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The paper introduces the class of generalised linear models with Box-Cox link for the spectrum of a

time series. The Box-Cox transformation of the spectral density is represented as a finite Fourier poly-

nomial, with coefficients, that we term generalised cepstral coefficients, providing a complete character-

isation of the properties of the random process. The link function depends on a power transformation

parameter and encompasses the exponential model (logarithmic link), the autoregressive model (inverse

link), and the moving average model (identity link). One of the merits of this model class is the possi-

bility of nesting alternative spectral estimation methods under the same likelihood-based framework, so

that the selection of a particular parametric spectrum amounts to estimating the transformation parame-

ter. We also show that the generalised cepstral coefficients are a one to one function of the inverse partial

autocorrelations of the process, which can be used to evaluate the mutual information between the past

and the future of the process.
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1 Introduction

The analysis of stationary processes in the frequency domain has a long tradition in time series analysis;

the spectral density provides the decomposition of the total variation of the process into the contribution of

periodic components with different frequency, as well as a complete characterization of the serial correlation

structure of the process, so that it contains all the information needed for linear prediction and interpolation.

Several methods are available for estimating the spectrum. One of the most popular is Whittle estimation

of an autoregressive spectrum, which leads to the solution of an empirical Yule-Walker set of equations

(see, for instance, Percival and Walden, 1993, chapter 9). Alternatively, a class of nonparametric estimates

is obtained by taking the Fourier transform of a smoothed sample autocovariance function: if a truncated

or rectangular smoothing kernel is applied to the autocovariances, this is equivalent to fitting a finite order

moving average model by the method of moments. A third popular approach is the exponential model

proposed by Bloomfield (1973). The exponential model emerges by truncating the Fourier series expansion

of the log-spectrum. The coefficients of the expansion are known as the cepstral coefficients and are in turn

obtained from the discrete Fourier transform of the log-spectrum; their collection forms the cepstrum. This

terminology was introduced by Bogert, Healy and Tuckey (1963), cepstral and cepstrum being anagrams of

spectral and spectrum, respectively. The exponential model is a generalised linear model for observations

(the periodogram), asymptotically distributed as an exponential random variable, adopting a logarithmic

link for the mean, which is the spectral density itself.

This paper introduces the class of generalised linear models with Box-Cox link, according to which a

linear model is formulated for the Box-Cox transformation of the spectral density. The link function depends

on a power transformation parameter, and encompasses the exponential model, which corresponds to the

case when the transformation parameter is equal to zero. Other important special cases are the inverse link,

which leads to modelling the inverse spectrum and, in our setting, is equivalent to autoregressive estimation

of the spectrum, and the identity link, which amounts to fitting a moving average model. The idea of

developing power or cepstral correlation analysis as a direction for time series analysis dates back to Parzen

(1992) and, in the context of speech recognition, to Kobayashi and Imai (1984). The rationale is finding

a scale along which the transformed spectrum has a representation as a finite trigonometric polynomial of

small order.

The coefficients of the trigonometric polynomial are related to the generalised autocovariances (Proietti

and Luati, 2015) and are termed generalised cepstral coefficients. To enforce the constraints needed to

guarantee the positivity of the spectral density, we propose a reparameterization of the model, based on

a set of generalised inverse partial autocorrelations, which also provide a way of estimating the mutual

information between past and future of a random process.

The empirical applications, dealing with the Southern Oscillation Index time series, as well as a Monte
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Carlo simulation from a process characterised by a high dynamic range, illustrate the flexibility of the class

of generalised linear spectral models and show that the appropriate spectral estimation model (exponential,

autoregressive, moving average, etc.) can be selected in a likelihood based framework.

The paper is structured as follows: section 2 introduces the class of generalised linear cepstral models

and discusses its time series properties. Section 3 deals with the estimation based on the maximisation of

the Whittle likelihood and derives the asymptotic properties of the corresponding estimator. Illustrations are

provided in section 4. Finally, in section 5, we outline some conclusions and directions for further research.

2 Generalised Linear Cepstral Models for the Spectrum

Let {yt}t∈T be a stationary zero-mean real-valued stochastic process, T = {0,±1,±2, . . . }, with covari-

ance function γk =
∫ π
−π e

ıωkdF (ω), k = 0,±1,±2, . . . where F (ω) is the spectral distribution function of

the process and ı is the imaginary unit. We assume that the spectral density function of the process exists,

F (ω) =
∫ ω
−π f(λ)dλ, that the process is regular (Doob, 1953, p. 564), i.e.

