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Abstract: The question we examine in this paper is the problem of improvement of
univariate forecasting when the variable of interest belongs to a panel with dependant
across units. We analyse in possibly nonstationary framework, to what extent forecast
based on the augmented univariate process implied by a factor model can show sub-
stantial advantages in terms of expected gains, with respect to simple univariate model.
Moreover we consider identical autoregressive (AR) roots over the cross sections. Anal-
yses are done theoretically and on the basis of Monte Carlo simulations. Our results
show that in the general case where non stationarity is allowed, substantial forecast
error reduction of the univariate process can be achieved by simply augmenting each
individual time series with its idiosyncratic factor.
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1 Introduction

In recent years, there is an important upsurge of forecasting methods using a large
number of predictors. These methods are generally based on factor models that lead
to parsimonious econometric structure when working with large dimensional dataset
characterized by important cross-sectional correlations. In factor models, each variable
is assumed to be the sum of two components: a common component driven by a small
number of latent common factors and an idiosyncratic component. Pioneering works
that use common and idiosyncratic representation in modeling macroeconomic aggre-
gates subject to strong co-movements were initiated by Burns and Mitchelles (1946)
followed by Geweke (1977) and Sargent and Sims (1977). However, in more recent
years, important contributions on this �eld are realized by Stock and Watson (1998,
2002), Forni et al. (2000), Bai and Ng (2002) among others.

The idea which consists of using for forecasting purposes, relevant information set
extracted from a large panel of potentially useful variables and summarized via a com-
mon component, is due to authors like Stock and Watson (1998, 2002), Forni et al.
(2004), Marcellino et al. (2003), Peña and Poncela (2004) etc. If the common factor
is directly augmented to the univariate process, this provides what is known as factor-
augmented univariate forecast. This procedure has become quite popular since the work
initiated by Stock and Watson (1998) and a large body of research in the literature of
forecasting has corroborated its relevance (see for example D'Agostino and Giannone
2012, Bai and Ng 2005).

In line with these researches, the main question we address in this paper is the
problem of the improvement of univariate forecasting which tends to turn out bad when
the variable of interest belongs to a panel of time series which are highly dependant
across unit. Focusing on the role of the idiosyncratic factor, we analyse in possibly
nonstationary framework, to what extent forecast based on the augmented univariate
process implied by a factor model can show substantial advantages in terms of expected
gains, with respect to simple univariate model. Following Peña and Poncela (2004),
we consider identical autoregressive (AR) roots over the cross sections. Analyses are
done theoretically and on the basis of Monte Carlo simulations. Then, on the other
hand, forecast of annual GNP growth of some European countries is considered. It is
found that in the general case where non stationarity is alllowed, substantial forecast
error reduction of the univariate process can be achieved by simply augmenting each
individual time series with its idiosyncratic factor.

The rest of the paper is organized as follows. Section 2 sets up the framework of
our analysis. Section 3 provides an analysis on the importance of such a procedure in
forecasting exercise, and then presents the forecast model used and estimations issues.
In Sections 4 and 5 we respectively analyse the forecast performance of the model and
present some Monte Carlo results.
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2 Framework

Let yt be a stochastic variable. The corresponding autoregressive process augmented
with a single factor can be de�ned over the sample period t = 1, ..., T as follows

yt = α + βft−1 + ρyt−1 + ξt (1)

where |ρ| < 1, α is a constant term and ξt the regression error. This representation
corresponds to the di�usion index model de�ned by Stock and Watson (2002) in the
case where the number of factors is one. The series ft, referred to as the unobserved
common factor is related to xt, a large panel of stationary time series. The relation is
given by the following factor struture1

xjt = µj + γjft + zjt ∀ j = 1, ..., J (2)

where µj is an individual �xed e�ect and zjt is a serially un-correlated idiosyncratic
factor. In macroeconomic panels, the common factor can be viewed as an economy-wide
shock, a�ecting all aggregates with heterogeneous intensities (Kabundi and Loots, 2007)
. Thus, in such a case the panel of xjt series can include macroeconomic indicators such
that industrial production, interest rate, in�ation etc. The coe�cient γj is the factor
loading which give a measure of the contribution of the j-th individual to the common
shock. The factor-augmented univariate model (1) is relevant only if the autoregressive
process of yt can be explained by the latent common factor which follows the dynamic
stationary vector process

ft = ϕft−1 + ηt (3)

where |ϕ| < 1, ηt ∼ iid
(
0, σ2

η

)
and E

(
ηtη

′
τ

)
= 0 if t 6= τ . In addition cov (zjt, ητ ) = 0

for all j, t and τ . The vector representation of the single factor model is

xt = µ+ γft + zt (4)

with xt = (x1t, ..., xJt)
′, µ = (µ1, ..., µJ)′ and γ = (γ1, ..., γJ)′. The common and id-

iosyncratic factors are assumed to be uncorrelated and have zero mean. Also, there is
independence between the factor loadings and the common factor so that {γj}, {ft} and
{zjt} are three independent groups. The assumption that the vector zt = (z1t, ..., zJt)

