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ABSTRACT

Brillinger defined dynamic principal components (DPC) for time series based

on a reconstruction criterion. He gave a very elegant theoretical solution and

proposed an estimator which is consistent under stationarity. Here we propose a

new enterally empirical approach to DPC. The main differences with the existing

methods -mainly Brillinger procedure- are (i) the DPC we propose need not be

a linear combination of the observations and (ii) it can be based on a variety of

loss functions including robust ones. Unlike Brillinger, we do not establish any

consistency results; however, contrary to Brillinger’s, which has a very strong sta-

tionarity flavor, our concept aims at a better adaptation to possible nonstationary

features of the series. We also present a robust version of our procedure that al-

lows to estimate the DPC when the series have outlier contamination. We give

iterative algorithms to compute the proposed procedures that can be used with a

large number of variables. Our non robust and robust procedures are illustrated

with real data sets. Supplemental Material containing mathematical derivations is

available on line

Key words: reconstruction of data; vector time series; dimensionality reduc-

tion.

1 Introduction

Dimension reduction is very important in vector time series because the number

of parameters in a model grows very fast with the dimension m of the vector of

time series. Therefore, finding simplifying structures or factors in these models is
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important to reduce the number of parameters required to apply them to real data.

Besides, these factors, as we will see in this paper, may allow to reconstruct with a

small error the data sets and therefore to reduce the amount of information to be

stored. Dimension reduction is usually achieved by finding linear combinations of

the time series variables which have interesting properties. Suppose the time series

vector zt = (z1,t, ..., zm,t), where 1 ≤ t ≤ T, and we assume, for simplicity, that

z = T−1
∑T

t=1 zt, which will estimate the mean if the process is stationary, is zero

and Z the T ×m matrix whose rows are z1, ..., zT . Let C = Z′Z/T, be the sample

covariance matrix, λ1 ≥ λ1 ≥ λm eigenvalues of C and v̂i = (v̂1,i, ..., v̂m,i)
′, 1 ≤

i ≤ m, the corresponding eigenvectors satisfying v′
iv

′
j = δij. Then

p̂i = (p̂i,t, ..., , p̂i,t)
′ = Zv̂i, 1 ≤ i ≤ m (1)

is the i-th principal component of C. Let k < m , P̂k the k × T matrix with rows

equal p′
1, ...,p

′
k and call V̂k the m× k matrix whose i-th row is v′

i. Let Pk = (pi,t)

be any k × T matrix and Vk = (vj,i) any m × k matrix and suppose that we

reconstruct all the data zj,t using the k columns of Vk by
∑k

i=1 vj,ipi,t. Then the

mean squared error of the reconstructed series is

MSE(Pk,Vk) = (1/mT )
m∑
j=1

T∑
t=1

(zj,t −
k∑

i=1

vj,ipi,t)
2.

Okamoto and Kanasawa (1968) showed that

(P̂k, V̂k) = arg min
Pk∈Rk×m,Vk∈Rk×m

MSE(Pk, Vk). (2)

Note that in (2), the minimization is performed on all possible k×m matrices Pk,

and therefore it is not required that the element pi,t of Pk are linear combinations of

zt. However, the elements of the optimal matrix P̂k given by (1) have this property.

One drawback of this reconstruction is that it is static, that is, to reconstruct an

observation of period t only the values of the components in that period are used.
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Ku, Storer and Georgakis (1995) proposed to apply classical principal compo-

nents to the augmented observations z∗t = (z′t−h, z
′
t−h+1, ..., z

′
t)

′, h + 1 ≤ t ≤ T,

that includes the values of the series up to lag h. These principal components

provide linear combinations of the present and past values of the time series with

largest variance. However, it is not clear from their definition that these principal

components have good reconstruction properties.

An alternative way to find interesting linear combinations was proposed by

Box and Tiao (1977) who suggested maximizing the predictability of the linear

combinations ct = γ′zt. Other linear methods for dimension reduction in time

series models have been given by the scalar component models, SCM, (Tiao and

Tsay, 1989) and the reduced-rank models (Ahn and Reinsel, 1990, Reinsel and

Velu, 1998).

Brillinger (1981) addressed the reconstruction problem as follows. Suppose

zero mean m dimensional stationary process {zt} , −∞ < t < ∞. The dynamic

principal components are defined by searching for m× 1 vectors ch,−∞ < h <∞

and βj,−∞ < j <∞, so that if we consider as first principal component the linear

combination

ft =
∞∑

h=−∞

c′hzt−h, (3)

then

E

[
(zt −

∞∑
j=−∞

βjft+j)
′(zt −

∞∑
j=−∞

βjft+j)

]
. (4)

is minimum. Brillinger elegantly solved this problem by showing that ck is the

inverse Fourier transform of the principal components of the cross spectral matrices

for each frequency, and βj is the inverse Fourier transform of the conjugates of the

same principal components. See Brillinger (1981) and Shumway and Stoffer (2000)

for the details of the method. Note that when this procedure is adapted to finite
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samples the number of lags in (3) and in the reconstruction of the series should

be truncated. We can mention two shortcomings of Brillinger’s procedure: (i)

Brillinger’s procedure can be used with nonstationary series, but in this case

the mean square error of the reconstructed series may not be close to its possible

minimum value (ii) it is not clear how to robustify these principal components

using a reconstruction criterion.