∫ π
−π ln f(ω)dω > −∞ and that

∫ π
−π f(ω)

λ dω < ∞ for all λ ∈ R. We let Γn = {γ|s−t|, s, t = 1, . . . , n} denote the autocovariance matrix

of yt of order n (a Toeplitz matrix). The cepstrum of the process (Bogert, Healy and Tukey, 1963) is defined

as the sequence of cepstral coefficients

ck =
1

2π

∫ π

−π
ln[2πf(ω)] cos(ωk)dω, k = 0, 1, . . . (1)

which characterise the Fourier series: ln[2πf(ω)] = c0 + 2
∑∞

j=1 cj cos(ωj). The Wold representation of

{yt}t∈T is written as yt = ψ(B)ξt,where {ξt}t∈T is a white noise process with zero mean and finite variance

σ2, ξt ∼ WN(0, σ2), so that 2πf(ω) = σ2|ψ(e−ıω)|2 where ψ(z) = 1+ψ1z+ψ2z
2+ . . . ,

∑∞
j=0 ψ

2
j <∞.

Let us consider the Box-Cox transform of the spectral generating function 2πf(ω), with transformation

parameter λ ∈ R,

gλ(ω) =

{

[2πf(ω)]λ−1
λ , λ 6= 0,

ln[2πf(ω)], λ = 0.

We assume that gλ(ω) can be represented by a finite trigonometric polynomial:

gλ(ω) = cλ,0 + 2

K
∑

k=1

cλ,k cos(ωk). (2)

The representation (2) is linear in the coefficients cλk, the inverse Fourier tranform of the gλ(ω) function:

cλk =
1

2π

∫ π

−π
gλ(ω) cos(ωk)dω, k = 0, 1, . . . ,K.

When λ equals 0, we obtain Bloomfield (1973) exponential model as a special case. For k = 1, . . . K,

the coefficients c0k are equal to the cepstral coefficients given in (1). We will henceforth refer to (2) as the

generalised cepstral coefficient at lag k, and to {cλk, k = 1, . . . ,K} as the generalised cepstrum.
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The spectral model with Box-Cox link and mean function

f(ω) =

{

1
2π [1 + λgλ(ω)]

1

λ , λ 6= 0,
1
2π exp[gλ(ω)], λ = 0,

(3)

will be referred to as a generalised linear cepstral model for the spectrum with parameter λ and order K .

Remark 1 The rationale of generalised linear cepstral models is that there exists a value of the transfor-

mation parameter λ, such that gλ(ω) can be expressed in terms of a finite and parsimonious set of Fourier

coefficients. The next subsection shows that {cλk, k = 1, . . . ,K} contain all the necessary information for

prediction and feature extraction of yt.

Remark 2 The dynamic range of the spectrum is defined as 10 log10 ((maxω f(ω))/(minω f(ω))), see

Percival and Walden (1993, section 6.3). It is related in the limit to the condition number of the autocovari-

ance matrix Γn, as n increases. The objective of the power transform of the spectrum is to achieve a low

dynamic range for [2πf(ω)]λ, so that using only a few terms of the Fourier expansion, as in (2), is suitable.

When the process is characterised by a high dynamic range, due to the presence of spectral peaks, a negative

transformation parameter provides a parsimonious model.

2.1 Time series properties

It is immediate from (3) that λ and the corresponding generalised cepstrum {cλk, k = 1, . . . ,K} uniquely

characterise the spectral properties of the random process {yt}t∈T .

For λ = 0, c0,0 = lnσ2, from the Szegö-Kolmogorov formula for the prediction error variance,

σ2 = exp

{

1

2π

∫ π

−π
ln[2πf(ω)]dω

}

;

the coefficients of the Wold representation are obtained by the recursive formula ψj = j−1
∑j

r=1 rc0rψj−r,

j = 1, 2, . . . , ψ0 = 1, see e.g. Pourahmadi (1983).

For λ 6= 0, the generalised cepstral coefficients cλk are related to the generalised autocovariance function,

introduced by Proietti and Luati (2015),

γλk =
1

2π

∫ π

−π
[2πf(ω)]λ cos(ωk)dω, (4)

by the following relationships:

cλ0 =
1

λ
(γλ0 − 1), cλk =

1

λ
γλk, k 6= 0. (5)
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The coefficients of the Wold and autoregressive representation of the process can be obtained by a spectral

factorisation that naturally arises after a reparameterisation of the generalised cepstral coefficients. In fact,

[2πf(ω)]λ = 1+ λgλ(ω) = γλ0 +2
∑K

k=1 γλk cos(ωk), so that, by the representation theorem of Fejér and

Riesz for nonnegative trigonometric polynomials (Grenander and Szegö, 1958, p. 20-21), we can write:

[2πf(ω)]λ = σ2λbλ(e
−ıω)bλ(e

ıω), bλ(e
−ıω) = 1 + bλ1e

−ıω + · · ·+ bλKe
−ıωK . (6)

According to (6), when λ 6= 0 the generalised cepstral coefficients are obtained as

cλ0 =
1

λ

[

σ2λ(1 + b2λ1 + · · ·+ b2λK)− 1
]

, cλk =
1

λ
σ2λ

K
∑

j=k

bλjbλ,j−k. (7)

Moreover, σ
2/λ
λ is the prediction error variance of the process, as

1

2π

∫ π

−π
ln (2πf(ω)) dω =

1

λ
lnσ2λ.