′

is mutually uncorrelated implies that the covariance matrix of the idiosyncratic factor
(Σz) is a diagonal matrix, Σz = diag (σ2

z1, ..., σ
2
zJ). This latter assumption is associated

with what is called in the literature the strict factor model. The covariance matrix of
the observed series is decomposed into two components

Σ = γV γ′ + Σz (5)

where V denotes the variance of the common factor.

1Notice that model (2) can be estimated using principal component analysis. In practice, the mean
of the time series must be removed prior to principal component estimation.
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The literature has shown how di�usion index model can be useful in forecasting
exercise by improving the forecast accuracy of the series and outperforming many com-
peting methods. The premise is that factor underlying common movement in a set of
macroeconomic variables is a good predictor of the future value of a few key economic
aggregates. Using model (1), the h-step ahead forecast proposed by Stock and Watson
(2002) is ŷt+h = αh+βhft+ρhyt, where the parameters βh and ρh depend on the forecast
horizon and the forecast error is assumed to satisfy E

(
ξt+h| {fτ , yτ}τ≤t

)
= 0.

In the following methodoligical section, we conduct some analyses on the relevance
of the forecast procedure stated here. We also extend the procedure to a possibly
nonstationary framework and then use an alternative version of model (1). We are
interesting, in Section 4, in its forecast performances2.

3 Methodology

3.1 Setup

Suppose that yt is a vector of n stochastic variables with high degrees of cross-section
dependences. If n is enought large, the common factor can be extracted using the panel
{yit}n,Ti=1,t=1, see for example Boivin and Ng (2005), Bai and Ng (2010). This suggests
that in static form, yit also admits a common factor representation and can be written
in terms of equation (2)

yit = µi + γift + zit. (6)

In a multi-country framework, this representation can be very attractive because it
allows to model the dynamics of the macroeconomic variables such as GNP of each
economy by controlling global and country speci�c e�ects.

To derive the factor-augmented univariate process from model (6) we allow the
dynamic of ft given in (3) to enter into yit directly. After some straightforward devel-
opments, we get

yit = (1− ρ)µi + γi (ϕ− ρ) ft−1 + ρyi,t−1 + zit − ρzi,t−1 + γiηt. (7)

Equation (7) shows that when the time series admit a factor model representation
the univariate regression is a special case of the one-factor-augmented model where
the restriction ϕ = ρ and/or γi = 0 is imposed. Also, we can see that the di�usion
index forecast presented in the previous section can be regarded as a case where the
common factor and the predicted series yit are not restricted to have the same order
of integration but where the restriction that ηt and (1− ρL) zit are unpredictable is
considered, L being a lag operator. On the other hand, the error term of the factor-
augmented autoregressive model can be seen as a pure factor structure in which ηt and
zit − ρzi,t−1 are respectively the common and idiosyncratic factors.

2With respect to the univariate forecasting.
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For the purpose of this paper, we set ϕ = ρ and then allow the nonstionarity of the
process given in (7). Then, we de�ne the Data Generating Processs (DGP) in line with
Moon and Perron (2004) and Moon et al. (2007) PESARAN? by using the following
single factor residual model

yit = αi + ρyi,t−1 + ξit

ξit = γiηt + eit
(8)

where αi = (1− ρ)µi and the idiosyncratic error eit follows a stationary Moving Average
(MA) process such that eit = zit − ρzi,t−1. Notice that each individual has the same
contribution (γi) to ft and the factor residual ηt. This factor error structure may re�ect
di�erent sources of unobserved individual-speci�c heterogeneity. For example, Cunha
and Heckman (2007) argue that in a model of wage determination, γi corresponds to
an unmeasured skill for the i-th individual, while ηt captures the vector of skill prices
which changes intertemporally.

