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1 Introduction

Since the seminal work of Litterman (1986), vector autoregressions (VARs) have been widely

known to be useful for out-of-sample forecasting. In many applications, the forecasts of

interest are unconditional. Clark and McCracken (2013) review methods for evaluating

such forecasts.

VARs are also commonly used to construct conditional forecasts. In such applications,

the models are used to predict variables such as GDP growth and inflation conditional

on, e.g., an assumed path of monetary policy variables or an assumed path of oil prices.

Examples of VAR forecasts conditional on policy paths include Sims (1982), Doan, Litter-

man, and Sims (1984), and Meyer and Zaman (2013). Giannone, et al. (2014) use VARs

to construct forecasts of inflation conditional on paths for oil and other price indicators.

Baumeister and Kilian (2013) consider forecasts of oil prices conditioned on a range of

scenarios. Schorfheide and Song (2013) and Aastveit, et al. (2014) use VARs to produce

multi-step forecasts of growth, inflation, and other macroeconomic variables conditional on

current-quarter forecasts obtained from other, judgmental sources (the Federal Reserve’s

Greenbook for the former and Survey of Professional Forecasters for the latter).

In light of common need for conditional forecasts, one would like to have a feel for their

quality. Accordingly, in this paper, we develop and apply methods for the evaluation of

conditional forecasts from VARs, using tests of bias, effi ciency, and the MSE accuracy of

conditional versus unconditional forecasts. More specifically, we provide analytical, Monte

Carlo, and empirical evidence on tests of predictive ability for conditional forecasts from es-

timated models. In the empirical analysis, we consider forecasts of growth, fixed investment,

and inflation from a VAR, based on conditions on the short-term interest rate.

Throughout, our intention is to provide usable metrics for evaluating conditional fore-

casts, in a general sense and in comparison to the accuracy of unconditional forecasts. To do

so, we focus on particular forms of conditional forecasts for which interpretation of various

null and alternative hypotheses is most straight-forward. In particular, in our analysis, we

consider forecasts conditioned on actual future information on some variables in the VAR

model. In practice, conditional forecasts are sometimes constructed with future informa-

tion (e.g., based on forward guidance from the central bank about policy rates), but not

always. In general, though, the effi cacy of conditional forecasts rests on having a properly

specified model. Our testing based on future information provides a way of assessing proper
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specification of the VAR. As we detail below, Herbst and Schorfheide (2012) use a similar

idea in a Bayesian evaluation framework.

To better understand our approach to inference, consider a very simple example in which

we forecast inflation (yt) conditioned on a path for the federal funds rate (xt) over the next

two periods t+ 1 and t+ 2. Suppose that the data-generating process for inflation and the

funds rate is a zero-mean stationary VAR(1) taking the form(
yt
xt

)
=

(
a b
0 c

)(
yt−1

xt−1

)
+

(
et
vt

)
,

with N(0,1) errors with contemporaneous correlation ρ. Following the approach taken in

Doan, Litterman, and Sims (1984), conditional on this path for the funds rate, the minimum

mean square error (MSE) one- and two-step ahead forecasts of yt are as follows:

ŷct,1 = ŷut,1 + ρ̂(x̂ct,1 − x̂ut,1)

ŷct,2 = ŷut,2 + (b̂+ ρ̂(â− ĉ))(x̂ct,1 − x̂ut,1) + ρ̂(x̂ct,2 − x̂ut,2),

where the superscripts c and u denote conditional and unconditional forecasts, respectively.

In both cases the conditional forecasts of y are comprised of the standard, unconditional

MSE-optimal forecast ŷut,j , j = 1, 2, plus additional terms that capture the impact of

conditioning on future values of the federal funds rate, x̂ct,1 and x̂
c
t,2.

After rearranging terms, the conditional forecast errors ε̂ct,2 = yt+2 − ŷct,2 and ε̂
c
t,1 =

yt+1 − ŷct,1 take the form

ε̂ct,1 = ε̂ut,1 − ρ̂(v̂ut,1 − v̂ct,1)

ε̂ct,2 = ε̂ut,2 − (b̂+ ρ̂(â− ĉ))(v̂ut,1 − v̂ct,1)− ρ̂(v̂ut,2 − v̂ct,2).

We immediately see that any “good”properties that the conditional forecast errors ε̂ct,1

and ε̂ct,2 have, such as unbiasedness or effi ciency, are jointly determined by: (i) the quality

of the unconditional forecast errors ε̂ut,1, ε̂
u
t,2, v̂

u
t,1, and v̂

u
t,2, as well as (ii) the behavior of the

conditioning as measured via v̂ct,1 and v̂
c
t,2. As such, any method of inference designed to

evaluate the quality of the conditional forecasts must somehow distinguish between prop-

erties determined by the quality of the model and properties determined by the quality of

the conditioning.