The coefficients bλk can be uniquely determined by imposing the condition that the roots of the poly-

nomial bλ(z) = 1 + bλ,1z + · · · + bλKz
K lie outside the unit circle, which in turn can be enforced by

adopting a reparameterization due to Barndorff-Nielsen and Schou (1973) and Monahan (1984). Given K

coefficients ςλk, |ςλk| < 1, k = 1, . . . ,K , that in the present setting are interpretable as generalised partial

inverse autocorrelations (Bhansali, 1983), the coefficients of the polynomial bλ(z) are obtained from the last

iteration of the Durbin-Levinson recursion

b
(k)
λj = b

(k−1)
λj + ςλkb

(k−1)
λ,k−j, b

(k)
λk = ςλk, (8)

for k = 1, . . . ,K, and j = 1, . . . , k − 1, so that bλj = b
(K)
λj . The role of the coefficients ςλk shall be further

discussed in subsection 2.2.

The coefficients of the Wold representation can be obtained recursively as follows (Gould, 1974):

ψj = j−1
j

∑

r=1

(

r
λ+ 1

λ
− j

)

bλjψj−r, j > 0, ψ0 = 1.

The coefficients of the infinite AR representation may be similarly derived. In sum, all the relevant infor-

mation for prediction is available from K + 1 bits of information.

Remark 3 For λ = 1, c1k = γk = E(ytyt−k), k > 0, the autocovariance function of the process is

obtained. In the case λ = −1 and k 6= 0, c−1,k = −γik, where γik is the inverse autocovariance of

yt (Cleveland, 1972). The intercept cλ0 for λ = −1, 0, 1, is related to important characteristics of the

stochastic process, as 1/(1 − c−1,0) is the interpolation error variance, exp(c0,0) = σ2, the prediction error

variance, and c1,0 + 1 = γ0 is the unconditional variance of yt.
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Remark 4 Fractionally integrated processes (Giraitis et al., 2012) arise as limiting cases. Consider for

instance the case bλ(z) = 1 − z, so that [2πf(ω)]λ = σ2λ|1 − e−ıω|2 is the spectrum of a first order non-

invertible moving average process. If λ = −d−1, d ∈ (0, 0.5), then a fractionally integrated process arises,

whose spectral density is unbounded at the origin: f(ω) = σ2

2π |2 sin(ω/2)|−2d
. More generally, if λ < −2

and bλ(z) can be factorised as bλ(z) = (1− z)b∗λ(z), with b∗λ(z) = 1+ b∗λ,1z+ · · ·+ b∗λ,K−1z
K−1, b∗λ(z) 6=

0 ⇐⇒ |z| ≤ 1, the process is fractionally integrated of order d = −λ−1. When bλ(z) = 1 − 2z + z2

and λ = −2d−1, the process is a Gegenbauer process; see Hosking (1981) and Gray, Zhang and Woodward

(1989).

2.2 The mutual information between past and future

The following theorem expresses the strong Szegö theorem (see Bingham, 2012, Theorem 6, and the refer-

ences therein) in terms of generalised partial inverse autocorrelations introduced in (8).

Theorem 1 Let {yt}t∈T be a purely non deterministic Gaussian process with cepstral coefficients cj , j =

1, . . . ,∞, and generalised cepstral coefficients cλk, k = 1, . . . ,K. Then, for λ 6= 0,

∞
∑

j=1

jc2j =
1

λ2

K
∑

k=1

k ln(1− ς2λk) (9)

where ςλk are the generalised partial inverse autocorrelations of the process and are related to the gener-

alised cepstral coefficients by equations (7) and (8).