3.2 Forecasting Model

The assumptions on zit imply that eit is independently distributed across units, have
mean zero and variance σ2

ei = σ2
zi (1 + ρ2). In addition, with the assumption on ηt, the

error ξit is serially uncorrelated. In fact, the factor residual model is not treated as a
simple residual but is exploited for forecasting purpose of the univariate process. Thus,
the one-step ahead forecast based on equation (8) yields

ŷi,t+1 = αi + ρyit + φzit (9)

where φ = −ρ. The associated prediction error is εi,t+1 = zi,t+1 + γiηt+1.
We will refer to equation (9) as the idiosyncratic factor-augmented (IFA) univariate

forecast and will analyse its forecast accuracy. Notice that Peña and Poncela (2004)
also considered the situation where ϕ = ρ and compare prediction accuracy of factor
model with respect to simple univariate model. In their paper, forecasts are carried out
using a version of equation (6) where the intercept µi is nul. Their results show a gain
in precision, in terms of the Mean Square Forecast Error (MSFE) in non stationary and
stationary cases. However, Boivin and Ng (2005) argue that to achieve forecast error
reduction one can simply augment the autoregressive model with the common and/or
idiosyncratic factors. We will adopt this strategy by comparing simple and idiosyncratic
factor-augmented univariate forecasts for |ρ| < 1 and for ρ = 1.

If in specifying model (8) we mistakenly ignore the e�ect of the factor residual, then
the resulting univariate series with a constant term (ci) will follows an ARMA (1,1)
process (see for example Meddahi 2002, Peña and Poncela 2004, Banerjee et al. 2008)
which can be expressed as follows

yit = ci + ρyi,t−1 + vit − δivi,t−1 (10)
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where |δi| < 1 and vit ∼ i.i.d. (0, σ2
vi) ∀i. Thus the one-step ahead forecast based on the

univariate model (10) is

ŷi,t+1 = ci + ρyit − δivit (11)

with prediction error vi,t+1. The forecast errors from model (11) are expected to domi-
nate those from model (9) in absolute value. Indeed, Magnus and Pesaran (1989) show
that this type of misspeci�cation in univariate time-series forecasting can generate im-
portant statistical problems particularly in near-unit root case.

Remark 1. For each i, the variance of the error vit in the ARMA process (10) is given
by

σ2
vi = σ2

zi + γ2i σ
2
η(1− ρδi)

−1. (12)

Proof See Appendix. �

Building on this remark, we can establish the following relation by introducing the
equation (24) given in the Appendix into (12)

ρ

δi
= 1 +

γ2i σ
2
η

σ2
zi (1− ρδi)

> 1. (13)

This last relation implies that |ρ| > |δi| and that in addition, these two parameters
have the same sign. Moreover, the larger is γ2i , the greater ρ/δi. So, the gap between
the values of the moving average parameter of the i-th individual and the pooled AR
parameter depends to the sensitivity of the individual to the common information and
that this di�erence exists as long as γi will be non-zero. If there is no restriction and
that γi = 0 simply because the e�ect of the common factor is null, then the factor
representtion of the residual ξit no more holds and the corresponding series follows a
simple univariate autoregressive process. To ensure that the representation in (8) and
(10) is valid for each i, one can assume as it is usual in the literature that the factor
has nontrivial contribution to the dynamic of each time series, say γi 6= 0 ∀i = 1, ..., n.

3.3 Estimations Issues

Above, we treated the parameters of the models as well as the latent element (zit) as
known, but in an empirical perspective they need to be estimated. At each step of
the forecast, the estimation of the models IFA and ARMA (1,1) can respectively be
summarized as follows.

- For the IFA model, we �rst estimate the parameters of the �xed-e�ect dynamic
panel model with pooled autoregressive root. Then, principal components is used on the
covariance matrix of the observed data demeaned beforehand and the estimator of the
idiosyncratic elements zit are collected. Indeed it is well known that when the cross-
sectional dimension is large, principal component gives the estimators of the factors
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which are as good as if the true latent factors were observed (Doz et al. , 2012 and
Breitung et al., 2006). Thus, the forecast error possibly implied by the estimation of
the unobserved factors should be negligible.

- For the ARMA(1,1) model, we also begin by estimating the dynamic panel model
and collect the estimated residuals, ξ̂it. Then, these residual are used to �t an ARMA(1,1)
model and get the estimator of the MA(1) parameter.
In the next section, we derive and compare the mean square error of prediction as-
sociated to speci�cations (9) and (11) for further ahead forecast. The aim being to
check theoretically how much forecast improvement the factor-augmented univariate
model can provide. Furthermore, attention is also given to the di�erence between the
nonstationary and the stationary cases.