Because these properties are diffi cult to separate in such a way as to yield useful tests

of, for example, forecast effi ciency, we consider tests based on a more tractable approach
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in which we condition on the ex-post realized values of the conditioning variables so that

x̂ct,1 = xt+1 and x̂ct,2 = xt+2. Since both v̂ct,1 and v̂
c
t,2 are then numerically zero we find that

any properties associated with the conditional forecast errors ε̂ct,1 and ε̂
c
t,2 are determined

only by the quality of the VAR as measured though the unconditional forecast errors, the

regression parameters, and the residual variance parameters. Because we take this approach

to conditioning, our inferential procedures are designed to evaluate the ability of the VAR

to construct good conditional forecasts rather than evaluating a specific set of conditional

forecasts per se.

Because we take this approach to inference, one might wonder how our tests differ from

those already in the literature that evaluate the quality of unconditional forecasts. The

primary difference can be seen in the simple example above. Properties of a good condi-

tional forecast depend not only on the properties of a good unconditional forecast but also

correct specification of the residual variance matrix (in this case via ρ). As we will see

later, certain tests of effi ciency and equal accuracy, when applied to conditional forecasts,

have power in directions associated with misspecification in the residual variance that com-

parable tests applied to unconditional forecasts do not. That said, we make no claim that

the tests delineated in this paper encompass existing ones targeting unconditional forecasts.

Misspecification in the lagged (rather than contemporary) dynamics of the VAR often yield

higher power in tests that focus on unconditional, rather than conditional, forecasts. As

such we view our results as a complement to the existing literature - a complement that

emphasizes that good unconditional forecasting need not imply good conditional forecasting.

Our work builds upon two previous studies that have developed methods for the eval-

uation of some form of conditional forecasts. Motivated by an interest in evaluating the

effi ciency of Greenbook forecasts, Faust and Wright (2008) develop a regression-based test

of predictive ability that accounts for the conditioning of the Greenbook forecasts on a

pre-specified path of the federal funds rate over the forecast horizon. For the purpose of

evaluating forecasts from DSGE models, Herbst and Schorfheide (2012) develop Bayesian

methods to check the accuracy of point and density forecasts. More specifically, Herbst

and Schorfheide consider the Bayesian tool of posterior predictive checks and forecasts of

each variable conditioned on the actual future path of another, selected variable. Our pa-

per differs from these in that we focus on conditional forecasts from VARs and emphasize

frequentist inference.
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The remainder of the paper proceeds as follows. Section 2 describes the approach to

conditional forecasting that we consider. Section 3 provides our theoretical results (proofs

are provided in the Appendix). Section 4 presents Monte Carlo evidence on the finite-sample

accuracy of our proposed methods for evaluating conditional forecasts from VARs. Section

5 presents a practical application, to macroeconomic forecasts conditioned on interest rate

paths. Section 6 concludes.

2 Conditional Forecasting Approaches

In generating and evaluating conditional forecasts, we focus on the standard approach in

VAR forecasting, which we refer to as the minimum-MSE approach. This standard is based

on the textbook problem of conditional projection, as could be handled with a state space

formulation of the VAR and the Kalman filter and smoother (see, e.g., Clarida and Coyle

(1984) or Giannone, et al. (2014)). The conditions on the variables of interest are contained

in the measurement vector and equation; the data vector of the VAR is the state vector of

the transition equation. The projection problem is one of predicting the state vector given

the measurements (conditions). Doan, Litterman, and Sims (1984) developed an alternative

approach to solving this formulation of the conditional forecasting problem, which consists

of solving a least squares problem to pick the shocks needed to satisfy the conditions. In

the context of conditioning on a policy path, this approach to conditional forecasting can be

seen as consisting of the following: determining the set of shocks to the VAR that, by a least

squares metric, best meet the conditions on the policy rate. In practice, this approach may

mean that, in a given episode, an unchanged path of the policy rate could, for example, be

due to shocks to output. Under this approach, the conditional forecasts are not dependent

on the identification of structural shocks in the VAR. Note that under this approach, the

forecast for each period can be affected by the imposition of conditions at all periods. For

example, if we impose conditions for two periods, the forecast for period t+ 2 will generally

be affected by the conditions on both period t+ 1 and t+ 2.

In DSGE forecasting, the more standard approach for achieving conditions on the policy

path rests on feeding in structural shocks (either anticipated or unanticipated) to monetary

policy needed to hit the policy path. For example, Del Negro and Schorfheide (2013, p.62)

assess “...using unanticipated and anticipated monetary policy shocks to generate forecasts

conditional on a desired interest rate path.” In some cases, a combination of shocks to
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policy and other structural shocks is used to hit the desired policy path.

In a VAR setting, of course, one does not have the option of using anticipated policy

shocks to achieve a policy path. One might instead use a sequence of unanticipated pol-

icy shocks to achieve the desired path of the policy variable, under a chosen scheme for

identifying policy shocks, based on the approaches of studies such as Bernanke and Blinder

(1992), Christiano, Eichenbaum, and Evans (1996), and Giannone, Lenza, and Primiceri

(2012). In earlier versions of this paper, we included such a policy shock-based approach,

and we obtained results very similar to those we report for the minimum-MSE approach

more typically used for conditional forecasting with VARs.