The term
∑

jc2j has several important uses. The mutual information between past and future of a Gaus-

sian process is defined as

Ip−f =
1

2

∞
∑

j=1

jc2j . (10)

Ip−f measures the reduction in the uncertainty of about the future Ft, the sigma-algebra generated by

{yt+j , j = 1, 2, . . . , }, when the past Pt, the sigma-algebra generated by {yt−j , j = 1, 2, . . . , }, is known

(Ibragimov and Rozanov, 1978, Li, 2005). Ip−f = 0 for a Gaussian white noise process and Ip−f < ∞
for an absolutely regular process (Ibragimov and Rozanov, 1978, chapter IV). Theorem 1 also shows that

Ip−f is infinite if |ςλk| = 1, for some k, which occurs in the case of fractionally integrated processes (see

Remark 4). Finally, according to the strong Szegö limit theorem (see Bingham, p. 305),
∑

jc2j is the limit of
[

ln |Γn| − n lnσ2
]

as n → ∞, that can be used to approximate the log-determinantal term of the Gaussian

likelihood of the sample time series {yt, t = 1, . . . , n}. The evaluation of
∑

jc2j is not trivial, except for the

class of generalised cepstral models, for which Theorem 1 states that it can be computed from the K inverse

partial autocorrelation coefficients as in (9).
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3 Whittle likelihood estimation

The main tool for estimating the spectral density function and its functionals is the periodogram. Let {yt, t =
1, 2, . . . , n} denote a time series, which is assumed to be a sample realisation from a stationary short memory

Gaussian process, characterised by an autocovariance sequence satisfying
∑∞

k=1 kγ
2
k < ∞, and let ωj =

2πj
n , j = 1, . . . , [n/2], denote the Fourier frequencies, where [·] denotes the integer part of the argument.

The periodogram, or sample spectrum, is defined as

I(ωj) =
1

2πn

∣

∣

∣

∣

∣

n
∑

t=1

(yt − ȳ)e−ıωjt

∣

∣

∣

∣

∣

2

,

where ȳ = n−1
∑n

t=1 yt. In large samples (Brockwell and Davis, 1991, ch. 10)

I(ωj)

f(ωj)
∼ IID

1

2
χ2
2, ωj =

2πj

n
, j = 1, . . . , [(n − 1)/2], (11)

whereas
I(ωj)
f(ωj)

∼ χ2
1, ωj = 0, π, where χ2

m denotes a chi-square random variable withm degrees of freedom,

and, as a particular case, 1
2χ

2
2 is an exponential random variable with unit mean.

The above distributional results are the basis for approximate or Whittle maximum likelihood infer-

ence for the generalised cepstral model: writing f(ω) as in (3), and denoting by θλ = [cλ0, cλ1, . . . , cλK ]′

the vector containing the generalised cepstral coefficients, where θλ ∈ Θ ⊂ R
K+1, the log-likelihood of

{I(ωj), j = 1, . . . , N = [(n − 1)/2]}, is:

ℓ(λ, θλ) = −
N
∑

j=1

[

ln f(ωj) +
I(ωj)

f(ωj)

]

. (12)

Letting z(ω) = [1, 2 cos(ω), 2 cos(2ω), . . . , 2 cos(Kω)]′, and writing gλ(ωj) = z(ωj)
′θλ, (12) can be ex-

pressed as ℓ(λ, θλ) = −∑N
j=1 ℓj(λ, θλ), where, for 1 + λz(ωj)

′θλ > 0,

ℓj(λ, θλ) =







1
λ ln (1 + λz(ωj)

′θλ) +
2πI(ωj)

(1+λz(ωj)′θλ)
1

λ

, λ 6= 0,

z(ωj)
′θ0 +

2πI(ωj)
exp(z(ωj)′θ0)

, λ = 0.

Notice that we have excluded the frequencies ω = 0, π from the analysis; the latter may be included with

little effort, and their effect on the inferences is negligible in large samples.

An alternative derivation of the Whittle likelihood is based on the following argument. Let y = (y1, . . . yn)
′ ∼

N(0,Γn), an asymptotic approximation to the true Gaussian log-likelihood,

ℓ∗(λ, θλ) = −n
2
ln 2π − 1

2
ln |Γn| −

1

2
y′Γ−1

n y, (13)

is, apart from a constant:

ℓ†(λ, θλ) = − 1

2π

∫ π

−π

[

ln f(ω) +
I(ω)

f(ω)

]

dω, (14)
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so that ℓ(λ, θλ)/N , where ℓ(λ, θλ) is given by (12), converges in probability to ℓ∗(λ, θλ).

The profile likelihood of the model as λ varies can be used to select the spectral model for yt. A sim-

ilar idea has been used by Koenker and Yoon (2009) for the selection of the appropriate link function

for binomial data. Let ℓmax(λ) denote the partially maximised, or profile, Whittle likelihood ℓmax(λ) =

maxθλ∈Θ ℓ(λ, θλ), or equivalently ℓmax(λ) = ℓ(λ, θ̃λ), where θ̃λ = argmaxθλ∈Θℓ(λ, θλ). The maximum

likelihood estimate of the transformation parameter is obtained as the value of λwhich maximises the profile

Whittle likelihood.