4 Forecast Accuracy

Now suppose that one is interested by an h-steps ahead forecast of a vector of time
series with information up to time t. This can be done by extending the prediction
of the observed series de�ned in (9) to horizon h. Thus, proceding to a sequence of
one-step ahead forecasts we obtain at t+ h,

ŷi,t+h =
h−1∑
j=0

ρjαi + ρhyit + ρh−1φzit. (14)

It is clear from equation (14) that idiosyncratic factor can play an important role
on the precision of the forecast. However, in some cases it is overlooked and treated
as irrelevant noise. For example, in a framework of integrated economies idiosyncratic
movements are generally assumed to include future random shocks and measurement
error and cnosidered as unforecastable. In doing so, modelers expect to capture a more
reliable signal for policy makers and to prevent them from reacting to country-speci�c
movements (see Breitung and Eickmeier, 2006). Another argument is that, although
possibly shared by many units, idiosyncratic causes of variation can have their e�ect
concentrated on a �nite number of units and tending to zero as the individual dimension
tends to in�nity (see Altissimo et al., 2001). As we will see later, in the framework stated
here, as well as common factors, idiosyncratic elements can also improve signi�cantly
forecast accuracy. We will see that, if we ignore their e�ects then the further ahead
we forecast the less precise the simple univariate model becomes with respect to the
augmented model.

Remark 2. Let MSFE (1)i be the prediction mean square error based on (9). For an
horizon h it can be established that

MSFE (1)i = σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi) (1− ρδi)

δi
σ2
zi. (15)
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Proof See Appendix. �

For the ARMA model (11), the h-steps ahead forecast with information up to time
t is

ŷi,t+h =
h−1∑
j=0

ρjci + ρhyit − ρh−1δivit (16)

As stressed by Meddahi (2002), this ARMA representation of the forecast model
can obviously be useful in multi-step forecast since it corresponds to the analytical
steady-state of the latent factor. For example, he note that the expected value of a
latent variable like volatility can be easily obtained using the ARMA representation
of its corresponding observed variable. However, for a more correct modeling of data
with dynamic common factor structure, a factor model is needed to capture at least
the persistence of the unobserved component.

Remark 3. LetMSFE (2)i be the prediction mean square error of the univariate ARMA
model (11). For an horizon h, we have

MSFE (2)i =
(2ρ− δi)

ρ
σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi)2

ρδi
σ2
zi. (17)

Proof See Appendix. �

From Remarks 2 and 3, we derive the result given in the above Propositon in which
the length of the forecast horizon may take any value, small as well as large. This result
implies that on the basis of the IFA model, we can obtain better forecast accuracy with
respect to the ARMA model even by allowing nonstationarity of the time series, say by
letting ρ = 1.

Proposition 1. Let ∆i = MSFE (2)i −MSFE
(1)
i be the measure of the forecast per-

formance of the augmented univariate model (9), with respect to the simple univariate
model (11). For the h-steps ahead forecast, we have:

In the non stationary case (ρ = 1),

∆i = (1− δi)σ2
zi > 0. (18)

In the stationary case (|ρ| < 1),

∆i = ρ2h−1 (ρ− δi)σ2
zi > 0. (19)

Proof See Appendix. �

8



The fact that we have ∆i > 0 ∀i indicates that the passage from model (16) to (14)
reduces the Mean Square Forecast Error signi�cantly for each individual time series
and thus, for the whole panel. It is worthwhile noting that the MSFE of model (14) is
relatively far less than that of model (16), irrespective to the order of integration (I(0)
or I(1)) of the individual time series. But in the stationary case, when the horizon of
prediction approaches in�nity, the di�erence between both models vanishes. Also notice
that as we can expect, the importance of the share of variance of the idiosyncratic factor
also can be determinant. A larger value of σ2

zi implies a greater forecast precision of
the IFA model relatively to the simple univariate model.

5 Monte Carlo Study

To investigate the performance of the augmented-model, we conduct a set of simula-
tions. We explore the extent of the forecast error in relation to the corresponding AR
and ARMA models. Throughout, we �rst proceed by generating a �xed-e�ect dynamic
panel model with a residual common factor structure

yit = αi + ρyi,t−1 + ξit

ξit = γiηt + eit,

where αi , γi and ηt are i.i.d N (0, 1) for all i and t. The idiosyncratic part of the
residual common factor is generated according to eit = zit − ρzi,t−1 with zit ∼ N (0, 1).
As we saw in Section ?, the static form of such dynamic process corresponds to a
dynamic common factor model where zit represents the idiosyncratic element. Using
these simulated data, three models are compared:

(1) the naive forecast given by a simple AR(1) process

ŷi,t+1 = αARi + ρARyi,t,

(2) the ARMA(1,1) forecast

ŷi,t+1 = αARMA
i + ρARMAyi,t − δivi,t,

(3) the IFA forecast

ŷi,t+1 = αIFAi + ρIFAyi,t + φzit.

