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Abstract

This research studies three methods of estimation of a Vector Moving Average (VMA) process,

each of which is intended to be computationally fast and moderately accurate. These estimates

could be used as initial values in the optimization routine for maximum likelihood estimators.

The first technique uses Kullback Leibler discrepancy with inverse spectra, and yields a Yule-

Walker system of equations in inverse autocovariances for the VMA coefficients. The second

technique takes a truncated periodogram with a ridge modification (to ensure a positive definite

sequence) to which spectral factorization is applied. The third technique simply takes the moving

average expansion of a fitted high order Vector AutoRegression (VAR), and truncates to the

desired VMA lag. The paper provides a heuristic analysis of each method, and assesses them in

simulation studies for speed, bias, and precision.

1 Introduction

The Vector Moving Average (VMA) is an important model in econometrics and engineering, second

only to the Vector AutoRegression (VAR) in terms of scope in applied time series problems. Despite

its flexibility in modeling stationary vector time series, the VMA is hampered by the difficulty of

estimation; the parameter constraints required to enforce causality and invertibility on the matrix

moving average polynomial are complex, involving a determinental condition that is not practical

for straight-forward parametrization. Apart from this issue, common objective functions – such

as the Gaussian likelihood or the Whittle likelihood – involve nonlinear optimization, which is

expensive and unwieldy for high dimensional data (because the dimension of the parameter space

quickly become quite large). This is in contrast to VAR estimation via the Whittle likelihood, which

becomes a quadratic problem with a unique (Yule-Walker) solution provided by matrix algebra (cf.

McElroy and Findley (2015)). The objective of this paper is to introduce three new methods of

fitting VMA models, and assess their accuracy against available methodologies.
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The first method is essentially an inversion of the Yule-Walker method for VAR estimation: we

reverse the role of process and model spectrum in the Kullback-Leibler (KL) discrepancy, which

yields an objective function that is quadratic in the VMA coefficients, and depends on the pro-

cess’ inverse autocovariances. The resulting minimizers correspond to an invertible VMA process;

this is called the inverse KL methd. The second technique is based on the spectral factorization

of estimated autocovariances; this alone is not novel, but we here modify the resulting truncated

periodogram so as to guarantee a positive definite spectral density – without which spectral factor-

ization is not well-defined. The modification is related to the ridge alteration in regression analysis,

so we refer to this as a ridged spectral factorization (SF henceforth). Finally, the third method

first estimates the infinite moving average representation by inverting the fitted high-order VAR

coefficients, and then truncates the result to the required VMA order; this is referred to as the

Wold method.

Each of these methods yields an invertible fitted VMA model in an amount of time that is

typically substantially less than that required to perform a single likelihood evaluation via the

Durbin-Levinson algorithm. Using unconstrained maximum likelihood estimation (MLE) is much

slower, is sensitive to initial conditions, and typically does not guarantee an invertible solution –

although root-flipping can be easily done to obtain an equivalent invertible representation. However,

MLEs have better theoretical statistical properties, and are preferable whenever they are practicable

to compute. The three methods of this paper will be useful either as initial estimates for an MLE

routine, or as final estimates in the case of a high-dimensional problem.

There is a substantial literature on initial estimation for VMA and VARMA (Hillmer and Tiao

(1979), Tiao and Box (1981), Shea (1989), Mauricio (2002), Mélard, Roy, and Saidi (2002), Dufour

and Jouini (2005)). While there are certain specification challenges for VARMA modeling – see the

discussion in Dufour and Jouini (2005) and Lütkepohl (2007) – the case of a VMA is considerably

simpler, although the Gaussan likelihood is highly non-linear in the parameters. When dimension

is moderate (four or more series) the parameter space becomes large, which presents a challenge

for numerical optimization; although evaluation of the Gaussian likelihood via Durbin-Levison is

quite fast for samples of less than a thousand in length, the likelihood surface typically requires a

long search. Dufour and Jouini (2005) say: “For example, in the Gaussian case, maximizing the

likelihood function of a VARMA(p, q) model is typically a burdensome numerical exercise, as soon

as the model includes a moving average part. Even numerical convergence may be problematic.”