The truncation parameter, K , can be chosen as the value minimizing an information criterion, such as

the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC), given, respectively,

by:

AIC(K,λ) = −2ℓ(λ, θ̃λ) + 2K, BIC(K,λ) = −2ℓ(λ, θ̃λ) + ln(N)K. (15)

Remark 5 In the long memory case, the above distributional results cannot be invoked, as the large sample

distribution of the periodogram (normalized by dividing for the spectral density) is no longer IID exponential

in the vicinity of the zero frequency, see Künsch (1986), Hurvich and Beltrao (1993) and Robinson (1995).

However, the Whittle estimator of the unknown parameters, i.e. the maximiser of (12) can be shown to be

consistent and asymptotically normal also in the long memory case. See Dahlhaus (1989) for the general

theory.

3.1 Reparameterization

The main difficulty with maximum likelihood estimation of the generalised linear cepstral model in the case

λ 6= 0 is enforcing the condition 1+λz(ωj)
′θλ > 0. This problem is well known in the literature concerning

generalised linear models for gamma distributed observations, for which the canonical link is the inverse

link (McCullagh and Nelder, 1989).

The most appropriate solution that ensures the positive definiteness and the regularity of the spectral

density is to reparameterise the generalised cepstral coefficients as in (7). For k = 1, . . . ,K, the parameters

bλk are in turn expressed as a function of the the generalised inverse partial autocorrelations |ςλk| < 1. In

practice, we estimate K unconstrained real parameters ϑλk, that are mapped into the interval (−1, 1) by the

Fisher inverse transformations ςλk = exp(2ϑλk)−1
exp(2ϑλk)+1 for j = 1, . . . ,K. Also, we set ϑλ0 = ln(σ2λ).

3.2 Asymptotic properties

We hereby prove the consistency and the asymptotic normality of the Whittle MLE of the vector θλ, which

we denoted as θ̃λ, under the hypothesis that λ is known and equal to its true value. In practice, the trans-

formation parameter is estimated by maximising the profile likelihood ℓmax(λ). In the sequel we focus
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separately on the cases λ 6= 0 and λ = 0.

When λ 6= 0, [2πf(ω)]λ = 1 + λgλ(ω) and gλ(ω) = z(ω)′θλ. The asymptotic theory for the Whittle

MLE of θλ is based on the following assumptions.

A1. {yt}t∈T is a zero mean stationary Gaussian process and ∃ m > 0 such that 1 + λgλ(ω) ≥ m.

A2. θλ0 ∈ Θ ⊂ R
K+1 where θλ0 is the true parameter value and Θ is a closed subset of the K + 1

Euclidean space.

A3. The Fourier series expansion ln(1 + λgλ(ω)) = κ0 + 2
∑∞

j=1 κj cos(ωj) has coefficients satisfying

the condition
∑∞

j=1 jκ
2
j < ∞, or, equivalently, the cepstral coefficients in ln[2πf(ω)] =

∑

j cje
−ıωj

satisfy
∑∞

j=1 jc
2
j <∞.

Theorem 2 Under conditions A1-A3,

θ̃λ →p θλ0,

√
n(θ̃λ − θλ0) →d N(0, Vλ),

with

V −1
λ =

1

4π

∫ π

−π

1

[2πf(ω)]2λ
z(ω)z(ω)′dω.

In the exponential case, when λ = 0, the finitess of
∑K

j=1 jc
2
j implies that

∑∞
j=1 jγ

2
j and the remaining

conditions of Theorems II.2.1 and II.2.2 in Dzhaparidze (1986) are fulfilled. Hence, under assumption

A2 the Whittle estimates of the cepstral coefficients are consistent and
√
n(θ̃λ − θλ0) →d N(0, Vλ), with

V −1
λ = 1

4π

∫ π
−π z(ω)z(ω)

′dω. See Bloomfield (1973).

Remark 6 The function that maps the partial autocorrelation coefficients to the model parameters is one

to one and smooth (see Barndorff-Nielsen and Schou, 1973, Theorem 2), so that the asymptotic properties

of the Whittle estimator continue to hold.

4 Illustrations

The proposed generalizations will now be applied to time series that have been analyzed extensively in

the literature and that provide a useful testbed for the class of generalised linear spectral models. In the

applications we will use the tapered periodogram I(ωj) = 1
2πn

∣

∣

∑n
t=1 ht(yt − ȳ)e−ıωj t

∣

∣

2
, where ht ≥

0, t = 1, . . . , n, and
∑n

t=1 h
2
t = 1. We shall use a taper formed for zeroth-order discrete prolate spheroidal
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sequences (DPSS), obtained as the eigenvector corresponding to the largest eigenvalue of the matrix A(ν),

with elements

aij(ν) =

{

sin(2πν(i−j))
π(i−j) , for i 6= j,

2ν, for i = j,

i, j = 1, . . . , n. The matrix depends on the bandwidth parameter ν, which is often set equal to ν = 2/n.