3 Analytical results

We present our theoretical results in an environment in which OLS-estimated VARs are

used to construct τ -step ahead conditional forecasts sequentially across forecast origins

t = R, ..., T − τ = R+ P − τ for a fixed and finite horizon τ . Specifically, suppose that the

model takes the form

Yt = C +A(L)Yt−1 + εt,

where Y = (y1, y2, ..., yn)′, ε = (ε1, ε2, ..., εn)′, and A(L) =
∑l

j=1AjL
j for n× 1 and n× n

parameter matrices C and Aj , j = 1, ..., l, respectively. This is equivalent to

Yt = Λxt−1 + εt = (x′t−1 ⊗ In)β + εt

if we define xt = (1, Y ′t , ..., Y
′
t−l+1)′, β = vec(Λ), and Λ = (C,A1, ..., Al). If the model is

estimated using the recursive scheme we obtain the estimated regression parameters

β̂t = vec(Λ̂t) = vec((t−1
∑t−1

s=1
Ys+1x

′
s)(t
−1
∑t−1

s=1
xsx
′
s)
−1)

and corresponding residual variance matrix

Σ̂t = t−1
∑t−1

s=1
ε̂s+1ε̂

′
s+1.

If the model is estimated using a rolling window of R observations we obtain comparable

estimators but defined over the observations s = t−R+ 1, ..., t rather than s = 1, ..., t.

Both the regression and variance estimates β̂t and Σ̂t are used to construct iterated

multi-step unconditional and conditional forecasts of Yt+j , denoted Ŷ u
t,j and Ŷ

c
t,j , which in

turn imply forecast errors ε̂ut,j and ε̂
c
t,j . If we are interested in forecasting the ith element of
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Yt+τ , define ŷi,t,τ = ι′iŶt,τ for the vector ιi with a 1 in the ith position and zeroes elsewhere.

Define ε̂ci,t,j = ι′iε̂
c
t,j = yi,t+j − ŷci,t,j and ε̂ui,t,j = ι′iε̂

u
t,j = yi,t+j − ŷui,t,j , accordingly. To

simplify notation, and without loss of generality, we assume that the first element of Y is

the primary element of interest and hence most of our analysis emphasizes the properties

of the conditional forecast ŷc1,t,j and associated forecast error ε̂
c
1,t,j .

As discussed in Section 2, the conditional forecasts are assumed to be obtained by the

standard minimum-MSE approach. The resulting forecasts take the form

ŷc1,t,τ = ŷu1,t,τ +
∑n

i=1

∑m

j=1
γ̂i,t,j(ŷ

u
i,t,j − ŷci,t,j)

for a collection of constants γ̂i,j that are non-stochastic functions of both β̂t and Σ̂t.1 Note

that this structure aligns with the simple example from the introduction. In addition, we

allow the maximum conditioning horizon m to be greater than or less than the forecast

horizon τ , and we allow for direct conditioning on some elements of the future path of y1

itself.

As mentioned earlier, we focus on evaluating the ability of the model to construct good

conditional forecasts rather than evaluating conditional forecasts per se. We do so by

examining the properties of the conditional forecast error when we condition on future

realized values of those variables in the hypothetical scenario of interest. Specifically, if we

set ŷci,t,j = yi,t+j we obtain

ε̂c1,t,τ = ε̂u1,t,τ −
∑n

i=1

∑m

j=1
γ̂i,t,j ε̂

u
i,t,j .

By taking this approach, the conditional forecast error has a representation as a linear

function of unconditional forecast errors across all variables in the scenario and across all

conditioning horizons.

Before proceeding to the tests we need to introduce some notation. Define φ̂t =

(β̂
′
t, vech(Σ̂t)

′)′, φ = (β′, vech(Σ)′)′, Bβ = ((Exsx
′
s)
−1⊗In), BΣ = In(n+1)/2, B = diag(Bβ, BΣ),

and hs+1 = (h′β,s+1, h
′
Σ,s+1)′ = (vec(εs+1x

′
s)
′, vech(εs+1ε

′
s+1 − Σ)′)′. For any parametric

function zt(·), let ẑt = zt(φ̂t) and zt = zt(φ). Finally, the asymptotics we use require both

the initial in-sample size R and number of forecasts P to diverge as the overall sample

increases. By taking this approach the asymptotic distribution is influenced by the ratio

1As a practical matter, many of the γi,j will be zero depending on how many variables are conditioned
on and how long the maximal conditioning horizon is. In the assumptions, we impose the restriction that
γ1,τ is zero (and hence the value of ŷ

c
1,t,τ is not imposed directly) via rank conditions on certain variance

matrices.
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limP,R→∞ P/R = π. In particular, the asymptotic variances developed below all depend on

the weights λfh and λhh as described in the following table taken from West and McCracken

(1998).