The presence of local maxima (heuristically corresponding to constrained MLEs) – leading to

false MLEs – motivates the need for reasonably accurate initial values for likelihood optimization

algorithms. Hannan and Rissanen (1982) proposed first estimating time series residuals via a long

vector autoregression, and regressing the data on the lagged data and estimated residuals to get

VARMA estimates. (The extension of the original univariate method to the VARMA case was

first studied in Hannan and Kavalieris (1984, 1986).) By the term initialization, we refer to the
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procedure of obtaining initial estimates – that are fast to compute, and fairly accurate – for a

nonlinear optimization algorithm. Related literature, which focuses on the VARMA initialization

problem, includes Hannan and Deistler (1988), Koreisha and Pukkila (1989), Huang and Guo

(1990), Poskitt (1992), Lütkepohl and Poskitt (1996), Lütkepohl and Claessen (1997), and Flores

de Frutos and Serrano (2002). We view the three methods of this paper – inverse KL, ridged SF,

and Wold – as initialization methods.

The methods seem to have some advantages over the Hannan-Rissanen (HR) method when

samples are small, but for larger samples perform similarly. The Wold method – which is very

similar to the HR method in its heuristics – produces very similar results, though with improved

estimation of the innovation variance matrix. The KL and ridged SF methods have very different

heuristics, and can produce quite different estimates. One possible application is to use all three

(or four) initializations to a nonlinear optimization procedure, and check that the same MLE is

obtained. We next provide a brief discussion of the background to each method.

Kullback-Leibler (KL) discrepancy has its roots in information theory and entropy, and is

treated in Taniguchi and Kakizawa (2012). Essentially, one uses the integrated ratio of process

spectrum to model spectrum as an objective function; substituting the periodogram as an estimate

of the process spectrum yields the Whittle likelihood. For multivariate time series, the ratio of

spectrum is replaced by the trace of the product of process spectrum and inverse model spectrum;

for a VAR model, the Whittle likelihood then becomes quadratic in the VAR parameters, and

hence the minimum can be computed analytically (McElroy and Findley, 2015). By reversing the

role of process and model spectrum for a VMA fit, we obtain a quadratic function in the VMA

parameters, and only need to compute estimates of the process’ inverse autocovariances. A nice

feature of this inverse KL algorithm is that the estimated VMA process is always invertible.

Spectral factorization (SF) is not well-known outside the engineering community. It refers to the

following question: given a sequence of matrix autocovariances for lags 0 through q, is there a VMA

process corresponding to it? The problem is only well-posed if the spectral density corresponding

to the autocovariances is positive semidefinite (psd), and in this case there exists a unique causal

solution (proved in Hannan and Deistler (1988)). The problem has generated an immense literature,

and many algorithms exist to produce the VMA coefficients (see Sayed and Kailath (2001) for an

overview). One algorithm (Bauer, 1955), which we focus on in this paper, views these VMA

coefficients as the limit of a certain sequence of partial covariances, which in turn are the entries

of the lower triangular matrix in the Cholesky decomposition of the block Toeplitz covariance

matrix for the process. (See McElroy (2015) for implementation.) An alternative SF algorithm

– with application to VMA estimation – is discussed in Zadrozny (1998). A näıve approach to

Whittle estimation for the VMA model would proceed by truncatation of the multivariate sample

autocovariance sequence to lag q, followed by computation of the spectral factorization – this has

merit, but the approach fails when the truncated autocovariances no longer form a psd spectral
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density. We modify the method implicit in Zadrozny (1998) by a ridge modification of the truncated

autocovariances, ensuring a psd spectrum.

The third method is easiest to explain: any invertible VMA process has an infinite order

VAR representation. We propose first obtaining an estimate of this VAR(∞) by fitting a long

autoregression (like the HR technique), and then computing the corresponding infinite order VMA

representation, truncated to lag q. There is a fast recursive algorithm for obtaining these first q

VMA coefficients; higher order coefficients should be small in magnitude, if the VMA(q) model is

correctly specified. This part of the Wold method differs from HR, which utilizes the data twice –

once the long autoregression’s residuals are computed, the data is again regressed, this time on the

residuals.

The paper’s focus is on computational and empirical results. The methods are discussed in Sec-

tion 2; Section 3 contains several worked examples and simulation studies, and Section 4 concludes.