We refer to Percival and Walden (1993, sec. 3.9 and ch. 7) for further details. Brillinger (1981, Theorem

5.2.7) shows that for the tapered periodogram the same distributional result as (11) holds.

In the sequel we refer to the generalised linear cepstral model with transformation paramater λ and order

K as GLCM(λ,K).

4.1 Southern Oscillation Index

The Southern Oscillation Index (SOI) measures the difference in surface air pressure between Tahiti and

Darwin and it is an important indicator of the strength of El Niño and La Niña events, with values below -8

indicating an El Niño event while positive values above 8 indicate a La Niña event. The index reflects the

cyclic warming (negative SOI) and cooling (positive SOI) of the eastern and central Pacific, which affects

the sea level pressure at the two locations. The monthly series from January 1876 to December 2013 is

plotted in figure 1 along with the autocorrelation function. The series has a periodic behaviour: often the El

Niño and La Niña episodes alternate and this confers the SOI a cyclical feature, with an irregular period of

about 3-7 years (see e.g. http://earthobservatory.nasa.gov).

We investigate what GLCM(λ,K) representation provides the best fit to the sample spectrum of the time

series. This depends on two crucial parameters, the truncation parameter K and the power parameter λ,

which can be selected according to the information criteria given in (15). Estimating the GLCM(λ,K) on a

grid of values for λ in the range [-2.50, 1.00] with step 0.01 and for K ranging from 0 to 10, and computing

the AIC and BIC criteria, leads to selecting K = 7 and λ̃ = −2.28. Figure 2 displays the prediction error

variance and the profile Whittle likelihood of GLCM(λ, 7) models, as a function of λ, which also shows

that the optimal value of the power transformation parameter is λ̃ = −2.28. The third plot displays the

corresponding estimates of Ip−f , which peaks at around λ = −2. The plot illustrates that the pair (λ,K)

that minimises the AIC, does not necessarily maximises Ip−f .

The estimated spectrum is f̃(ω) = 1
2π

[

σ̃2λb̃λ(e
−ıω)b̃λ(e

ıω)
]−1/2.278

, with σ̃2λ = 2161.74, and

b̃λ(e
−ıω) = 1− 1.02e−ıω − .03e−ı2ω − .05e−ı3ω − .08e−ı4ω + .04e−ı5ω − .02e−ı6ω + .23e−ı7ω

From the second panel of figure 2 it is evident that the likelihood ratio test of λ = −2 for a GLCM(λ,K)

model withK = 7 is not significant, so that the spectrum that is fitted by maximum likelihood does not differ

from that arising from fitting an autoregressive model of order 14 such that the autoregressive polynomial
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Figure 1: Southern Oscillation Index. Time series and sample autocorrelation function. In the first plot the

horizontal lines are drawn at ±8,
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Figure 2: Southern Oscillation Index. Whittle likelihood, Prediction error variance and Mutual Information

as a function of λ for GLMS(λ,K) models with K = 7.
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Figure 3: Southern Oscillation Index. Comparison of the spectral density estimates arising from different

GLCM(λ,K) models with K = 7.
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is the square of a polynomial of order 7. This polynomial has three pairs of complex conjugate roots and a

real root.

Figure 3 plots the periodogram of the SOI series and overimposes the spectral densities fitted by the

GLCM(λ,K) model with K = 7 and λ set equal to 1, 0,−1 and λ̃ = −2.28. The case when λ is set equal

to 1 corresponds to fitting an MA(7) model to the series, whereas the case λ = 0 corresponds to fitting

Bloomfield’s exponential model of order K = 7; λ = −1 corresponds to fitting an AR(7). It should be

noticed that in none of these cases a spectral peak arises at a frequency other than zero. The spectrum fitted

by maximum likelihood, on the contrary has a clear mode at a frequency corresponding to a period of about

four years.

4.2 Simulated AR(4) Process

This illustration concerns the estimation of the power spectrum of the AR(4) stochastic process

yt = 2.7607yt−1 − 3.8106yt−2 + 2.6535yt−3 − 0.9238yt−4 + ξt, ξt ∼ NID(0, 1). (16)

The interest in this application lies in the nature of the spectral density to be estimated, which is bimodal,

featuring two peaks located very closely in the frequency range. In fact, the AR polynomial features two

pairs of complex conjugate roots with modulus 1.01 and 1.02 and phases 0.69 and 0.88, respectively. The

closeness of the two modes renders the estimation of the spectrum rather problematic, and thus this process

constitutes a test case for spectral estimation methods; see Percival and Walden (1993).
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Figure 4: Periodogram and log-spectra estimated by the GLCM(−1, 4), selected by BIC, and the exponential

model with K = 5, EXP(5).
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A sample time series of length n = 1024 from the above AR(4) process is obtained from the book by

Percival and Walden (1993) and its detailed analysis is presented here for illustrative purposes.