λfh = λhh =
Recursive 1− π−1 ln(1 + π) 2(1− π−1 ln(1 + π))
Rolling, π ≤ 1 π/2 π − π2/3
Rolling, 1 < π <∞ 1− (2π)−1 1− (3π)−1

3.1 Regression based tests of bias and effi ciency

In this section we develop tests of zero bias and effi ciency in the context of conditional

forecasts from VARs when conditioning on future values of the variables in a hypothetical

scenario. To do so first note that each can be couched in the context of a test of the null

hypothesis that the coeffi cient α is zero in the regression

ε̂c1,t,τ = ĝ′tα+ error, t = R, ..., T − τ

for appropriate definitions of ĝt. Examples include a test of zero bias if we let ĝt = 1 and

a test of effi ciency if we let ĝt = (1, ŷu1,t,τ ) or perhaps ĝt = (1, ŷu1,t,τ , ŷ
u
i,t,j) for those variables

yi in the scenario conditioned at horizon j.2

In each case, P 1/2α̂ is asymptotically normal with zero mean and a variance that ac-

counts for estimation error in the estimated conditional forecast errors ε̂c1,t,τ and generated

regressors ĝt. These results follow directly from Lemmas 4.1 - 4.3 and Theorems 4.1 and

4.2 of West and McCracken (1998) if, under the null that α = 0, we maintain a correctly

specified VAR with errors εt that form a martingale difference sequence. Nevertheless it is

worth noting that the interpretation of the results is slightly different than that intended

in West and McCracken (1998). This arises because the conditional forecast errors depend

on φ̂t = (β̂
′
t, vech(Σ̂t)

′)′ rather than just β̂t. Nevertheless, φ̂t satisfies assumption A2 of

West and McCracken (1998) and the remainder of their assumptions are satisfied except for

A1 (c) and (d).3 These assumptions, however, do not affect the derivation of asymptotic

normality. They are only used in Theorem 5.1 of West and McCracken (1998), wherein

special cases are delineated under which estimation error is asymptotically irrelevant. For

clarity we restate the assumptions in the context of the current paper and then proceed to

2Note that this last regression is not the standard Mincer-Zarnowitz form of the effi ciency regression.
We consider this separately in the next section.

3See section 3.4.3 of Lutkepohl (1991) for details.
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the Theorem.4

Assumption 1: (a) In some neighborhood N around φ, and with probability 1, εc1,t,τ (φ)

and gt(φ) are measurable and twice continuously differentiable; (b) E(εt|xt−j , εt−j all j ≥

1) = 0; (c) Egtg′t is full rank.

Assumption 2: The estimate φ̂t satisfies φ̂t − φ = B(t)H(t), with (a) B(t) →a.s. B =

diag[((Exsx
′
s)
−1 ⊗ In), In(n+1)/2] and B of full rank; (b) H(t) equals t−1

∑t−1
s=1 hs+1 and

t−1
∑t−1

s=t−R+1 hs+1 for the recursive and rolling schemes, respectively; (c) Ehs+1 = 0; (d)

In the neighborhood N of Assumption 1, hs+1 is measurable and continuously differentiable.

Assumption 3: In the neighborhood N of Assumption 1, there is a constant D <∞ such

that for all t, supφ∈N |∂2εc1,t,τ (φ)/∂φ∂φ′| < mt for a measurable mt for which Em4
t < D.

The same holds when εc1,t,τ (φ) is replaced by gt(φ).

Assumption 4: Let wt = (x′t, vec(∂gt/∂φ)′, ε′t, g
′
t, h
′
t)
′. (a) For some d > 1, suptE||wt||8d <

∞, where || · || denotes the Euclidean norm; (b) wt is strong mixing with coeffi cients of size

−3d/(d−1); (c) wt is fourth-order stationary; (d) Sff = limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ε

c
1,t,τgt)

is positive definite.

Assumption 5: R,P → ∞ as T → ∞ with limT→∞
P
R = π. (a) 0 ≤ π ≤ ∞ for the

recursive scheme; (b) 0 ≤ π <∞ for the rolling scheme.

Theorem 1 Maintain assumptions A1-A5. P 1/2α̂→d N(0, V ) with V = (Egtg
′
t)
−1Ω(Egtg

′
t)
−1

and

Ω = Sff + λfh(FBS′fh + SfhB
′F ′) + λhhFBShhB

′F ′,

where Sff = limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ε

c
1,t,τgt), Shh = limT→∞ V ar(T

−1/2
∑T−1

s=1 hs+1),

Sfh = limP,R→∞Cov(P−1/2
∑T−τ

t=R ε
c
1,t,τgt, P

−1/2
∑T−τ

t=R h
′
t+1), and F = E(∂εc1,t,τ (φ)gt(φ)/∂φ).

As in West and McCracken (1998), the asymptotic variance, especially through Ω, is

comprised of three components: Sff captures the variation that would exist even if φ

were known, FBShhB′F ′ captures the variation due purely to estimation error in φ̂t, and

FBS′fh + SfhB
′F ′ is the covariance between the two sources of variability.