2 Methodology

2.1 Background

We first set out some known results in order to establish notation; see Brockwell and Davis (2013)

or Lütkepohl (2007) for more detail. An m-variate time series {Xt} is a causal VMA(q) if there

exists m×m matrix coefficients Θ0,Θ1, · · · ,Θq such that

Xt =

q∑
k=0

Θkεt−k (1)

for a vector white noise process {εt}. These are the innovations, and their covariance matrix Σ is

symmetric and positive semidefinite (psd). Invertibility of the process can fail when Σ has reduced

rank, and typically this generates an insoluble estimation problem; hence we assume that Σ is full

rank, and it can easily be parametrized to ensure the positive definite (pd) property. However,

non-invertibility of the VMA process can still occur through the coefficients, and we allow for this

in our estimation – such types of non-invertibility imply the spectral density is singular at some

finite set of frequencies, as opposed to singularity of Σ, which implies the spectrum is singular at

all frequencies.

For identifiability, it is typical to enforce that Θ0 is an identity matrix, denoted 1m. (The

symbol I is reserved for the periodogram.) However, an alternative VMA representation, which we

also make use of below, allows the first coefficient to be non-trivial while imposing that Σ = 1m.

This is accomplished via a Cholesky factorization (there are many such factorizations possible, but

we will utilize a lower triangular decomposition of the form Σ = LDL′, with D a positive diagonal

matrix and L a unit lower triangular matrix – see Pinheiro and Bates (1998)) and the change of
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variables Ωk = Θk L, so that

Xt =
∑
k=0

Ωkηt−k

with ηt = L−1εt the transformed white noise, which is now decorrelated in the sense that its

covariance matrix is D.

With B denoting the backshift operator, we define the matrix polynomial Θ(B) =
∑q

k=0 ΘkB
k

so that (1) can be written compactly via Xt = Θ(B)εt. The necessary and sufficient conditions

on invertibility of the VMA process are that the zeroes of the determinant of Θ(x), where x is a

complex number, lie outside the unit circle of the complex plane. Any such matrix polynomial A(x)

that satisfies this condition – namely, that the zeroes of the determinant of A(x) lie outside the

unit circle of the complex plane – is said to be stable; cf. discussion in Roy, McElroy, and Linton

(2014).

Thus, a VAR process is stable if its VAR matrix polynomial is stable, and a VMA process is

invertible if its VMA matrix polynomial is stable. In the case that q = 1, stability is equivalent

to asserting that all m eigenvalues of Θ1 have magnitude less than one. In practice, some zeroes

of the determinant might actually lie on the unit circle, and this will not present insurmountable

difficulties for estimation, unlike in the VAR case. However, for applications of the fitted VMA

model, such as forecasting, stability of Θ(B) can be crucial, and some more discussion is warranted.

We can grapple with the stability question more directly using the frequency domain. Let

z = e−iλ for λ ∈ [−π, π], and define the spectral density to be the Fourier transform of the autoco-

variance sequence. For a stationary time series, Γ(h) = Cov(Xt, Xt−h) and f(λ) =
∑∞

h=−∞ Γ(h)zh

is the spectral density. This definition can be inverted via the formula Γ(h) = 〈fz−h〉, where the

angled brackets indicate integration over [−π, π], divided by 2π. Then it is known that the VMA

spectral density has the formula

f(λ) = Θ(z) Σ Θ′(z) (2)

(z denotes complex conjugation). A spectral density matrix has the Hermitian property that f ′ = f ,

and its psd property is described in terms of complex vectors: we say A is complex psd if and only

if a′Aa ≥ 0 for all complex m-vectors a. Spectral densities are complex psd for every frequency λ,

and are said to be invertible if they are complex pd, namely that in addition whenever a′f(λ)a = 0,

it must be the case that a = 0. For any frequencies λ such that a psd spectrum f is also pd, it is

true that f(λ) is invertible. The connection to VMA processes is the following: if Θ(x) is stable

and Σ has full rank, then f(λ) is nonsingular for all λ, i.e., it is invertible. In this case,

f−1(λ) = Θ†(z) Σ−1 Θ−1(z), (3)

which can be rearranged to resemble a VAR process. Here † stands for inverse transpose. The

formula (3) is crucial for defining the Whittle likelihood, which we discuss next – this is a useful
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discussion, because it provides the context for inverse Kullback-Leibler and spectral factorization

fitting.