A related line of research are factor models for time series. Static factor models

assume a contemporaneous relationship between the series and a small number of

factors. Some of these models assume stationarity (Peña and Box, 1987, Stock

and Watson, 1988, 2002. Bai and Ng, 2002, and Lam and Yao, 2012, among

others). All these models use the eigenvalues of the lag covariance matrices of

the process and are related to the principal components (PC) of the time series.

Some generalizations to the nonstationary case are Peña and Poncela (2006) for

integrated processes, Pan and Yao (2008) for general nonstationary processes and

Motta, Hafner and von Sachs (2011) and Motta and Ombao (2012) for locally

stationary processes.

Dynamic factor models are closely related to dynamic principal components

(DPC), because they assume that one important part of the original series can

be explained in a dynamic way by a relatively small number of common factors.

Forni, Hallin, Lippi, and Reichlin (2000) proposed a very general dynamic factor

model allowing for an infinite number of factor lags and low correlation between

any two idiosyncratic components. They show that the common component of the

series can be consistently estimated by increasing the number of series to infinity.

This estimator is obtained by projecting the data in the first q dynamic principal

components which include leads and lags. These principal components are obtained

as in Brillinger by the Fourier transforms of the eigenvectors of the spectral matrix.
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This model is applied for prediction in Forni, Hallin, Lippi, and Reichlin (2005),

where the authors proposed a one sided method of estimation of a dynamic factor

model for forecasting. The forecasts generated with this procedure improve the

ones derived by Stock and Watson (2002) using static principal components. Forni,

Giannone, Lippi, and Reichlin (2009) proposed a model that can be seen either

as a static model with r factors or as a dynamic model with q factor with q < r

and develop estimation methods for the factor structure with finite-dimensional

factor space. Forni and Lippi (2011) proposed a one sided solution for the general

dynamic factor model of Forni at al (2000). Forni, Hallin, Lippi and Zaffaroni

(2015) proposed a model with possibly infinite-dimensional factor spaces and

obtained a one-sided representation for the dynamic factor model. While some

of these models (Stock and Watson, Bai and Ng, 2002, Forni et al., 2009) make

assumptions on the relation between the series under study and the way factors

are loaded, other ones (Forni et al., 2000, Forni et al., 2015) do not make any

assumption of that type. Hallin and Lippi (2013) give a general presentation of

the methodological foundations of dynamic factor models.

The procedure we propose is different from these approaches as follows: (1) it is

entirely data-analytic and does not assume any given model; (2) it does not assume

a fixed number of factors to be identified. Instead, the number of components is

chosen to achieve a desired degree of accuracy in the reconstruction of the original

series. These differences are the usual ones between the two classical approaches

for dimension reduction: principal components and factor models.

In this paper we address the sample reconstruction of a vector of time series from

the DPCs by using a finite number of lags. Even if we do not prove consistency,

some interesting features of our procedure with respect to previous ones are: (i) the

DPC we propose do not need to be a linear or stationary combination of the data
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and consequently, it may lead to a better adaptation to a possible nonstationary

behavior of the series and (ii) it can be easily robustified by changing the loss

function to minimize, for example, from the mean square error criterion to a robust

scale.

The remaining of this article is organized as follows. In Section 2 we describe

the proposed dynamic principal components of a vector time series based on a

reconstruction criterion. In Section 3 we study the particular case where the pro-

posed dynamic principal components depend only on one lag. In Section 4 we show

the results of a Monte Carlo study that compares the proposed dynamic principal

components procedure with the ordinary principal components used in a dynamic

way and with the Brillinger’s DPC procedure. The comparison is done for both:

stationary and non stationary series. We also compare our procedure with the one

developed by Forni et al. (2009) for the factor models introduced in this work. We

show the good performance of our proposal in all these models, including the case

of very large number of series. We also apply our procedure to two nonstationary

vector time series real examples. In Section 5 we define robust dynamic principal

components using a robust reconstruction criterion and illustrate in one example

the good performance of this estimator to drastically reduce the influence of out-

liers. In Section 6 some final conclusions are presented. Supplemental Material

containing mathematical derivations is available on line.

2 Finding time series with optimal reconstruc-

tion properties

Suppose that we observe zj,t, 1 ≤ j ≤ m, 1 ≤ t ≤ T, and consider two integer num-

bers k1 ≥ 0 and k2 ≥ 0. We can define the first dynamic principal component with
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k1 lags and k2 leads as a vector f =(ft)−k1+1≤t≤T+k2 , so that the reconstruction of se-

ries zj,t, 1 ≤ j ≤ m, as a linear combination of f = (ft−k1 , ft−k1+1, ....ft, ft+1, ..., ft+k2)

is optimal with the mean square error (MSE) criterion. More precisely, given a

possible factor f , a m× (k1+ k2) matrix of coefficients γ = (γ∗j,i)1≤j≤m,−k1≤i≤k2 ,and

α = (α1, ..., αm), the reconstruction of the original series zj,t is defined as

ẑj,t =

k2∑
i=−k1

γj,ift+i + αj.