The asymptotic variance is complicated but can be simplified for each of the tests

discussed above. First, note that since Eεc1,t,τ (∂gt(φ)/∂φ) = 0, F trivially reduces to

4While notationally very similar, these assumptions are stronger than those in West and McCracken
(1998). For example, in Assumption 1 measurability and differentiability is imposed on εc1,t,τ (φ) rather
than εu1,t,τ (φ). But since εc1,t,τ (φ) is a function of unconditional forecast errors from other equations and
horizons, this assumption effectively imposes measurability and differentiability on εui,t,j(φ) for all equations
i = 1, ..., n and horizons j = 1, ...,m.
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Egt(∂ε
c
1,t,τ (φ)/∂φ). In addition, it is straightforward to show that Egt(∂εc1,t,τ (φ)/∂vech(Σ)) =

0 and hence F = (Egt(∂ε
c
1,t,τ (φ)/∂β), 0). That, along with the fact that B is block diag-

onal, implies that in large samples there is no estimation error contributed by Σ̂t in either

ĝt or ε̂c1,t,τ . Notationally, we can therefore simplify the formula for Ω to

Ω = Sff + λfh(FβBβS
′
fh,1 + Sfh,1B

′
βF
′
β) + λhhFβBβShh,11B

′
βF
′
β,

where Fβ = Egt(∂ε
c
1,t,τ (φ)/∂β) and Sfh,1 and Shh,11 denote those elements of Sfh and Shh

associated only with the OLS moment conditions hβ,s+1.

With a bit more work, F can be explicitly derived using elements of section 3.5.2 of

Lutkepohl (1991). Specifically if we define the (nl + 1)× (nl + 1) matrix

W =

 1 0 ... 0
Λ

0 In(l−1) 0

 ,
the n × (nl + 1) selection matrix J1 = (0n×1, In, 0n×n(l−1)), Φi = J1W

iJ ′1, and Θi,t,j =

ι′i
∑j−1

q=0(x′t(W
′)j−1−q ⊗ Φq), we obtain

Fβ = Egt(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j).

3.2 Mincer-Zarnowitz effi ciency test

In the previous section we delineated a regression-based test of effi ciency based on a re-

gression of ε̂c1,t,τ on (1, ŷu1,t+τ ). By taking this approach we were able to use the results

in West and McCracken (1998) to prove that the regression coeffi cients are asymptotically

normal under the null hypothesis that α = 0. While useful, this result deviates from a

more standard version of the Mincer and Zarnowitz (1969) test of effi ciency in which, for

conditional forecasts, we would regress ε̂c1,t,τ on (1, ŷc1,t,τ ).

The reason we didn’t consider the Mincer-Zarnowitz regression is that, by conditioning

on future values of the variables in the scenario, it is possible that Eε̂c1,t,τ ŷ
c
1,t+τ 6= 0 even

though ε̂c1,t,τ is orthogonal to all information in the time t information set. However, as it

turns out, with minimum-MSE conditional forecasts, that orthogonality restriction holds.5

Straightforward algebra show that Eε̂c1,t,τ ŷ
c
1,t+τ = 0 and hence Theorem 1 is indeed applica-

ble with ĝt = (1, ŷc1,t,τ )′. Even so, the previously discussed simplifications of the asymptotic

variance Ω no longer hold. In particular, Σ̂t contributes estimation error even in the limit.

5However, if the conditional forecasts are produced by the policy shock approach mentioned in section 2,
the orthogonality condition no longer holds.
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We can see this directly in the following derivation of the (2× (dim vec(Λ) + dim vech(Σ)))

matrix F = (F ′1, F
′
2)′ = E(∂εc1,t,τ (φ)gt(φ)/∂φ):

F1 = (E(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j), 0n(n+1)/2)

F2 = (E(yu1,t,τ )(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j)− E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇βγi,juui,t,j),−E(yc1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)).

The first row of F is identical to that for the test of zero bias (as expected), concatenated

by zeros, since E∂εc1,t,τ (φ)/∂vech(Σ) = 0. In contrast, E∂εc1,t,τ (φ)yc1,t,τ (φ)/∂vech(Σ) 6= 0,

and hence the second row of F includes terms contributing to the asymptotic variance due

to estimation error in Σ̂t.

3.3 Faust-Wright effi ciency test

For the purpose of testing the effi ciency of the Greenbook forecasts constructed by the staff

at the Federal Reserve Board of Governors, Faust and Wright (2008) suggest an alternative

formulation of the Mincer-Zarnowitz regression designed to “soak up”the impact of condi-

tioning on the values of variables not in the time t information set. In the notation of our

paper, as well as our approach to conditioning, their regression takes the form

ε̂c1,t,τ = α0 + α1(ŷu1,t,τ − ŷc1,t,τ ) + α2ŷ
c
1,t,τ + error (1)

= ĝ′tα+ error,

where ĝt = (1, ŷu1,t,τ − ŷc1,t,τ , ŷc1,t,τ )′.

At first blush this regression looks like those discussed in the previous section. And yet

there is one major difference that precludes directly applying the results in West and Mc-

Cracken (1998): α1 need not be zero under the null of effi ciency which, here, is represented

by α2 = 0 (and perhaps α0 = 0 if a joint test of effi ciency and zero bias is desired). Since

the proofs in West and McCracken (1998) explicitly require that Eε̂c1,t,τ ĝt = 0, and hence

all elements of α are zero, their results are not applicable.