The specifications of the class GLCM(λ,K) selected by AIC and BIC differ slightly. While the latter

selects the true generating model, that is λ = −1 and K = 4, AIC selects λ = −1 and K = 6. However,

the likelihood ratio test of the null that K = 4 is a mere 4.8.

The estimated coefficients of the GLCM(−1, 4) model and their estimation standard errors are

bλk std. err. true value

-2.7490 0.0007 -2.7607

3.7901 0.0016 3.8106

-2.6353 0.0007 -2.6535

0.9201 0.0025 0.9238

The comparison with the true autoregressive coefficients (reported in the last column) stresses that the co-

efficient estimates are remarkably accurate. Figure 4 displays the centered periodogram and compares the

log-spectra fitted by the selected GLCM(−1, 4) model and the exponential model with K = 5, which

emerges if Box-Cox transformation parameter is set equal to zero. The latter fit is clearly suboptimal, as it

fails to capture the two spectral modes.

In order to evaluate whether the above result are generalisable, we have carried out a Monte Carlo ex-

periment by which 5,000 replications of length n = 1024 are generated independently according to the
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AR(4) Gaussian process (16). For each replication we estimate a sequence of GLCM(λ,K) models with

λ taking values on a grid from -1.75 to 1 with step 0.05 and for K ranging from 0 to 8; model selection is

carried out according to AIC and BIC and the maximum likelihood estimates of the parameters, σ̃2λ and b̃k,

k = 1, . . . ,K , are recorded, as well as the estimated spectral density.

The main results are presented in table 1, which reports some summary statistics of the distribution of

the maximum likelihood estimates of the GLCM(λ,K) models, separately for the two cases when model

selection is carried out according to the AIC and the BIC, namely the median, the mean, the standard devi-

ation (St. dev.) and the root mean square estimation error (RMSE). The main evidence can be summarised

as follows. Model selection by BIC yields more accurate estimates of the parameters and the order of the

model; the RMSE is systematically smaller and both the variance and the bias of the estimator are smaller.

The distribution of the selection frequency for the order of the GLCM(λ, K) is the following

K 0 1 2 3 4 5 6 7 8

AIC 0.00 0.00 0.00 0.00 0.36 0.17 0.14 0.16 0.17

BIC 0.00 0.00 0.00 0.00 0.78 0.16 0.04 0.02 0.01

Finally, the standard error in the estimation of the log-spectrum, computed by averaging across the simula-

tions,




1

N

N
∑

j=1

(

ln f̃(ωj)− ln f(ωj)
)2





1/2

,

where f̃(ωj) is the fitted spectral density, equals 0.1788 and 0.1520, respectively when the model is selected

by AIC and BIC; this entails that AIC results in an efficiency loss of about 18% in estimating the log-

spectrum of the series.

The overall conclusion is that, despite the differences due to the adoption of a selection criterion, the

GLCM(λ, K) proves a very effective spectral estimation method, yielding an autoregressive spectral esti-

mate (λ = −1) or a neighbouring estimate in all cases.

5 Conclusions

We have proposed a general frequency domain estimation framework which nests the exponential model

for the spectrum as a special case and allows for any power transformation of the spectrum to be modelled,

so that alternative spectral fits can be encompassed. As a direction for future research we think that the

generalised linear cepstral model can have successful applications for modelling the time-varying spectrum

of a locally stationary processes (Dahlhaus, 2012), by allowing the cepstral coefficients to vary over time,

e.g. with autoregressive dynamics. Finally, a multivariate extension, the matrix-logarithmic spectral model
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Table 1: Summary statistics of the Monte Carlo distribution of the maximum likelihood estimates of the

parameters of the GLCM(λ,K) model, based on 5,000 replications from the AR(4) model (16).

