρ̂}) + op(1)

= T−1
∑
t

xtx
>
t s

2
t (1{qt≤γ} − 1{qt≤ρ̂}) + op(1) (B.63)

uniformly in γ.
(B.63) together with (B.57)–(B.61), (B.63) and that Âi = A0

i + op(1) for i = 1, 2 thus
implies that

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ}

p−→ A0
1E[xtx

>
t s

2
t1{qt≤ρ0}]A

0>
1

+ A0
2E[xtx

>
t s

2
t (1{qt≤γ} − 1{qt≤ρ0})]A

0>
2 , (B.64)

uniformly in γ.
Thus, combining results (B.42), (B.43), (B.51), (B.58) and (B.64) yield

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt≤γ}

p−→ A0
1E[xtx

>
t s

2
t1{qt≤γ∧ρ0}]A

0>
1

+ A0
2E[xtx

>
t s

2
t (1{qt≤γ} − 1{γ∧ρ0})]A

0>
2

≡ HA,1(γ) (B.65)

uniformly in γ ∈ Γ.
With similar reasoning we obtain

T−1
∑
t

ŵtŵ
>
t ê

2
t1{qt>γ}

p−→ A0
2E[xtx

>
t s

2
t1{qt≥γ∨ρ0}]A

0>
2

+ A0
1E[xtx

>
t s

2
t (1{qt>γ} − 1{qt≥γ∨ρ0})]A

0>
1

≡ HA,2(γ) (B.66)

uniformly in γ ∈ Γ. In fact these derivations follows the same lines as for T−1
∑

t ŵtŵ
>
t ê

2
t1{qt≤γ}

with the cases (a) (b) and (c) and their respective sub-cases inverting their roles.
Those two equation together with (B.34), the continuous mapping theorem and weak
convergence uniformly in γ thus yields

sup
γ∈Γ

W 2SLS
T,TRF(γ) =⇒ E>A (γ)[C−1

A,1(γ)HA,1(γ)C−1
A,1(γ) + C−1

A,2(γ)HA,2(γ)C−1
A,2(γ)]−1EA(γ)

(B.67)
proving the claim.
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Proof of Corollary 3. Again, we will prove th claim in two steps. First, we show the
desired result for the sup LR-test and afterwards, for the sup Wald-test.

sup LR-test. As in the case of a linear reduced form, the only quantities affected by
Assumption A.2 are GPmat,1(γ) (and therefore, BA,1(γ), BA,2(γ) and E(γ)), HA,1(γ) and
HA,2(γ). Moreover, by the same arguments as in the proof of Corollary 1 it holds that
GPmat,1(γ) = G̃Pmat,1(γ)Q. Therefore, it immediately follows that BA,1(γ) = B̃A,1(γ)
and hence, that E(γ) = Ẽ(γ). Thus, the claim immediately follows.

sup Wald-test. As argued above, E(γ) = Ẽ(γ). Hence, as in the linear reduced
form case, we are left to show that [C−1

A,1(γ)HA,1(γ)C−1
A,1(γ)+C−1

A,1(γ)HA,1(γ)C−1
A,1(γ)]−1 =

CA,2(γ)C−1CA,1(γ)/σ2. We will do this in the same manner as in the proof of Corollary
1. I.e. we will show that HA,i(γ) = σ2CA,i(γ), i = 1, 2. The claim then follows as in the
proof of Corollary 1 by showing that [C−1

A,1(γ) +C−1
A,2(γ)]−1 = CA,2(γ)C−1

A CA,1(γ) via the
Kailath identity.
Under Assumption A.2 it follows for HA,1(γ) that

HA,1(γ) = A0
1E[xtx

>
t (εt + u>t θ

0
z)

2
1{qt≤γ∧ρ0}]A

0>
1

= A0
2E[xtx

>
t (εt + u>t θ

0
z)