Regardless, asymptotic normality of the coeffi cients can be established using the more

general results in West (1996) along with the Delta method. To do so, first define the (8×1)

function ft,τ (φ̂t) = (vech−1(ĝtĝ
′
t)
′, ĝ′tε̂

c
1,t,τ )′, where the notation vech−1 denotes the vech

operator but omits the first element (that associated with the intercept). There then exists a
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twice continuously differentiable function q(·):R8 → R3 satisfying α̂ = q(P−1
∑T−τ

t=R ft,τ (φ̂t))

such that α0 = ι′1q(Eft,τ ) = 0 and α2 = ι′3q(Eft,τ ) = 0 under the null hypothesis. Finally,

define ∇q(Eft,τ ) = ∂q(Eft,τ )/∂Eft,τ . The following Theorem provides the asymptotic

distribution of P 1/2(α̂− α).

Theorem 2 Maintain assumptions A1-A5. P 1/2(α̂−α)→d N(0, V ) with V = ∇q(Eft,τ )′Ω∇q(Eft,τ )

and

Ω = Sff + λfh(FBS′fh + SfhB
′F ′) + λhhFBShhB

′F ′,

where Sff = limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ft,τ ), Shh = limT→∞ V ar(T

−1/2
∑T−1

s=1 hs+1), and

F = E(∂ft,τ (φ)/∂φ), and Sfh = limP,R→∞Cov(P−1/2
∑T−τ

t=R ft,τ , P
−1/2

∑T−τ
t=R h

′
s+1).

Again we find that the regression coeffi cients are asymptotically normal. But in contrast

to the results in the previous section, only α0 and α2 are necessarily zero when the VAR

is correctly specified. Also, in contrast to the previous results, there does not appear to

be any way of simplifying the formulation of the asymptotic variance V . Both Fβ and FΣ

are non-zero and hence estimation error from both β̂t and Σ̂t contribute to the asymptotic

variance. In particular, while tedious, the formulas for F = (F ′1, ..., F
′
8)′ (8× (dim vec(Λ) +

dim vech(Σ))) can be derived explicitly and take the following form:

F1 = (E
∑n

i=1

∑m

j=1
γi,jΘi,t,j , 0n(n+1)/2)

F2 = (E(Θ1,t,τ −
∑n

i=1

∑m

j=1
γi,jΘi,t,j), 0n(n+1)/2)

F3 = (2E(yc1,t,τ − yu1,t,τ )(
∑n

i=1

∑m

j=1
∇βγi,juui,t,j), 2E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j))

F4 = (E(
∑n

i=1

∑m

j=1
γi,jy

u
1,t,τΘi,t,j)− 2E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j),

−2E(yc1,t,τ − yu1,t,τ )(
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j))

F5 = (2E(yc1,t,τ )(−Θ1,t,τ +
∑n

i=1

∑m

j=1
(−γi,jΘi,t,j +∇βγi,juui,t,j)), 2E(yc1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j))

F6 = (E(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j), 0n(n+1)/2)

F7 = (−E
∑n

i=1

∑m

j=1
∇βγi,juui,t,juc1,t,τ + E

∑n

i=1

∑m

j=1
∇βγi,juui,t,j(yc1,t,τ − yu1,t,τ ),

−E
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,ju

c
1,t,τ + E

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j(y

c
1,t,τ − yu1,t,τ ))

F8 = (E(yu1,t,τ )(−Θ1,t,τ +
∑n

i=1

∑m

j=1
γi,jΘi,t,j)− E(yc1,t,τ − yu1,t,τ )(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇βγi,juui,t,j),−E(yc1,t,τ )(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)

+E(uc1,t,τ )(
∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j)).

Whereas Faust and Wright (2008) intended their test for use with forecasts such as

Greenbook, it could also be used with the VAR-based forecasts considered in this paper.
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Their effi ciency test is applicable to the minimum-MSE conditional forecasts considered in

this paper as well as to the policy shock-based conditional forecasts described in section

2 one might also consider. That said, under the minimum-MSE approach to conditional

forecasts, one might expect the Mincer-Zarnowitz regression to have greater power than

that proposed by Faust and Wright (2008) because the former imposes the valid restriction

α1 = 0 while the latter estimates it freely. Monte Carlo results below general support this

intuition.

3.4 Equal accuracy test

In the previous three sections we described tests of predictive ability related to the properties

of the conditional forecast error ε̂c1,t,τ . In each case, the null hypothesis relates to a property

of the forecast error that suggests that the model is useful for constructing conditional

forecasts. Rejecting the null hypothesis is indicative of a flaw in the model that might cause

future conditional forecasts to be ill-behaved.

One property we have not discussed is the accuracy of the conditional forecast. In-

tuitively, one would expect that after conditioning on future values of those variables in

the hypothetical scenario, the conditional forecast would be more accurate than an un-

conditional forecast that does not utilize any future information. In other words, if our

conditional forecast is good we would expect E(εc1,t,τ )2 − E(εu1,t,τ )2 < 0. In fact, as also

noted in Herbst and Schorfheide (2012), when the forecasts are of the minimum-MSE variety

this should be the case.6

Unfortunately, this “good”property of the conditional forecast does not give us a work-

able null hypothesis under which to derive an asymptotic distribution and conduct inference.