Let k = k1 + k2 and put

f ∗
t = ft−k1 , 1 ≤ t ≤ T + k, β∗

j,h = γj,h−k1−1, 1 ≤ h ≤ k + 1.

and also define

f ∗∗
t = f ∗

t+k, 1− k ≤ t ≤ T, β∗∗
j.,h = β∗

j,k+2−h, 1 ≤ h ≤ k + 1. (5)

Then, the reconstructed series can also be obtained as

ẑj,t=
k∑

i=−k1

βj,ift+i+k1 + αj =
k∑

h=0

β∗
j,h+1f

∗
t+h + αj =

k∑
h=0

β∗∗
j,h+1,f

∗∗
t−h + αj.

Then, without generality we can use indistinctly k lags or k leads of the principal

component to reconstruct the series. Although the reconstruction of the series with

k lags is intuitively more appealing , we will derive the optimal solution for the

case of k leads. The reason for this is that to derive the optimal solution using

lags requires to deal with more cumbersome equations due to the occurrence of

negative subscripts. Anyway, once obtained the forward optimal solution we can

immediately obtain the backward one using (5).

Let f = (f1, ..., fT+k)
′, β = (βj,i)1≤j≤m,1≤i≤k+1 and α = (α1, ...αm), then the

MSE loss function when we reconstruct the m series using k leads is given by

MSE(f , β, α) =
1

Tm

m∑
j=1

T∑
t=1

(zj,t−ẑj,t(f , βj, αj))
2 =

1

Tm

m∑
j=1

T∑
t=1

(zj,t−
k∑

i=0

βj,i+1ft+i−αj)
2.

(6)
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Note that this loss function is well defined and makes sense even in the case of

nonstationary vector time series. The optimal choices of f = (f1, ..., fT+k)
′ and

β = (βj,i)1≤j≤m,1≤i≤k+1 , α = (α1, ...αm) are defined by

(f̂ ,β̂, α̂) = arg min
f∈RT+k,β∈Rm×(k+1),α∈Rm

MSE(f , β, α). (7)

Clearly if f is optimal, γf+δ is optimal too. Thus, we can choose f so that∑T+k
t=1 ft = 0 and (1/(T + k))

∑T+k
t=1 f

2
t = 1. We call f̂ the first DPC of order k

of the observed series z1, ..., zt. Note that the first DPC of order 0 corresponds to

the first regular principal component of the data.

Let Cj(αj) = (cj,t,q(αj))1≤t≤T+k,1≤q≤k+1 be the (T + k)× (k+1) matrix defined

by

cj,t,q(αj) =

 (zj,t−q+1 − αj) if 1 ∨ (t− T + 1) ≤ q ≤ (k + 1) ∧ t

0 if otherwise
, (8)

where a ∨ b = max(a, b) and a ∧ b = min(a, b). Let Dj(βj) = (dj,t,q(βj)) be the

(T + k)× (T + k) given by

dj,t,q(βj) =


∑t∧T

v=(t−k)∨1 βj,q−v+1βj,t−v+1 if (t− k) ∨ 1 ≤ q ≤ (t+ k) ∧ (T + k)

0 if otherwise

and

D(β) =
m∑
j=1

Dj(βj). (9)

Differentiating (6) with respect to ft in Section 1 of the Supplemental Material we

derive the following equation

f = D(β)−1

m∑
j=1

Cj(α)βj. (10)
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Obviously, the coefficients βj and αj, 1 ≤ j ≤ m, can be obtained using the least

squares estimator, that is βj

αj

 =
(
F(f)′F(f)

)−1
F(f)′ z(j), (11)

where z(j) = (zj,1, ..., zj,T )
′ and F(f) is the T × (k + 2) matrix with t-th row

(ft, ft+1, ..., ft+k, 1). Then the first DPC is determined by equations (10) and (11). The

second DPC is defined as the first DPC of the residuals rj,t(f , β). Higher order DPC

are defined in a similar manner.

2.1 Computational algorithm for the DPC

To define an iterative algorithm to compute (f̂ ,β̂,α̂) is enough to give f (0) and a

rule describing how to compute β(h), α(h), f (h+1) once f (h) is known. The following

two steps based on (10) and (11) describe a natural rule to perform this recursion.

step 1 Based on (11), define β
(h)
j and α

(h)
j , for 1 ≤ j ≤ m , by β

(h)
j

α
(h)
j

 =
(
F(f (h))′F(f (h))

)−1

F(f (h))′z(j).

step 2 Based on (10), define f (h+1) by

f∗ = D(β(h))−1C(α(h))β(h)

and

f (h+1)= (T+k)1/2(f∗ − f
∗
)/|||f∗ − f

∗||.