To fit a VMA model, we consider a target spectral density f , which is either the periodogram

(for the empirical problem) or the true spectrum (for the theoretical problem), and we propose a

VMA spectrum fθ,σ as an approximation to f . Here θ is the parameter vector corresponding to

the VMA coefficients, and σ corresponds to the innovation variance matrix, given by

θ = vec [Θ1,Θ2, · · · ,Θq] σ = vech Σ.

So fθ,σ is our notation for a spectral density of the form (2). The Kullback-Leibler discrepancy

between model and truth (cf. Taniguchi and Kakizawa (2012)), viewed as a function of model

parameters θ and σ, is given by

D(θ, σ) = 〈tr
(
f−1θ,σf

)
〉+ 〈log det fθ,σ〉. (4)

Also see McElroy and Findley (2015) for more discussion (and analysis of the VAR case), and the

connection to the Gaussian likelihood and one-step ahead forecast error. The second term in (4)

can be simplified to log det Σ, as is well-known for separable spectra (i.e., the innovation variance

martrix is parametrized separately from the other parameters of the process). When f is the

multivariate peridogram, (4) is referred to as the Whittle likelihood. (There is also a concentrated

form of the Whittle likelihood, as described in McElroy and Findley (2015), which removes the

presence of the σ parameter, but it is more convenient for us to work with the unconcentrated

Whittle likelihood.)

Minimization of D(θ, σ) with respect to θ and σ (enforced to lie in the causal VMA parameter

space described above) yields the quasi-maximum likelihood estimators (QMLEs) in the case that

f is the periodogram, but in the case that f is a true (but unknown) spectral density we obtain

the pseudo-true values (PTVs). The latter are useful for studying the impact of mis-specification,

e.g., fitting a VMA(1) to a VAR(1) process, and we use the symbol f̃ to denote this true spectrum

for the data process. When the model is correctly specified, the PTVs are identical with the true

parameters, but otherwise can be quite different. It is known that the QMLEs are consistent for

the PTVs, and moreover satisfy a Central Limit Theorem under regularity conditions involving

higher order cumulants of the process (Chapter 3 of Taniguchi and Kakizawa (2012)); when the

model is correctly specified and there is no kurtosis, the QMLEs are also efficient.

In order to construct a QMLE, we first define the multivariate periodogram I. Let the discrete

Fourier transform (DFT) of a sample of length T from the time series, denoted X1, X2, · · · , XT , be

given by

d(λ) =
T∑
t=1

Xtz
t.
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This is a stochastic complex m-vector. The periodogram is the rank one matrix formed from the

outer product of the DFT:

I(λ) = T−1d(λ)d′(−λ) =
∑
|h|<T

Γ̂(h)zh.

The second equation follows by rearranging terms, together with the definition of the sample

autocovariances as Γ̂(h) = T−1
∑T−|h|

t=1 Xt+hX
′
t. While I is clearly psd at all frequencies, it is

evidently not invertible, being in fact rank one.

Now to distinguish the empirical and theoretical estimation problems, which involve respectively

the choice of f = I and f = f̃ in (4), we write D̂ and D̃ for the respective Kullback-Leibler

discrepancies. A QMLE is then

(θ̂, σ̂) =
−1

min D̂(θ, σ),

when it exists (and solutions need not be unique), whereas the PTV is analogously defined as

(θ̃, σ̃) =
−1

min D̃(θ, σ).

Typically, the QMLEs (and PTVs, when desired for theoretical work) are calculated via nonlinear

minimization of D̂, e.g., via a conjugate gradient method. These methods are time-consuming,

and need not even converge. The next subsections describe alternative estimation procedures that

avoid nonlinear optimization, and therefore are substantially faster.

2.2 Inverse Kullback-Leibler

Equation (4) is an expression of the Kullback-Leibler discrepancy

K(g, h) = 〈tr
(
g−1h

)
〉+ 〈log det g〉 (5)

with g = fθ,σ and h = f . Consider instead – assuming that f is invertible – the KL discrepancy of

the inverse spectra, setting g = f−1θ,σ and h = f−1. This results in

H(θ, σ) = 〈tr
(
fθ,σf

−1)〉 − 〈log det fθ,σ〉. (6)

Substituting the specification (2) for fθ,σ in (6) yields

〈tr
(
ΣΘ′(z)f−1Θ(z)

)
〉 − log det Σ,

and optimizing with respect to Σ (cf. McElroy and Findley (2015) for the VAR case in the Whittle

likelihood) yields

Σθ = 〈Θ′(z)f−1Θ(z)〉−1. (7)