In fact, given our methodological approach of conditioning on future observations of those

variables in a scenario, the null hypothesis E(εc1,t,τ )2 − E(εu1,t,τ )2 = 0 would require the

model to be misspecified. Because of this, one approach to inference would be to derive the

asymptotic distribution of the moment condition P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2− (ε̂u1,t,τ )2) assuming

a misspecified VAR and reject the null in the lower tail of this distribution. Unfortunately,

rejecting the null in the lower tail does not imply that the model is “good” in any sense

since the model could still be misspecified and yet E(εc1,t,τ )2 − E(εu1,t,τ )2 < 0.

We therefore take a different approach to inference, one that continues our strategy of

maintaining a correctly specified VAR under the null. Again, under minimum-MSE condi-

6This need not hold under the policy shock-based conditioning described in section 2.
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tioning, correct specification implies the existence of a non-negative constant k satisfying

E(εc1,t,τ )2 − E(εu1,t,τ )2 = k. This constant depends on the VAR regression parameters Aj

and residual variance Σ and can be derived explicitly as a function of φ. To do so, first

define ΨjΣ
1/2 as the matrix of orthogonalized impulse responses after j periods and let

D =


Σ1/2 0 0 0

Ψ1Σ1/2 Σ1/2 0 0

... Σ1/2 0

Ψmax(τ ,m)Σ
1/2 Ψmax(τ ,m)−1Σ1/2 Ψ1Σ1/2 Σ1/2

 .
Now let D̃ denote the matrix formed by those rows in D associated with a conditioning

restriction.7 For example, if n = 2 and we condition on future values of the second element

of the VAR at both the first and second horizons (m = 2), D̃ consists of the (2× 4) matrix

formed by stacking the second and fourth rows of D. Straightforward algebra then implies

k(φ) = ι′1DD̃
′(D̃D̃′)−1D̃D′ι1.

With this constant k(φ) in hand we consider testing for “equal accuracy” (below, we

will just generally refer to this as testing MSE accuracy) using the appropriately re-centered

Diebold and Mariano (1995) and West (1996)-type test of predictive ability:

P 1/2α̂ = P−1/2
∑T−τ

t=R
((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )).

Theorem 3 Maintain assumptions A1-A5. P 1/2α̂→d N(0,Ω) with

Ω = Sff + 2λfhFBS
′
fh − 2

π

1 + π
KBS′fh − 2

π

1 + π
FBShhB

′K ′

+λhhFBShhB
′F ′ +

π

1 + π
KBShhB

′K ′,

where Sfh = limP,R→∞Cov(P−1/2
∑T−τ

t=R ((εc1,t,τ )2− (εu1,t,τ )2− k), P−1/2
∑T−τ

t=R h
′
s+1), Sff =

limP,R→∞ V ar(P
−1/2

∑T−τ
t=R ((εc1,t,τ )2−(εu1,t,τ )2−k)), Shh = limT→∞ V ar(T

−1/2
∑T−1

s=1 hs+1),

F = E(∂((εc1,t,τ (φ))2 − (εu1,t,τ (φ))2)/∂φ), and K = ∂k(φ)/∂φ.

Theorem 3 implies that an appropriately centered DM/W test of equal predictive ability

is asymptotically normal. While this is precisely what is shown in DM/W, there is an

important distinction: estimation error affects the asymptotic distribution. This contrasts

with the results in West (1996). In that paper it is shown that when the forecasts associated

with two non-nested OLS estimated linear models are evaluated under quadratic loss, F = 0

(and for that matter, K = 0) and hence estimation error is asymptotically irrelevant.

7This notation is taken directly from Jarocinski (2010) except we substitute D for R.
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Mathematically, the key feature driving this difference is the presence of the weights γi,j

as well as the centering constant k, and, in particular the fact that they are functions of

φ. Let ∇βγi,j = ∂γi,j(φ)/∂β and ∇Σγi,j = ∂γi,j(φ)/∂vech(Σ). Straightforward algebra

reveals that F = (Fβ, FΣ), where

Fβ = −
∑n

i=1

∑m

j=1
∇βγi,jEuu1,t,τuui,t,j+2E(

∑n

i=1

∑m

j=1
γi,ju

u
i,t,j)(

∑n

i=1

∑m

j=1
∇βγi,juui,t,j)

and

FΣ = −
∑n

i=1

∑m

j=1
∇Σγi,jEu

u
1,t,τu

u
i,t,j+2E(

∑n

i=1

∑m

j=1
γi,ju

u
i,t,j)(

∑n

i=1

∑m

j=1
∇Σγi,ju

u
i,t,j).

Since Fβ and FΣ (as well as unreported Kβ and KΣ) are both non-zero, estimation error in

both β̂t and Σ̂t affect the asymptotic distribution through the asymptotic variance.