The initial value f (0) can be chosen equal to the standard (non dynamic) first

principal component, completed with k zeros. We stop the iterations when

MSE(f (h), β(h), α(h))−MSE(f (h+1), β(h+1), α(h+1))

MSE(f (h), β(h), α(h))
< ε
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for some value ε.

Remark 1. Note that the dimension of the matrices to be inverted to compute

f (h), β(h), α(h) are independent of the number of time series and therefore we can

deal with large number of variables.

Remark 2. Note also that there are no restrictions on the values of f and

in particular we do not assume, as in Brillinger, that their components must be

linear combinations of the series. In this way the values of f can be adapted to the

nonstationarity character of the time series.

Assume we are considering p dynamic principal components of order k and let

βj,i,s 1 ≤ j ≤ m, 1 ≤ i ≤ k + 1, be the coefficient βj.i corresponding to the s−th

component, 1 ≤ s ≤ p. Then, the number of values required to reconstruct the

original series are the (T + k)p values of the p factors plus (k + 1)mp values for

the coefficients βj,i,s plus the m intercepts αj. Thus the proportion of the original

information required to reconstruct the series is ((T + k)p + (k + 1)mp+m)/mT

and when T is large compared to k and m, this ratio is close to p/m. In practice,

the number of lags to reconstruct the series, k, and the number of principal compo-

nents, p, need to be chosen. Of course the accuracy of the reconstruction improves

when any of these two numbers is enlarged, but also the size of the information

required will also increase. For large T increasing the number of components in-

troduces more values to store than increasing the number of lags. However, we

should also take into account the reduction in MSE due to enlarging each of these

components. In general, increasing the number of lags after some point will have

a negligible effect on the MSE. Then, if the level of the MSE is larger than de-

sired, a new component should be added. Thus one possible strategy is to start

with one principal component and increase the number of lags until the reduction

of further lags is smaller than some value ϵ. Then a new principal component is
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introduced and the same procedure is applied. The process stops when the MSE

reaches some satisfactory value. Note that this rule is similar to what is generally

used for determining the number p in ordinary principal components.

3 Dynamic Principal Components when k = 1

To illustrate the computation of the first DPC, let us consider the simplest case of

k = 1. Then, we search for β̂=(β̂ji)1≤j≤m,1≤i≤2 and f̂= (f̂1, ..., f̂T+1)
′ such that

(f̂ ,β̂) = argmin
1

T∑
t=1

m∑
j=1

(zj,t − βj,1ft − βj,2ft+1)
2. (12)

Suppose now that zt is stationary, then in Section 2 of the Supplemental Ma-

terial is shown that, except in both ends, f̂t, can be approximated by

f̂ ∗
t =

1

α

[
m∑
j=1

β̂j,1

∞∑
q=−∞

c|t−q|zj,q +
m∑
j=1

β̂j,2

∞∑
q=−∞

c|t−q|zj,q−1

]
, (13)

where |c| < 1. Therefore the DPC is approximated by linear combinations of the

stationary series zj,t+
∞∑
i=1

ci(zj,t+i+ zj,t−i), and zj,t−1+
∞∑
i=1

ci(zj,t−1+i+ zj,t−1−i), 1 ≤

j ≤ m. These series give the largest weight to the periods t and t− 1 respectively

and the weights decrease geometrically when we move away of these values. We

conjecture that in the case of the first DPC of order k, a similar approximation

outside both ends of f̂t by an stationary process can be obtained.
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4 Monte Carlo simulation and examples

4.1 Simulation results for the stationary case

We perform a Monte Carlo study using as vector series zt = (z1,t, z2,t, ..., zm,t)
′,

1 ≤ t ≤ T generated as follows:

zi,t = 10 sin(2pi(i/m))ft+10 cos(2pi(i/m))ft−1+10(i/m)ft−2+ui,t, 1 ≤ i ≤ m, 1 ≤ t ≤ T,

(14)

where ft,−2 ≤ t ≤ T and ui,t, ≤ t ≤ T, 1 ≤ i ≤ m are i.i.d. random variables with

distribution N(0, 1). We compute three different principal components: (i) The

ordinary principal component used in a dynamic way with k lags to reconstruct

the original series (OPCk) (ii) the dynamic principal component (DPCk) proposed

here, (iii) Brillinger dynamic principal components (BDPCk) adapted for finite

samples as follows:

ft =
k∑

i=−k

c′izt−i, k + 1 ≤ t ≤ T − k, (15)

where ck are the coefficients defined below (4) in Section 1. In this simulation

we used OPC2, DPC2 and BDPC10. To reconstruct the original series with the

three procedures we used least squares. The BDPCk components were computed

using the R code developed for Hörmann, Kidziński and Hallin (2014) that was

kindly provided by the authors. However, we were not able to run this program for

dimension m = 1000 because of lack of enough memory (our computer has 8 GB

of installed memory). We performed for each case 1000 Monte Carlo replications

and in Table 1 we show the MSE of the reconstructed series.