Concentrating refers to substituting Σθ back into the inverse KL, and obtaining a function that

only depends on θ (not on σ):

H(θ) = m+ log det〈Θ′(z)f−1Θ(z)〉,
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which up to a constant is just the negative log determinant of Σθ. Once θ has been obtained, the

parameters σ are immediately obtained via (7). To compute the minimization ofH(θ), it is sufficient

to minimize each entry of Σ−1θ . First note that because f is Hermitian, Σθ is symmetric. Therefore,

we can work with the transpose; letting Ξ(h) denote the sequence of inverse autocovariances (i.e.,

Ξ(h) = 〈f †z−h〉), we obtain

Σ−1θ = 〈Θ′(z)f †Θ(z)〉 = Ξ(0) +

q∑
j=1

Ξ(j) Θj +

q∑
k=1

Θ′k Ξ(−k) +

q∑
j,k=1

Θ′j Ξ(k − j) Θk.

Let us write Ξq for the block Toeplitz matrix with jkth block entry given by Ξ(k − j), and Ξ1:q =

[Ξ(1), · · · ,Ξ(q)]. Then

Σ−1θ = Ξ(0) + Ξ1:q


Θ1

...

Θq

+
[
Θ′1, · · · ,Θ′q

]
Ξ′1:q +

[
Θ′1, · · · ,Θ′q

]
Ξq


Θ1

...

Θq

 ,
and the minimizers of the negative log determinant (it can also be shown, as in McElroy and Findley

(2015), that the solution minimizes each entry of Σ−1θ ) are[
Θ′1, · · · ,Θ′q

]
= −Ξ1:q Ξ−1q . (8)

The corresponding VMA will have a stable matrix polynomial Θ(B), via the same proof as for the

Yule-Walker case. The value at this minimizer is

Ξ(0)− Ξ1:q Ξ−1q Ξ′1:q = Σ−1θ .

In order to construct empirical estimators, it is necessary to obtain an estimate of f †. One possibility

is to use an autoregressive estimator of f , and compute the inverse transpose; however, this requires

some choice of the VAR order. Essentially, one wants to take the order as large as possible, because

there is no issue of overfitting here – one is concerned only with a finite collection q of inverse

autocovariances. Let Ψ(z) denote the infinite causal moving average representation of the true

process, so that

f(λ) = Ψ(z) Σ Ψ′(z).

Assuming that f is invertible, and letting Π(z) = Ψ(z)−1, we have

f †(λ) = Π′(z) Σ−1 Π(z),

and hence

Γ(h) =
∑
j≥0

Ψj+h Σ Ψ′j Ξ(h) =
∑
j≥0

Π′j+h Σ−1 Πj .

Fitting a high order VAR produces estimates of the {Πj} and Σ, from which Ξ(h) can be computed.
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Another estimator of f † is based on the inverse transpose of the periodogram, although this

matrix is singular. Using the fact that 〈f f−1z−h〉 equals zero unless h = 0, we obtain a system of

equations ∑
k∈Z

Γ(h− k) Ξ′(k) =

1m if h = 0

0 if h 6= 0
.

This yields the approximate matrix system

Γ(0) · · · Γ(1− T ) · · · Γ(2− 2T )
...

...
...

...
...

Γ(T − 1) · · · Γ(0) · · · Γ(1− T )
...

...
...

...
...

Γ(2T − 2) · · · Γ(T − 1) · · · Γ(0)





Ξ′(−T + 1)
...

Ξ′(0)
...

Ξ′(T − 1)


≈



0
...

1m
...

0


,

where the approximation improves as T → ∞. At this point, the matrix can be inverted, and

sample autocovariance substituted for the true autocovariances, to yield the estimator

Ξ̂′(−T + 1)
...

Ξ̂′(0)
...

Ξ̂′(T − 1)


=



Γ̂(0) · · · Γ̂(1− T ) · · · Γ̂(2− 2T )
...

...
...

...
...

Γ̂(T − 1) · · · Γ̂(0) · · · Γ̂(1− T )
...

...
...

...
...

Γ̂(2T − 2) · · · Γ̂(T − 1) · · · Γ̂(0)



−1 

0
...

1m
...

0


.

With either type of estimator for the inverse autocovariances, we then plug into (8) to fit the VMA.