The MSFE associated with each of these speci�cations is examined according to the
size of the cross-sectional dimension n, the value of the pooled autoregressive parameter
ρ and the forecast horizons h. The total number of time observations generated at
each replication is T = t + h. The value of t is �xed to 101 which in turn is used
to compute forecasts for period t + h. Thus, the three models was estimated with
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data up to time t, then we generated one-step ahead forecasts. We reestimated the
models adding one observation at the time and made new forecasts. Furthermore, unlike
classical factor-augmented forecasting which is particularly interested in the common
information for predicting the variable of interest, here we need to isolate this common
factor considered as a nuisance for the prediction of the dynamic individual time series.
However, in practice, the common factor as well as the idiosyncratic ones are unobserved
and forecasters will extract estimates of these from the panel of observed variables. In
the simulations, we used principal component analysis to extract the latent variables.

Each simulation run is carried out with 1,000 replications and new series are gen-
erated for each draw. Considering a vector of forecast horizons, H with Hj the jth
element of H, forecast performance measured by the Mean Squared Forecast Error is
computed for each Hj, as

M̂SFE =
1

Hj

Hj∑
h=1

(yi,t+h − ŷi,t+h)2, i = 1, ..., n . (20)

In fact, our analysis is based on the average square root of M̂SFE across the
individual dimension and the total number of simulation draws. In Table 1, we report
results for n = 10, 20, 50, ρ = 0.2, 0.4, 0.6, 0.8, 1.0 and H = 1, 5, 10 for each of the
forecasting models.

Figure 1: Distribution �t of forecast errors

As can be seen, the ARMA model outperforms the AR model which in turn is
dominated by the IFA model. Furthermore, it appears that when the value of the
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Table 1: Simulation results

Model AR(1) ARMA(1,1) IFA

ρ/h 1 5 10 1 5 10 1 5 10

(n = 10)

0.2 1.3558 1.4116 1.4222 1.3604 1.4125 1.4226 1.3520 1.4109 1.4218

0.4 1.3745 1.4557 1.4733 1.3730 1.4551 1.4730 1.3592 1.4526 1.4718

0.6 1.4204 1.5442 1.5753 1.4078 1.5409 1.5736 1.3798 1.5355 1.5711

0.8 1.5002 1.7260 1.8202 1.4589 1.7157 1.8155 1.4022 1.7007 1.8083

1.0 1.6872 2.1982 2.7304 1.5430 2.0922 2.6578 3.1579 3.5147 3.9121

(n = 20)

0.2 1.3624 1.4144 1.4223 1.3665 1.4151 1.4227 1.3587 1.4137 1.4220

0.4 1.3776 1.4490 1.4696 1.3761 1.4484 1.4694 1.3613 1.4458 1.4681

0.6 1.4400 1.5530 1.5791 1.4275 1.5495 1.5773 1.3962 1.5437 1.5746

0.8 1.5102 1.7339 1.8373 1.4691 1.7232 1.8324 1.4059 1.7069 1.8247

1.0 1.7016 2.1907 2.7295 1.5533 2.0808 2.6542 3.3083 3.6608 4.0570

(n = 50)