We observe that the performances of DPC2 and BDPC10 are quite similar and

that the MSEs are close to one, that is, equal to the variance of the error terms

ui,ts. We also observe that the MSE of the reconstructed series with the OPC2
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m T OPC2 DPC2 BDPC10

20 100 52.53 0.91 0.94

200 55.86 0.92 0.95

100 100 54.89 0.95 0.99

200 57.65 0.97 0.99

500 100 53.56 0.96 1.00

200 57.14 0.98 1.00

1000 100 54.88 0.96 -

200 59.09 1.00 -

Table 1: MSE of the Reconstructed Series for the Stationary Model with one Factor

procedure is much larger.

In Figure 1 we plot the estimated factor loadings for a data set satisfying (14)

with T = 200 and m = 1000.

We observe that the estimated loadings follow a pattern quite close to the one

satisfied by the true values: sin, cosine and a linear trend.

4.2 Simulation results in the nonstationary case: VARI(1, 1)

model.

In this case we consider a VARI(1, 1) m−dimensional vector series zt generated

as follows. Consider an stationary VAR(1) model xt = Axt−1 + ut, 1 ≤ t ≤ T,

where the uts are i.i.d. m-dimensional vectors with distribution Nm(0, I) and let

zt = zt−1+xt. We consider 1000 replications and in each replication we generate a

new matrix A of the form A = V ΛV ′, where V is an orthogonal matrix generated at

random with uniform distribution and Λ is a diagonal matrix, where the diagonal

14
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Figure 1: Loadings for one Replication of the Stationary Model with T=200 and

m=1000
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m OPC10 DPC10 BDPC10

20 67 83 55

100 67 86 62

200 69 86 62

Table 2: Percentage of Explained Variance in the VARI(1,1) Model

elements are independent with uniform distribution in the interval [0, 0.9].We took

m = 20, 100 and 200 and T = 400.We obtained the first principal component using

the OPC10, DPC10 and BDPC10 procedures. In Table 2 we show the percentage of

explained variance for each procedure. We consider that, since in this case we are

not dealing with a factor model, this measure of performance is easier to interpret

than the MSE of the reconstructed series.

We observe that the best performance is achieved by the DPC10. We also tried

to use the different procedures with larger number of lags obtaining essentially the

same results.

4.3 Simulation results using the factor model in Forni et

al. (2009)

In this subsection we compare by means of a Monte Carlo simulation the dynamic

principal components procedures with the one developed by Forni et. al (2009)

(FGLR) for a special class of factor models that may be seen either as a static

model with r factors or as a dynamic model with q factor with q < r. In our Monte

Carlo study we consider a vector series zt = (z1,t, z2,t, ..., zm,t)
′, 1 ≤ t ≤ T, where

zi,t = sin(2πi/m)f1t + cos(2i/m)f2t + ui,t, 1 ≤ i ≤ m, 1 ≤ t ≤ T,
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where all the ui,t are independent with distribution N(0, 1). The vector of static

factors ft = (f1t, f2t) satisfies the autoregressive model ft = Af t−1 + vtb,1 ≤ t ≤ T,

where all vt are independent N(0, 1), A is a 2 × 2 diagonal matrix with diagonal

equal to (−0.8, 0.7) and b = (1, 1)′. We took m = 5, 100 and 1000, T = 200 and

400 and the number of replications was 1000. Note that in this case r = 2 and

q = 1. In Table 3 we show the MSEs of the reconstructed series. The code for the

FGLR procedure was kindly provided by the authors of Forni et al. (2009). As

was explained in Subsection 4.1, we were not able to run the BDPC10 procedure

with m = 1000.

m T DPC5 BDPC10 FGLR

5 200 0.66 0.71 0.91

400 0.71 0.74 0.89

100 200 0.93 0.97 1.02

400 0.95 0.97 1.01

1000 200 0.96 - 1.02

400 0.98 - 1.01

Table 3: MSE of the Reconstructed Series for a Factor Model with r=2 and q=1

We observe that for smallm the MSEs of the reconstructed series with the prin-

cipal components procedures are smaller than those reconstructed with the FGLR.

Instead, for large m, both reconstruction errors are close to the variance of the

idiosyncratic component ui,t. The reason for this is that the goal of factor analysis

models is accounting for cross-correlations (the instantaneous ones, in the static

case, the instantaneous and lagged ones in the dynamic case) while the goal of

principal components is dimension reduction, that is, to obtain an approximate re-

construction of the original data based on an small number of unobserved variables,
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However, it can be proved that when m increases the MSEs of the reconstructed

series using dynamic factor analysis or dynamic principal components converge to

the variance of the idiosyncratic component. Therefore the comparison between

both principal component methods and the FGLR factor analysis method is only

relevant when m is large. The results presented in Table 3 indicates that both

DPC and FGLR give very good results in this case.