2(1{qt≤γ} − 1{qt≤γ∧ρ0})]A
0>
2

= A0
1E
[
xtx
>
t 1{qt≤γ∧ρ0}E[(εt + u>t θ

0
z)

2|xt, qt]
]
A0>

1

= A0
2E
[
xtx
>
t (1{qt≤γ} − 1{qt≤γ∧ρ0})E[(εt + u>t θ

0
z)

2|xt, qt]
]
A0>

2

= σ2[A0
1M1(γ ∧ ρ0)A0>

1 + A0
2[M1(γ)−M1(γ ∧ ρ0)]A0>

2 ]

= σ2CA,1(γ), (B.68)

where the last equality holds by definition of CA,1(γ) (cf. equation (4.5)).
Similarly, for HA,2(γ) we have that

HA,2(γ) = A0
1E[xtx

>
t (εt + u>t θ

0
z)

2(1{qt>γ} − 1{qt>γ∨ρ0})]A
0>
1

+ A0
2E[xtx

>
t (ε2t + u>t θ

0
z)

2
1{qt>γ∨ρ0}]A

0>
2

= σ2[A0
1[M2(γ)−M2(γ ∨ ρ0)]A0>

1 + A0
2M2(γ ∨ ρ0)A0>

2 ]. (B.69)

Next, note that

CA,2(γ) = CA − CA,1(γ)

= A0
1M1(ρ0)A0>

1 + A0
2M2(ρ0)A0>

2

− A0
1M1(γ ∧ ρ0)A0>

1 − A0
2M1(γ)A0>

2 + A0
2M1(γ ∧ ρ0)A0>

2

= A0
1[M1(ρ0)−M1(γ ∧ ρ0)]A0>

1

+ A0
2[M2(ρ0)−M1(γ) +M1(γ ∧ ρ0)]A0>

2 . (B.70)

So, in a last step of proving that HA,2(γ) = σ2CA,2(γ) we need to show that

A0
1[M2(γ)−M2(γ ∨ ρ0)]A0>

1 + A0
2M2(γ ∨ ρ0)A0>

2

=A0
1[M1(ρ0)−M1(γ ∧ ρ0)]A0>

1 + A0
2[M2(ρ0)−M1(γ) +M1(γ ∧ ρ0)]A0>

2 . (B.71)
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Therefore, note that

M1(ρ0) = M −M2(ρ0) (B.72a)

M1(γ ∧ ρ0) = M −M2(γ)−M2(ρ0) +M2(γ ∨ ρ0) (B.72b)

M1(γ) = M −M2(γ). (B.72c)

Finally, plugging (B.72a)–(B.72c) into (B.71) yields the desired result that HA,2(γ) =
σ2CA,2(γ) and together with (B.68) that

[C−1
A,1(γ)HA,1(γ)C−1

A,1(γ) + C−1
A,1(γ)HA,1(γ)C−1

A,1(γ)]−1 =
[C−1

A,1(γ) + C−1
A,2(γ)]−1

σ2
.

Finally, applying the Kailath identity to the numerator of this last expression, as in the
linear reduced form case, yields the claim that

E>A (γ)[C−1
A,1(γ)HA,1(γ)C−1

A,1(γ) + C−1
A,2(γ)HA,2(γ)C−1

A,2(γ)]−1EA(γ)

=
Ẽ>A (γ)CA,2(γ)C−1

A CA,1(γ)ẼA(γ)

σ2

C. GMM Results

Proof of Corollary 4. First we note that by Assumption A.1.4 it follows that Prob(qt ≤
γ) = G(γ) is continuous. Further, we will replace the threshold parameter γ by an equiv-
alent value, say λ, defined on the open unit interval (0; 1). To see how this works, note
first that Γ ⊂ (γmin, γmax). Then, Prob(qt ≤ γmin) = 0 and Prob(qt ≤ γmax) = 1. Sup-
pose now, that Γ can be defined in terms of a cut-off value, say the κ-th quantile, i.e.
Γ = [γκ, γ1−κ]. Then equivalently, we have Prob(qt ≤ γ) = λ for all γ ∈ Γ where λ is
uniformly distributed on Λκ = (κ; 1− κ), i.e λ ∼ U(Λκ).
Now, by Assumption A.3, we have that