0.2 1.3697 1.4139 1.4246 1.3741 1.4147 1.4250 1.3655 1.4131 1.4242

0.4 1.3871 1.4573 1.4724 1.3857 1.4566 1.4720 1.3706 1.4541 1.4708

0.6 1.4304 1.5451 1.5792 1.4161 1.5413 1.5774 1.3852 1.5355 1.5746

0.8 1.5160 1.7372 1.8350 1.4750 1.7267 1.8302 1.4099 1.7097 1.8220

1.0 1.7049 2.1819 2.7065 1.5561 2.0714 2.6328 3.2171 3.5235 3.9240

Notes: The values in the table correspond to the square root of M̂SFE for AR(1), ARMA(1,1) and
IFA models computed using equation (20). The number of Monte Carlo repetitions is 1,000 and in
each draw the data generated are used to estimate the three models.
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autoregressive parameter approaches zero, this leads to an increase in the M̂SFE of
the ARMA forecast relative to that of the simple AR. However, IFA model yields more
accurate prediction both for near zero and near unit values of ρ. The bene�ts of IFA
model can be seen clearly in the distributions of the forecast error plotted in Figure
1 which is obtained using simulated data. We set n=20, t=51 and ρ = 0.8 and used
1,000 replications of average values of one-step ahead forecast errors across the whole
panel. The forecast errors distribution for the AR(1) and ARMA(1,1) models have
slightly heavier tail in both right and left sides with a relatively more important tail
on the right. This implies that both sides of these distributions produce high values
at a greater rate than it would be expected from the IFA forecasting model. Finally,
notice that the non-stationary case gives very mitigated results. Indeed, as stresed
by Bai and Ng (2004), consistent estimation of the space spanned by the unobserved
common factor and idiosyncratic factors is in fact not possible when the observed series
are integrated.

6 Conclusion

In this paper we examine the problem of improvement of univariate forecasting in panel
models with dependant across units. In an nonstationary framework, we derive forecasts
based on an augmented univariate process implied by a factor model and show. Using
Monte Carlo Experiments, we show that substantial forecast error reductions can be
achieved by augmenting each individual time series with its idiosyncratic factor.
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Appendix A

Proof of Remark 1. This remark can be shown using the same arguments as in the
proof of part 1 of the Peña and Poncela's (2004) auxiliary lemma. First notice that
from (8) and (10) we have

yit − ρyi,t−1 = ci + vit − δivi,t−1
= (1− ρ)µi + zit − ρzi,t−1 + γiηt.

(21)

This implies that

Var (ci + vit − δivi,t−1) = Var ((1− ρ)µi + zit − ρzi,t−1 + γiηt) . (22)

With the independence of ηt to the idiosyncratic factor zit for all lags and the absence
of serial correlation in zit, the right-hand part of equality (21) yields

Var ((1− ρ)µi + zit − ρzi,t−1 + γiηt) = Var (γiηt) + Var (zit − ρzi,t−1)
= γ2i σ

2
η + σ2

zi + ρ2σ2
zi.

Then, with Var (ci + vit − δivi,t−1) = σ2
vi + δ2i σ

2
vi equation (22) gives

γ2i σ
2
η + σ2

zi + ρ2σ2
zi = σ2

vi + δ2i σ
2
vi. (23)
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Now using relation (21) and equating �rst-order autocovariances, we get

cov (yit − ρyi,t−1, yit−1 − ρyi,t−2)
= E [(ci + vit − δivi,t−1) (ci + vi,t−1 − δivi,t−2)]− c2i
= E [((1− ρ)µi + zit − ρzi,t−1 + γiηt) ((1− ρ)µi + zi,t−1 − ρzi,t−2 + γiηt−1)]

− (1− ρ)2µ2
i .

Thus,
c2i − δiE

[
v2i,t−1

]
− c2i = (1− ρ)2µ2

i − ρE
[
z2i,t−1

]
− (1− ρ)2µ2

i

and we obtain
ρ/δi = σ2

vi/σ
2
zi. (24)

Finally, plugging equation (24) into equation (23), it is straightforward to deduce the
result. �

Proof of Remark 2. For each i, the MSFE is given by

MSFE i = E(yi,t+h − ŷi,t+h)2

= Var (yi,t+h − ŷi,t+h) + [E (yi,t+h − ŷi,t+h)]2.
(25)

Notice that at t+ h, the true value of the forecast given in equation (14) can be written
as

yi,t+h =
h−1∑
j=0

ρjαi + ρhyit + ρh−1φzit + εi,t+h

where εi,t+h =
h−1∑
j=0

ρjγiηt+h−j + zi,t+h. The forecast error is therefore

yi,t+h − ŷi,t+h =
h−1∑
j=0

ρjγiηt+h−j + zi,t+h.

Thus,

MSFE (1)i = σ2
zi +

h−1∑
j=0

ρ2jγ2i σ
2
η.

Equation (13) yields

γ2i σ
2
η =

(ρ− δi) (1− ρδi)
δi

σ2
zi. (26)

Thus, using this last equation we obtain the expression of MSFE (1)i given in equation
(15)

MSFE (1)i = σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi) (1− ρδi)

δi
σ2
zi. �
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Proof of Remark 3. For the univariate forecast (16), the true value at t+ h is

yi,t+h =
h−1∑
j=0

ρhci+ρ
hyi,t − ρh−1δivit +

h−1∑
j=1

ρj−1 (ρvi,t+h−j − δivi,t+h−j) + vi,t+h. (27)

Thus, we have

yi,t+h − ŷi,t+h =
h−1∑
j=1

ρj−1 (ρvi,t+h−j − δivi,t+h−j) + vi,t+h

and the corresponding MSFE is

MSFE (2)i = σ2
vi +

h−1∑
j=1

ρ2(j−1)(ρ− δi)2σ2
vi.