4.4 Example 1

We illustrate the DPC with a small data sets with six series corresponding to the

Industrial Production Index (IPI) of France, Germany, Italy, United Kingdom,

USA and Japan. We use monthly data from January 1991 to December 2012 and

the data are taken from Eurostat. The six series are plotted in Figure 2.

In Table 4 we show the percentage of the variance explained by the OPCk and

DPCk procedures for k = 1, 5, 10, 12 and for the BDPC12 procedure. The reason

to take only k = 12 for the BPC is to be close to the original Brillinger definition.

k OPCk DPCk BDPCk

1 66 82 -

5 77 90 -

10 78 95 -

12 80 97 89

Table 4: Percentage of Explained Variance of the IPI Series Using the OPC, DPC

and BDPC Procedures
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Figure 2: Industrial Production Index of Six Countries 1991-2012
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We note that the reconstruction of the series using the DPC is notably better

that the one obtained by means of the OPC and BDPC procedures with the same

lags. Increasing the number of lags obviously improves the reconstruction obtained

by both components, although the improvement is larger with the DPC.

Figure 3 shows the boxplots of the absolute value of the reconstructed series

errors for the OPC12 and DPC12 procedures. Note that the reconstruction errors

are significantly smaller when using the DPC12 procedure.

4.5 Example 2.

In this example the data set is composed of 30 daily stock prices in the stock market

in Madrid corresponding to the 251 trading days of the year 2004. The source of

the data is the Ministry of Economy, Spain. In Table 5 we show the percentage of

the variance explained by the different procedures using the OPCk,DPCk BDPCk

procedures.

k OPCk DPCk BDPCk

0 60 60 -

1 60 82 -

5 61 87 -

10 62 88 60

Table 5: Explained variability of the OPC and DPC for the stock prices series with

different number of lags

We observe that the best performance corresponds to the DPCk procedure. As

shown in Table 5 including lags in the OPC does not make much difference in

the results, but it has an important effect on the DPC. In Figure 4 we show the

percentage of the variance explained be the DPC5 against the one explained by
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Figure 3: Boxplots of the Absolute Values of the Errors of the Reconstructed IPI

Series
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Figure 4: Percentage of the Variance Explained by the DPC5 Against the Percent-

age Explained by the OPC5 Procedure.

the DPC5. for the 30 stock prices. We note the for most of the variables the best

performance correspond to the DPC5 procedure.

Figure 5 presents the first OPC5 and DPC5. The first DPC5, which is much

smoother than the first OPC5, seems to be very useful to represent the general

trend of the set of time series.

5 Robust Generalized DPCs

As most procedures defined by minimizing the mean square error, the DPC given

by (7) is not robust. In fact a very small fraction of outliers may have an un-

bounded influence on (f , α, β). The procedure proposed by Brillinger seems to be

very difficult to robustify. At first sight, it may seems that it may be robusti-
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Figure 5: First OPC5 and DPC5 for the Stock Prices Series

fied by using a robust estimator of the spectral matrix. For example, Spangl and

Dutter (2005) and Li (2012) proposed robust estimators for the spectral matrix.

However this is not enough to obtain robust DPCs. In fact, a robust estimator of

the spectral matrix only guarantees the robustness of the coefficients in the linear

combinations defining the principal components. However, the result of applying

these coefficients to the original series may be largely affected by outlying obser-

vations. Instead, the DPC procedure defined by (7) is easier to robustify. An

standard way to obtain robust estimates for many statistical models is to replace

the minimization of the mean square scale for the minimization of a robust M-scale.

This strategy was used for many statistical models, including among others linear

regression (Rousseeuw and Yohai, 1984), the estimation of a scatter matrix and

multivariate location for multivariate data (Davis, 1987) and to estimate the ordi-

nary principal components (Maronna, 2005). The estimators defined by means of
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a robust M-scale are called S-estimators. In this section we introduce S-estimators

for DPC.

Special care is required for time series with strong seasonality. The reason is

that when the values corresponding to a particular season are very different to the

others they will be considered as outliers by a robust procedure, and therefore they

will be downweighted. As a consequence, the reconstruction of this season may

be affected by large errors. Thus, the procedure we present here assumes that the

series have been adjusted by seasonality to avoid this problem.

5.1 Generalized S -DPCs

Let ρ0 be a symmetric, non-decreasing function for x ≥ 0 and ρ0(0) = 0.Given a

sample x = (x1, ..., xn), the M-scale estimator S(x) is defined as the value s solution

of
1

n

n∑
i=1

ρ0

(xi
s

)
= b. (16)

If ρ0 is bounded, then the breakdown point to ∞ of S(x), that is, the minimum

fraction of outliers than can take S(x) to ∞ is b/max ρ0. Moreover, the break-

down point to 0, that is, the minimum fraction of inliers that can take S(x) to

0, is 1− (b/max ρ0). Note that if b/max ρ0 = 0.5 both breakdown points are

0.5 (see section 3.2.2. in Maronna, Martin and Yohai, 2006). In what follows

we assume without loss of generality that max ρ0 = 1. Moreover ρ0 is chosen so

that Eϕ(ρ0(x)) =b,where ϕ is the standard normal distribution. This condition

guarantees that for normal samples S(x) is a consistent estimator of the standard

deviation. One very popular family of ρ functions is the Tukey biweight family
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defined by

ρTc (x) =

 1− (1− (x/c)2)
3

if |x| ≤ c

1 if |x| > c
.