Ω1(γ) = λΩ, Ω2(γ) = (1− λ)Ω (C.1)

N1(γ) = λN, N2(γ) = (1− λ)N (C.2)

V1(γ) = λ−1
[
NΩ−1N>

]−1
= λ−1V (C.3)

V2(γ) = (1− λ)−1
[
NΩ−1N>

]−1
= (1− λ)−1V (C.4)

V1(γ) + V2(γ) =
V

λ(1− λ)
(C.5)

V1(γ)N1(γ)Ω−1
1 (γ) = λ−1V NΩ−1 (C.6)

V2(γ)N2(γ)Ω−1
2 (γ) = (1− λ)−1V NΩ−1 (C.7)

Moreover, (C.1) implies that –under Assumptions A.2 and A.3– the Gaussian process
GP1(γ) can be restated as

GP1(γ) = Ω1/2BM(λ) (C.8)

GP = Ω1/2BM(1) (C.9)
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where BM(·) is a q × 1-vector of independent Brownian motions on the unit interval.
Thus, the term V1(γ)N1(γ)Ω−1

1 (γ)GP1(γ) − V2(γ)N2(γ)Ω−1
2 (γ)GP2(γ)) can be restated

in terms of λ as

V1(γ)N1(γ)Ω−1
1 (γ)GP1(γ)− V2(γ)N2(γ)Ω−1

2 (γ)GP2(γ)

= λ−1V NΩ−1/2BM(λ)− (1− λ)−1V NΩ−1/2(BM(1)− BM(λ))

=
V NΩ−1/2BM(λ)− λV NΩ−1/2BM(1)

λ(1− λ)
. (C.10)

Hence, using results (C.5) and (C.10) the asymptotic distribution simplifies, again using
similar arguments as in the proof of Corollary 2, to[

V NΩ−1/2BM(λ)− λV NΩ−1/2BM(1)
]>

λ(1− λ)

× V −1λ(1− λ)

×
[
V NΩ−1/2BM(λ)− λV NΩ−1/2BM(1)

]
λ(1− λ)

=
[
V 1/2NΩ−1/2BM(λ)− λV 1/2NΩ−1/2BM(1)

]>
× 1

λ(1− λ)

×
[
V 1/2NΩ−1/2BM(λ)− λV 1/2NΩ−1/2BM(1)

]
. (C.11)

Now, for the expression V 1/2NΩ−1/2BM(λ) in (C.11) we find

V 1/2NΩ−1/2BM(λ) ∼ N
(
0p, V

1/2NΩ−1N>V 1/2
)

= N (0p, Ip) (C.12)

where the equality uses V = (NΩ−1N>)−1. Thus, we have

V 1/2NΩ−1/2BM(λ)
D
= BM(λ) (C.13)

where BM(λ) is a p× 1-vector of independent Brownian motions on the unit interval.
Similarly,

V 1/2NΩ−1/2BM(1)
D
= BM(1). (C.14)

Combining results (C.11)–(C.14) then immediately yields[
V1(γ)N1(γ)Ω−1

1 (γ)GPU1 (γ)− V2(γ)N2(γ)Ω−1
2 (γ)GPU2 (γ))

]>
× [V1(γ) + V2(γ)]−1

×
[
V1(γ)N1(γ)Ω−1

1 (γ)GPU1 (γ)− V2(γ)N2(γ)Ω−1
2 (γ)GPU2 (γ))

]
D
=

[BM(λ)− λBM(1)]> [BM(λ)− λBM(1)]

λ(1− λ)
. (C.15)

The claim then follows by continuity of the process [BM(λ)− λBM(1)], the continuous
mapping theorem and weak convergence (uniform in λ).
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