Using equation (24), we obtain

MSFE (2)i =
ρ

δi
σ2
zi +

h−1∑
j=1

ρ2(j−1)(ρ− δi)2
ρ

δi
σ2
zi

=
ρ

δi
σ2
zi +

h−1∑
j=1

ρ2j
(ρ− δi)2

ρδi
σ2
zi

=
ρ

δi
σ2
zi −

(ρ− δi)2

ρδi
σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi)2

ρδi
σ2
zi

=
ρ2

ρδi
σ2
zi −

ρ2 − 2ρδi + δ2i
ρδi

σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi)2

ρδi
σ2
zi

=
(2ρ− δi)

ρ
σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi)2

ρδi
σ2
zi

which corresponds to the result. �

Proof of Proposition 1. The result of this proposition is a consequence of Remarks
2 and 3. To beggin the proof, consider the following expression ofMSFE (2)i ,

MSFE (2)i = σ2
zi +

(ρ− δi)
ρ

σ2
zi +

h−1∑
j=0

ρ2j
(ρ− δi)2

ρδi
σ2
zi.
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Then we have,

∆i =MSFE (2)i −MSFE
(1)
i

=
(ρ− δi)

ρ
σ2
zi +

h−1∑
j=0

ρ2j

(
(ρ− δi)2

ρδi
− (ρ− δi) (1− ρδi)

δi

)
σ2
zi

=
(ρ− δi)

ρ
σ2
zi +

h−1∑
j=0

ρ2j
(

(ρ− δi) (ρ2 − 1)

ρ

)
σ2
zi.

For the nonstationary case (ρ = 1) the result is immediate,

∆i = (1− δi)σ2
zi > 0.

For the stationary case (|ρ| < 1) we have

∆i =
(ρ− δi)

ρ
σ2
zi +

(
σ2
zi

(ρ− δi) (ρ2 − 1)

ρ

)(
1− ρ2h

1− ρ2

)
=

(ρ− δi)
ρ

σ2
zi +

(ρ− δi) (ρ2 − 1)

ρ (1− ρ2)
σ2
zi

−
(
σ2
zi

(ρ− δi) (ρ2 − 1)

ρ

)
ρ2h

1− ρ2

=
(ρ− δi) (1− ρ2)

ρ (1− ρ2)
σ2
zi −

(ρ− δi) (1− ρ2)
ρ (1− ρ2)

σ2
zi

+

(
σ2
zi

(ρ− δi) (ρ2 − 1)

ρ

)
ρ2h

ρ2 − 1

= ρ2h−1 (ρ− δi)σ2
zi.

We saw from relation (13) that for each i, δi have the same sign that the pooled au-
toregressive parameter ρ and |ρ| > |δi|. It follows that ρ2h−1 (ρ− δi)σ2

zi will be always
positive. Thus, we �nally have

∆i = ρ2h−1 (ρ− δi)σ2
zi > 0. �

Appendix B

Derivation of equation (14). Equation (14) can be obtained by applying recursively
h times the true value of ŷ given in equation (9) . We have

yi,t+1 = ρyit + zi,t+1 − ρzit + γiηt+1 + αi

yi,t+2 = ρyi,t+1 + zi,t+2 − ρzi,t+1 + γiηt+2 + αi︸ ︷︷ ︸
=(I)

= ρ (ρyit + zi,t+1 − ρzit + γiηt+1 + αi) + (I)

= ρ2yit + ρzi,t+1 − ρ2zit + ργiηt+1 + ραi + (I)

17



yi,t+3 = ρyi,t+2 + zi,t+3 − ρzi,t+2 + γiηt+3 + αi︸ ︷︷ ︸
=(II)

= ρ
(
ρ2yit + ρzi,t+1 − ρ2zit + ργiηt+1 + ραi + (I)

)
+ (II)

= ρ3yit + ρ2zi,t+1 − ρ3zit + ρ2γiηt+1 + ρ2αi + ρ (I) + (II)

yi,t+4 = ρyi,t+3 + zi,t+4 − ρzi,t+3 + γiηt+4 + αi︸ ︷︷ ︸
=(III)