Given f = (f1, ..., fT+k), βj = (βj,0, βj,1, ..., βj,k) and αj, 1 ≤ j ≤ m, let rj,t(f , βj, αj) =zj,t−∑k
i=0 βj,ift+i − αj, rj(f , βj, αj) = (rj,1(f , βj, αj), ...,rj,T (f , βj, αj)). Let β the m ×

(k + 1) matrix whose j-th row is βj, α = (α1, ...αm) and

SRS(f , β, α) =
1

m

m∑
j=1

S2(rj(f , βj, αj)). (17)

We define the first S-DPC f̂ by

(f̂ , β̂, α̂) = arg min
f∈RT+k,β∈Rm×(k+1),α∈Rm

SRS(f , β, α). (18)

Note that β̂ and α̂ are the coefficients that should be used to reconstruct the zj,t’s

from f̂ .

We can observe that the only difference with the definition given in (7) is that

instead of minimizing the MSE of the residuals, we minimize the sum of squares

of the robust M-scales applied to the residuals of the m series. Put ψ = ρ′, w(u) =

ψ(u)/u,

sj = sj(f , βj, αj) = S(r(f , βj,αj)). (19)

Then sj satisfies

1

T

T∑
t=1

ρ

(
zv−

∑k
i=0 βj,i+1fv+i − αj

sj

)
= b. (20)

Define the weights

wj,t = wj,t(f , βj, αj) = w

(
rj,t(f , βj)

sj

)
, 1 ≤ j ≤ m, 1 ≤ t ≤ T (21)

and
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Wj,t,v =Wj,t,v(f , β, α, s) =
s2jwj,v(f , βj, αj, sj)∑t∧T

h=(t−k)∨1wj,h(f , βj, αj, sj)r2j,h
, (22)

where s =(s1, ...sm). Let Cj(f , βj, s) = (cj,t,q(f , βj, s))1≤t≤T+k,0≤q≤k be the (T +

k)× (k + 1) matrix defined by

cj,t,q(f , β, α,s) =

 Wj,t,t−q+1(f , β, α, s)(zj,t−q+1 − αj) if 1 ∨ (t− T + 1) ≤ q ≤ (k + 1) ∧ t

0 if otherwise
,

(23)

Dj (f , β, α,s) = (dj,t,q(f , β, α,s)) the (T + k)× (T + k) matrix with elements

dj,t,q(f , β, α,s) =


∑t∧T

v=(t−k)∨1Wj,t,vβj,q−v+1βj,t−v+1 if (t− k) ∨ 1 ≤ q ≤ (t+ k) ∧ (T + k)

0 if otherwise

and

D(f , β, α,s) =
m∑
j=1

Dj(f , β, α,s). (24)

Differentiating (20) with respect to ft we derive in Section 3 of the Supplemental

Material the following equation

f = D(f , β, α, s)−1

m∑
j=1

Cj(f , β, α,s)βj. (25)

Let F(f) be the T × (k+2) matrix with t-th row (ft, ft+1, ..., ft+k, 1) andWj(f , β,s)

be the diagonal matrix with diagonal equal to wj,1((f , βj, s), ..., wj,T (f , βj, s). Then

differentiating (20) with respect to βj,i and αjwe derive in Section 3 of the Supple-

mental Material βj

αj

 =
(
F(f)′Wj(f , βj, s)F(f)

)−1
F(f)Wj(f , βj, s)

′z(j). (26)

Then the first S-PDC is determined by equation (19),(25)and (26). Note that the

estimator defined by (7) is an S-estimate corresponding to ρ20(u) = u2 and b = 1.
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Then for this case (25) and (26) become (10) and (11) respectively. The second

S-DPC is defined as the first S-DPC of the residuals rj,t(f , β). Higher order S-DPC

are defined in a similar manner.

One important point is the choice of b. At first sight, b = 0.5 may seem a good

choice, since in this case we are protected against up to 50 % of large outliers.

However, the following argument shows that this choice may not be convenient.

The reason is that with this choice, the procedure has the so called 50% exact

fitting property. This means that when 50 % of the rj,t(f , βj,αj)s are zero the

scale S(rj(f , βj, αj)) is 0 no matter the value of the remaining values. Moreover,

if 50 % of the |rj,t(f , βj,αj)| are small the scale S(rj(f , βj, αj)) is small too. Then

when b = 0.5, the procedure may choose f , β and α so to reconstruct the values

corresponding to 50% of the periods even if the dataset do not contain outliers..