2.3 Ridged Spectral Factorization

If the true spectrum f̃ corresponded to a q-dependent process, so that one knows Γ(h) = 0 for |h| >
q, then we would know that f̃ is psd and we could immediately compute its spectral factorization,

thereby obtaining a stable Θ(B). If we now substitute the periodogram for f̃ , and do the spectral

factorization, we may hope to obtain estimates of Θ(B) – however, the periodogram need not have

sample autocovariances that truncate at lag q. We might enforce that I looks like a VMA(q)

spectral density, and compute estimates via spectral factorization; we know that the resulting error

should tend to zero in probability, because integrals of the periodogram converge to integrals of f̃

(cf. Lemma 3.1.1 of Taniguchi and Kakizwa (2012)).

Introduce the following notation: for any spectral density f , let [f ]q denote its truncation to

the first q lags:

[f ]q(λ) =
∑
|h|≤q

Γ(h)zh,

with residual [f ]r = f − [f ]q =
∑
|h|>q Γ(h)zh. Note that [f ]q need not be psd. Focusing on the

periodogram, certainly [I]q need not be psd, although with increasing probability this will be the
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case as sample size T → ∞, because by assumption [f̃ ]r = 0. In order to alter [I]q to become

psd, we make a ridge modification: we add some white noise to the underlying process, which is

equivalent to considering [I]q + α Γ̂(0) for some α ∈ R.

We here allow negative α in the case that [I]q is already psd and some advantage is obtained by

subtracting white noise, although conceptually the opposite case where α is positive makes more

intuitive sense. Also note that we consider scalar multiples of the matrix Γ̂(0) = 〈I〉, the sample

variance of the sample. This is not the only choice available, but utilizes a known psd matrix;

certainly for α sufficiently large, [I]q + α 〈I〉 will be psd.

Although we have in mind utilizing this decomposition with the periodogram, we proceed to

describe the algorithm for a generic f . We propose the decomposition, for any scalar α, as follows:

f =
(

[f ]q + α〈f〉
)

+ ([f ]r − α〈f〉) . (9)

We suppose that α is restricted to a range of values such that the first term in (9) is psd. Plugging

(9) into (4), and using the linearity of the trace, produces the following decomposition:

D(θ, σ) = 〈tr
(
f−1θ,σ

(
[f ]q + α〈f〉

))
〉+ 〈log det fθ,σ〉+ 〈tr

(
f−1θ,σ ([f ]r − α〈f〉)

)
〉. (10)

Let us decompose this Kullback-Leibler discrepancy into two terms, with the first two summands

of (10) denoted by Dα(θ, σ), and the last term denoted by Rα(θ, σ). We propose to minimize Dα,

for appropriately chosen α, and ignore Rα. Since [f ]q + α〈f〉 is psd and q-dependent, a spectral

factorization exists, which means we can find causal Θα(x) and Σα such that

[f ]q + α〈f〉 = Θα(z) Σα Θ′α(z). (11)

Noting that Dα(θ, σ) itself has the form of a Whittle likelihood, whose minimal possible value (see

McElroy and Findley (2015)) is m+ 〈log det
(

[f ]q + α〈f〉
)
〉, or more simply m+ log det Σα, we see

that setting Θ(x) = Θα(x) and Σ = Σα yields this minimial value, i.e., the minimizer of Dα(θ, σ)

is obtained with θ and σ corresponding to the spectral factorization (11).

However, such a solution minimizes Dα(θ, σ), but not necessarily D(θ, σ), which is our ultimate

goal. When [f ]r = 0 (so that [f ]q is psd), then Θ0(x) will be a minimizer of the Whittle likelihood,

but otherwise it may be the case that other values of Θα and Σα yield the minimizer of the Whittle

likelihood. Consider evaluating the Whittle likelihood at the class of θ and σ corresponding to

the spectral factorization (11) – denoted by θ(α) and σ(α) – such that the resulting concentrated

function only depends upon α; call this Q(α). From the preceding discussion, we have

Q(α) = D(θ(α), σ(α)) = m+ log det Σα + 〈tr
(
f−1θ(α),σ(α) ([f ]r − α〈f〉)

)
〉.