AIC BIC True

Parameter Median Mean St. dev. RMSE Median Mean St. dev. RMSE values

λ̃ -1.0000 -1.0242 0.0903 0.0242 -1.0000 -1.0016 0.0305 0.0016 -1

K̃ 5.0000 5.5968 1.5177 1.5968 4.0000 4.3072 0.6752 0.3072 4

b̃1 -2.7581 -2.8169 0.2783 0.0562 -2.7554 -2.7579 0.0888 0.0028 -2.7607

b̃2 3.8026 4.0037 0.7305 0.1931 3.7974 3.8071 0.2496 0.0035 3.8106

b̃3 -2.6486 -2.9514 1.0288 0.2979 -2.6388 -2.6576 0.3447 0.0041 -2.6535

b̃4 0.9224 1.1586 0.7674 0.2348 0.9176 0.9337 0.2547 0.0099 0.9238

b̃5 0.0000 -0.0847 0.3370 0.0847 0.0000 -0.0060 0.1228 0.0060 0

b̃6 0.0000 -0.0015 0.1979 0.0015 0.0000 -0.0008 0.0770 0.0008 0

b̃7 0.0000 0.0034 0.1089 0.0034 0.0000 0.0010 0.0361 0.0010 0

b̃8 0.0000 0.0048 0.0391 0.0048 0.0000 0.0002 0.0089 0.0002 0

σ̃λ 1.0161 1.5414 1.5363 0.5414 1.0044 1.0535 0.5061 0.0535 1

for the spectrum of a vector time series, could be envisaged, along the lines of the model formulated by

Chiu, Leonard and Tsui (1996) for covariance structures.

Appendix

A Proof of theorem 1

The coefficients {ςλk, k = 1, . . . ,K} are the partial autocorrelations of the process bλ(B)xt = νt, νt ∼
WN(0, σ2ν) (see Bhansali, 1983), whose spectrum fx(ω) is proportional to [f(ω)]−λ. The process xt has a

cepstrum {κj , j = 0, 1, . . .},

κj =
1

2π

∫ π

−π
ln[2πfx(ω)] cos(ωj)dω,

so that, by the strong Szegö theorem, see Bingham (2012, Theorem 6),

K
∏

k=1

(1− ς2λk)
−k = exp





∞
∑

j=1

jκ2j



 .

For j > 0, the cepstral coefficients of xt are related to those of yt by κj = −λcj , so that

1

λ2

K
∑

k=1

k ln(1− ς2λk) =

∞
∑

j=1

jc2j .
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B Proof of theorem 2

Under the stated assumptions Theorems II.2.1 (consistency) and II.2.2 of Dzhaparidze (1986, chapter II, pp.

105 and 109, respectively) hold.

Condition A1 ensures that 1 + λgλ(ω) = γλ0 + 2
∑K

k=1 γλk cos(ωk) is positive. As a matter of fact,

1+λgλ(ω) is a proper spectral density and under A1 the generalised autocovariances {γλk} form a positive

definite sequence. Also, as gλ = z(ω)′θλ, 1 + λgλ(ω) is a smooth and symmetric function of ω ∈ [−π, π].
Assumption A2 states that the true parameter vector is interior to the parameter space. Notice also that our

GLCM is identified, that is θλ1 6= θλ2 → fθλ1 6= fθλ2 for almost all ω and θλ1
, θλ2

∈ Θ, where fθλ denotes

(1 + λz(ω)′θλ)
1/λ.

Assumption A3 implies that the autocovariances of yt satisfy the condition
∑∞

k=1 kγ
2
k < ∞. The lat-

ter condition, along with f(ω) > 0, by Corollary I.3.1 in Dzhaparidze (1986, p. 66) guarantees that the

principal part of the Gaussian log-likelihood can be approximated by the Whittle likelihood, i.e. it is

needed for approximating the Gaussian likelihood ℓ∗(λ, θλ) in (13) with ℓ†(λ, θλ) in (14). The condi-

tion
∑∞

k=1 kγ
2
k < ∞ is implied by the summability of the cepstral coefficients,

∑∞
j=1 jc

2
j < ∞, which

is fullfilled as ln[2πf(ω)] = 1
λ ln(1 + λgλ(ω)), so that

∑∞
j=1 jκ

2
j < ∞ =⇒ ∑∞

j=1 jc
2
j < ∞. Now,

∑∞
j=1 jc

2
j < ∞ ⇐⇒ ∑∞

j=1 kγ
2
j < ∞ is implied by Theorem 1 in Li (2005), who shows the equivalence

of the two conditions when f(ω) is positive and continuous.

The derivatives of the inverse of the spectral density,

∂
∂θλ

f(ω)−1 = −2π[1 + λz(ω)′θλ]
−(1+λ)/λz(ω),

exist and are continuous in θλ. Hence, by Theorem II.2.1 in Dzhaparidze (1986, p. 105), θ̃λ →p θλ0

Moreover, the spectral density f(ω) is a twice differentiable function of θλ and the second derivatives

∂2

∂θλ∂θ
′
λ

f(ω) =
λ

2π

(

1

λ
− 1

)

[

1 + λz(ω)′θλ
]

1

λ
−2
z(ω)z(ω)′

are continuous in ω. Thus, by Theorem II.2.2 in Dzhaparidze (1986, p. 109), θ̃λ is asymptotically normal as

stated in the theorem.
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