For this reason it is convenient to choose a smaller value as b, as for example

b = .10. In that case to obtain S(rj(f , βj, αj)) = 0, it is required that 90% of the

rj,t(f , βj,αj)s be 0. One may wonder why for regression is common to use b = 0.5

and the 50% exact fitting property does not cause the problems mentioned above.

The reason is that in this case, if there are no outliers, the regression hyperplane

fitting 50% of the observations also fits the remaining 50%. This does not occur

in the case of the dynamic principal components.

5.2 Computational algorithm for the S-DPC

An iterative algorithm similar to the one described for the DPC in Section 2 can

be used to compute the S-DPC. The only difference is that it should be based on

(25)and (26) instead on (10) and (11).

The initial value f (0) can be chosen equal to a regular (non dynamic) robust

principal component, for example the one proposed in Maronna (2005). Once
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f (0) is computed we can use this value to compute a matrix F(0) = F with i-th

row (f
(0)
i , f

(0)
i+1, ..., f

(0)
i+k, 1). The j-th row of β(0) and α

(0)
j can be obtained using a

regression S-estimate taking z(j) as response and F(0) as design matrix. Finally

s
(0)
j = S(rj(f

(0), β(0)).

A procedure similar to the one described at the end of Section 2 can be used

to determine a convenient number of lags and components replacing the MSE by

the SRS.

5.3 Example 3

We will use the data of example 2 to illustrate the performance of the robust

DPC. This dataset was modified as follows: each of the 7530 values composing

the dataset was modified with probability 0.05 adding 20 to the real value. In

Table 6 we show the MSEs of the series reconstructed with the DPC. Since the

DPC is very sensitive to the presence of outliers, we also compute the S-DPC.

Since the MSE is also very sensitive to outliers, we evaluate the performance of

the dynamic principal components procedures using the SRS criterion. We take as

ρ the bisquare function with c = 5.13 and b = 0.1. These values make the M-scale

consistent to the standard deviation in the Gaussian case. Table 6 gives the MSEs

and the SRSs for the DPCk and S-DPCk procedures for k = 1, 5 and 10.

We observe that the robust measure of performance SRS corresponding to the

S-DPC is much smaller than the one corresponding to the DPC. In Figure 6 we

show the boxplots for the first 16 stock prices with the DPCk and with the S-

DPCk. For a better visualization, we have eliminated the outliers larger than 10.

These boxplots shows that the S-DPCk is much less affected by the outliers than
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k MSE of the DPCk SRS of the DPCk SRS of the S-DPCk

1 18.81 6.05 0.84

5 17.75 6.64 0.50

10 16.90 7.63 0.48

Table 6: MSE and SRS of the DPCk and S DPCk for the contaminated stock prices

series

the DPCk.The boxplots of the fourteen remaining stocks are similar, but are not

shown by shortness sake.

6 Conclusions

We have proposed two dynamic principal components procedures for multivariate

time series: the first one using a minimum squared error criterion to evaluate the

reconstruction of the original time series and the second one using a robust scale

criterion. Both criteria make sense even if in the case of nonstationary series. A

Monte Carlo study shows that the proposed dynamic principal component based

on the MSE criterion can improve considerably the reconstruction obtained using

ordinary principal components in a dynamic way. In the case of stationary series the

performance of the proposed procedure is comparable with a finite sample version

of Brillinger’s approach and in the case of nonstationary series our procedure seems

to behave better. We have also shown in an example that the robust procedure

based on a robust scale is not much affected by the presence of outliers.

A simple heuristic rule to determine a convenient value for the number of com-

ponents, p, and the number of lags, k, is suggested. However, further research

may lead to better methods to choose these parameters trading off accuracy in the

29



DPC S−DPC

0
2

4

ALT

DPC S−DPC
0

2

AMS

DPC S−DPC

0
2

4
6

ANA

DPC S−DPC

0.
0

2.
0

BBVA

DPC S−DPC

0
2

4
6

BKT

DPC S−DPC

0.
0

1.
0

2.
0

BTO

DPC S−DPC

0
2

4
6

ELE

DPC S−DPC

0.
0

1.
5

ENG

DPC S−DPC

0
2

4

FCC

DPC S−DPC

0
2

4
6

FER

DPC S−DPC

0.
0

1.
5

3.
0

GAS

DPC S−DPC

0
2

4

IBE

DPC S−DPC

0.
0

1.
0

IBLA

DPC S−DPC

0
2

4

IDR

DPC S−DPC

0
2

4

ITX

DPC S−DPC

0
2

4
6

LOR

Figure 6: Boxplots of the Residual Absolute Values of the Stock Prices Obtained

with the DPC5 and S-DPCC5 Procedures

30



series reconstruction and economy in the number of values stored for that purpose.

Although the proposed DPC seems to be very powerful for data reconstruction

they have some limitations for forecasting, because they use information from leads

and lags to reconstruct the series, an this is not convenient for forecasting. However,

they may be useful to find the dimension of the factors space in factor models and

this will be the subject of further research.

7 Supplemental Material

The Supplemental Material available on line contains the proofs of (10), (13), (25)

and (26).
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