This provides a profiled Whittle likelihoood, utilizing a one-parameter sub-class of solutions. One

possibility is to minimize Q with respect to α, over the admissible range of values (i.e., such
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that [f ]q + α〈f〉 is psd), say α∗ = min−1Q, and taking the resulting θ(α∗) and σ(α∗) as our

final estimates. When working with the periodogram, we place a hat over Q and α∗, but for the

theoretical optimization problem we use a tilde instead.

Another approach, which is sub-optimal but avoids numerical optimization, is to choose

α∗ = min{−
minλ∈[−π,π] eigen1([f ]q(λ))

eigen1〈f〉
, 0},

where eigen1 denotes the smallest eigen value of the matrix (it will be real, because f is Hermitian).

It easily follows that [f ]q + α∗ 〈f〉 is psd. This approach has the advantage of speed, and if the

model is correctly specified then α∗ should approach zero in probability as the sample size increases.

2.4 Hannan-Rissanen and Wold Estimation

The HR technique is based on viewing (1) as a multivariate regression of the dependent variable

Xt on independent variables εt−1, εt−2, · · · , εt−q. The term εt has coefficient matrix 1m, and so the

equation can be rewritten

Xt − εt =

q∑
k=1

Θkεt−k, (12)

so that Xt − εt becomes the dependent variable. As a preliminary step, one estimates the infinite

VAR representation εt = Π(B)Xt – say via fitting a high order VAR and retaining the residuals

– and inserts the estimated residuals into the regression (12). This is the HR procedure, which

can be generalized to fit VARMA models as well. It is very fast to compute, only requiring two

ordinary least squares (OLS) multivariate regressions.

Actually, in the case of a VMA model this procedure can be simplified, because clearly Θ(B)

corresponds to the first q terms of the power series Ψ(B) = Π(B)−1. Hence, only one OLS regression

needs to be computed; instead of computing residuals, we can just determine the infinite VMA

representation (or Wold form) corresponding to the fitted high order VAR, and take the first q

coefficients to estimate Θ(B). The covariance matrix Σ can be estimated via the VAR innovation

covariance matrix. This is the Wold estimation procedure.

Unsurprisingly, the HR and Wold procedures perform very similarly on data, although in our

simulations the Wold procedure appears to have better performance for small samples (T = 50).

But we can also describe the Wold estimates as the minimizers of an objective function, just like

the KL and SF methods. Suppose the true process has Wold representation Xt = Ψ(B)εt, but we

fit the VMA model (1). The true innovations are εt = Π(B)Xt, and plugging these into the model

yields a pseudo-process Yt = Θ(B)εt, whereas the true process is Xt = Ψ(B)εt. The variance of the

difference between these two processes should be small if the model is not badly mis-specified, so

we adopt this as our objective function:

W(θ, σ) = Var[Xt − Yt] = 〈(Ψ(z)−Θ(z)) Σ
(
Ψ′(z)−Θ′(z)

)
〉. (13)
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Given the VMA model of order q, the criterion (13) becomes

q∑
k=1

(Ψk −Θk) Σ
(
Ψ′k −Θ′k

)
+
∑
k>q

Ψk Σ Ψ′k,

with solutions Θk = Ψk for 1 ≤ k ≤ q. Note that in this approach, Ψ(B) and Σ are already given

– perhaps they’ve been estimated by a high order VAR, as described in section 2.2.

The estimated VMA polynomial might not be stable, unlike the estimators arising from the

KL and ridged-SF methods above. (Also, the HR estimate need not be stable.) By the term

stabilization, we refer to a procedure that calculates a stable matrix polynomial with the same

VMA acf as the original. To do this, we only need to compute the acf to lag q – which is guaranteed

to be a psd sequence – and apply spectral factorization. This procedure is typically fast, but can

be time-consuming if the original matrix polynomial has any roots close to unity.

3 Numerical Results

We next evaluate these methods on two bivariate VMA(1) processes. We measure performance in

terms of bias and variance, even though the various objective functions used – H, Q, and W – are

not directly tied to parameter mean squared error. We also compare the speed of each method

(KL, SF, Wold, and HR) to a single Gaussian likelihood evaluation. We first discuss the processes,

and then summarize the results.

3.1 Simulation Processes

The first process is a bivariate VMA(1) with a stable moving average polynomial:

Θ1 =

[
−.088 −.325

.655 −.705

]
Σ =

[
3.612 1.631

1.631 4.410

]
. (14)

The eigenvalues have modulus .52.