= ρ
(
ρ3yit + ρ2zi,t+1 − ρ3zit + ρ2γiηt+1 + ρ2αi + ρ (I) + (II)

)
+ (III)

= ρ4yit + ρ3zi,t+1 − ρ4zit + ρ3γiηt+1 + ρ3αi + ρ2 (I) + ρ (II) + (III)

Thus, for horizon 4 we have

yi,t+4 = ρ4yit +
(
ρ3zi,t+1 − ρ4zit + ρ3γiηt+1 + ρ3αi

)
+
(
ρ2zi,t+2 − ρ3zi,t+1 + ρ2γiηt+2 + ρ2αi

)
+
(
ρzi,t+3 − ρ2zi,t+2 + ργiηt+3 + ραi

)
+ (zi,t+4 − ρzi,t+3 + γiηt+4 + αi)

=
4−1∑
j=0

ρjαi + ρ4yit +
4−1∑
j=0

ρjγiηt+4−j +
(
ρ3zi,t+1 − ρ4zit

)
+
(
ρ2zi,t+2 − ρ3zi,t+1

)
+
(
ρzi,t+3 − ρ2zi,t+2

)
+ (zi,t+4 − ρzi,t+3)

=
4−1∑
j=0

ρjαi + ρ4yit − ρ4zit +
4−1∑
j=0

ρjγiηt+4−j + zi,t+4

So, using the relation φ = −ρ, we have at horizon h

yi,t+h =
h−1∑
j=0

ρjαi + ρhyit + ρh−1φzit +
h−1∑
j=0

ρjγiηt+h−j + zi,t+h

We can then deduce the h-steps ahead prediction (Equation (14))

ŷi,t+h =
h−1∑
j=0

ρjαi + ρhyit + ρh−1φzit

Derivation of equation (16). Proceeding in the same way as above, and based this
time on the true value of the forecast given in equation (11), we get

yi,t+1 = ρyit − δivit + vi,t+1 + ci

yi,t+2 = ρyi,t+1−δivi,t+1 + vi,t+2 + ci︸ ︷︷ ︸
=A

= ρ (ρyit − δivit + vi,t+1 + ci) + A

= ρ2yit − ρδivit + ρvi,t+1 + ρci + A
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yi,t+3 = ρyi,t+2−δivi,t+2 + vi,t+3 + ci︸ ︷︷ ︸
=B

= ρ
(
ρ2yit − ρδivit + ρvi,t+1 + ρci + A

)
+B

= ρ3yit − ρ2δivit + ρ2vi,t+1 + ρ2ci + ρA+B

yi,t+4 = ρyi,t+3−δivi,t+3 + vi,t+4 + ci︸ ︷︷ ︸
=C

= ρ
(
ρ3yit − ρ2δivit + ρ2vi,t+1 + ρ2ci + ρA+B

)
+ C

= ρ4yit − ρ3δivit + ρ3vi,t+1 + ρ3ci + ρ2A+ ρB + C.

Thus, we have

yi,t+4 = ρ4yit − ρ3δivit + ρ3vi,t+1 + ρ3ci + ρ2 (−δivi,t+1 + vi,t+2 + ci)

+ ρ (−δivi,t+2 + vi,t+3 + ci) + (−δivi,t+3 + vi,t+4 + ci)

= ρ4yit +
(
−ρ3δivit + ρ3vi,t+1 + ρ3ci

)
+
(
−ρ2δivi,t+1 + ρ2vi,t+2 + ρ2ci

)
+ (−ρδivi,t+2 + ρvi,t+3 + ρci) + (−δivi,t+3 + vi,t+4 + ci)

=
(
ρ3ci + ρ2ci + ρci + ci

)
+ ρ4yit − ρ3δivit +

(
ρ3vi,t+1 − ρ2δivi,t+1

)
+
(
ρ2vi,t+2 − ρδivi,t+2

)
+ (ρvi,t+3 − δivi,t+3) + vi,t+4

=
4−1∑
j=0

ρjci + ρ4yit − ρ4−1δivit +
4−1∑
j=1

ρj−1 (ρvi,t+4−j − δivi,t+4−j) + vi,t+4.

Finally, at horizon h the true value of yit is

yi,t+h =
h−1∑
j=0

ρjci + ρhyit − ρh−1δivit +
h−1∑
j=1

ρj−1 (ρvi,t+h−j − δivi,t+h−j) + vi,t+h.

Its predicted value is then given by

ŷi,t+h =
h−1∑
j=0

ρjci + ρhyit − ρh−1δivit

which corresponds to equation (16).
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