The second process is a bivariate VMA(1) with eigenvalues close to unity (−.97 and .69):

Θ1 =

[
.407 .875

.445 −.692

]
Σ =

[
2.016 .301

.301 1.146

]
. (15)

We generated 1000 Gaussian time series of length T = 50, 100, 200, 300, 400, 500, and evaluated

each of the four methods, recording bias, variance, and average runtime. The results for HR are

not reported here; they were fairly similar to the Wold method’s results, although with substantial

error for the T = 50 case (using an initial VAR estimation by Yule-Walker, as opposed to OLS,

appears to improve the results).
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3.2 Simulation Performance

Tables 1, 2, and 3 have reference to the first VMA(1) process (14). In the rows and columns

corresponding to Θ1 or Σ are the bias and variance for the corresponding matrix entry. For the

sample sizes under consideration, the average run time for evaluation of the Gaussian likelihood

was .063, .126, .273, .426, .621, and .741 respectively.

Sample Size Θ1 Bias Θ1 Var Σ Bias Σ Var Run-time

50 -.031 -.004 .037 .045 -.076 .015 .790 .547 .221

.007 -.015 .060 .060 .015 .026 .547 2.08

100 -.009 -.025 .017 .026 -.164 -.082 .351 .261 .136

.025 -.052 .028 .046 -.082 -.193 .261 .766

200 -.010 -.017 .007 .014 -.095 -.051 .182 .165 .106

.008 -.034 .014 .031 -.051 -.139 .165 .470

300 -.009 -.012 .006 .009 -.079 -.055 .123 .105 .108

.012 -.033 .009 .021 -.055 -.154 .105 .306

400 -.004 -.012 .003 .006 -.054 -.039 .088 .074 .107

.003 -.017 .007 .014 -.039 -.087 .073 .208

500 -.004 -.008 .003 .004 -.049 -.030 .064 .056 .100

.005 -.016 .005 .010 -.030 -.071 .056 .162

Table 1: SF Performance for Process 1.

Tables 4, 5, and 6 have reference to the second VMA(1) process (15). For the sample sizes

under consideration, the average run time for evaluation of the Gaussian likelihood was .061, .121,

.251, .415, .558, and .807.

Both bias and variance are decreasing, for all the methods, as sample size increases. In general,

the KL method appears to be superior to SF in terms of bias and variance, but is slightly inferior

to the Wold method. All the methods suffer from a downward bias in the estimation of Σ.

Run-time can actually decrease as T increases, in some cases, because spectral factorization

becomes less computationally expensive when there is better separation of the VMA eigenvalues

from unity. That is, for larger T the algorithm will have an easier time discriminating between the

VMA roots and unity, with the result that spectral factorization takes less iterations to converge.

In the KL procedure, no such factorization algorithm is features, so its run-time increases virtually

monotonically. The KL method was fastest (for both processes), and the SF and Wold methods

are quite a bit slower when there the process is close to instability. However, none of the methods

are slow; the average run-time is comparable to a likelihood evaluation.
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Sample Size Θ1 Bias Θ1 Var Σ Bias Σ Var Run-time

50 .031 .068 .023 .015 -.533 -.141 .544 .345 .045

-.086 .148 .036 .026 -.141 -.436 .345 1.016

100 .033 .040 .010 .008 -.372 -.114 .289 .186 .056

-.038 .080 .016 .013 -.114 -.300 .186 .463

200 .016 .026 .005 .004 -.218 -.066 .138 .092 .070

-.023 .045 .007 .006 -.066 -.197 .092 .216

300 .012 .023 .003 .002 -.165 -.057 .093 .061 .074

-.014 .033 .004 .004 -.057 -.166 .061 .138

400 .010 .014 .002 .002 -.125 -.051 .068 .047 .086

-.014 .024 .003 .003 -.051 -.128 .047 .101

500 .008 .015 .002 .002 -.111 -.042 .050 .036 .079

-.008 .018 .002 .002 -.042 -.112 .036 .076

Table 2: KL Performance for Process 1.

4 Conclusion

This paper introduces and studies three methods for fitting vector moving averages. Each method

is justified through a different objective function, and hence can be expected to generate estimates

with somewhat different properties. The SF, KL, and Wold methods are fast to compute, and

competitive with the HR technique in limited simulation studies. Future research will focus on the

harder problem of estimating a VARMA process, and extending the Wold and KL techniques to

this class of models.
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