3.5 A bootstrap approach to inference

For each test of bias and effi ciency we are able to establish that P 1/2(α̂ − α) is asymp-

totically normal. We are also able to establish asymptotic normality of the test of MSE

accuracy. As such, one approach to inference is to construct a consistent estimate of the

asymptotic variance and then compare the standardized statistic P 1/2(α̂j−αj)/Ω̂1/2
j to stan-

dard normal critical values. As discussed in West (1996) as well as West and McCracken

(1998), many of the components of the asymptotic variance are easily estimated, while

other elements can be more complicated. Among the easiest components are π̂ = P/R,

B̂β = ((T−1
∑T−1

s=1 xsx
′
s)
−1 ⊗ In), and BΣ = In(n+1)/2. In addition, standard HAC

estimators can be used to construct estimates of Sff , Sfh, and Shh given ft,τ (φ̂t) and

ĥt+1 = (vec(ε̂t+1x
′
t)
′, vech(ε̂t+1ε̂

′
t+1 − Σ̂T )′)′, where ε̂t+1 denotes the residuals from the

OLS-estimated VAR.

Unfortunately, estimating F , ∇q(Eft,τ ), and K is significantly more diffi cult even when,

for example, formulas for F are provided as they are in the text. As a result, we suggest

and use in our applications a bootstrap approach to inference. However, it’s important to

note that the choice of bootstrap is non-trivial. Recall that for many of our results the

asymptotic distribution is affected by estimation error in both β̂t and Σ̂t. This implies that

most bootstrap procedures, including that of Goncalves and Kilian (2004) which captures

the asymptotic behavior of β̂t but not Σ̂t, are not generally applicable for the testing proce-

dures in this paper. We therefore use a VAR-based, moving-block residual based bootstrap

developed in Bruggemann, Jentsch, and Trenkler (2014), which is specifically designed to
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capture the asymptotic behavior in β̂t and Σ̂t simultaneously (along with conditional het-

eroskedasticity in the VAR’s innovations). To implement their bootstrap in our setting, we

estimate the VAR of interest with the full sample of data and save the residuals and coeffi -

cients. We then bootstrap the residuals using a moving block bootstrap of 40 observations.8

We use these residuals and the autoregressive structure of the VAR to obtain an artificial

time series y∗t .
9 In each bootstrap replication, the bootstrapped data are used to estimate

the VAR forecasting model at each forecast origin and generate artificial, out-of-sample

forecasts. These forecasts and associated forecast errors are used to produce bias, effi ciency,

and MSE accuracy test statistics. Critical values are simply computed as percentiles of the

bootstrapped test statistics.

4 Monte Carlo Analysis

This section presents a Monte Carlo analysis of the finite-sample properties of tests for

bias, effi ciency, and MSE accuracy applied to unconditional and conditional forecasts from

VAR models. In all cases, consistent with the preceding analytics, we produce and evaluate

forecasts conditioned on a path for a pseudo-policy variable that is the actual future path.

Using the simulated data, we conduct forecast inference based on both normal distributions

with standard errors that abstract from parameter estimation error and bootstrapped test

distributions.

In these experiments, we use bivariate and trivariate VARs as data-generating processes

(DGPs). In the reported results, we form (iterated multi-step) forecasts using OLS estimates

of VARs. We focus on forecasts computed under a recursive (expanding window) estimation

scheme, but we provide some results for a rolling window estimation scheme. For the condi-

tional forecasts, we concentrate on the minimum-MSE approach to conditional forecasting

used in the theoretical analysis above.

In all simulations, based on 2000 Monte Carlo draws, we report the percentage of Monte

Carlo trials in which the null of no bias, effi ciency, or MSE accuracy is rejected – the

percentage of trials in which the sample test statistics fall outside (two-sided) critical values.

In the reported results, the tests are compared against 10% critical values. Using 5% critical

values yields similar findings.

8 In our Monte Carlo analysis, before settling on a block size of 40, we considered a grid of sizes up through
50, and found differences across block choices to be fairly small.

9The initial observations are selected by sampling from the actual data as in Stine (1987).
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We proceed by first detailing the data-generating processes and other aspects of exper-

iment design and then presenting the results.

4.1 Monte Carlo design

For each DGP, we generate data using draws of innovations and the autoregressive structure

of the DGP. The initial observations necessitated by the lag structure of each DGP are

generated with draws from the unconditional normal distribution implied by the DGP.

With quarterly data in mind, we report results for forecast horizons of 1, 2, and in some

cases, 4 periods. We consider sample sizes of R,P = 50,100; 50,150; 100,50; and 100,100.

We use DGPs 1, 1G, and 2 to evaluate size properties and DGPs 3 and 4 to evaluate power.

DGP 1 is a bivariate VAR(1), with regression coeffi cients given in the first panel of Table

1 and an error variance-covariance matrix of:

var(εt) =

(
1.0
0.5 1.0

)
.

In order to assess test reliability with conditionally heteroskedastic forecast errors, we

also consider a version of DGP 1 with GARCH innovations, denoted DGP 1G. The VAR

has the same regression coeffi cients as given for DGP 1 in the first panel of Table 1. In the

GARCH structure, taken from an experiment design in Bruggemann, Jentsch, and Trenkler

(2014), let et denote a 2×1 innovation vector that is distributed N(0, I2). Let vi,t = σi,tei,t,

where σ2
i,t = 0.2+0.05v2

i,t−1+0.75σ2
i,t−1, such that v1,t and v2,t are independent GARCH(1,1)

processes. The VAR innovations are constructed as Svt, where S is

var(εt) =

(
1.0 0.0
0.5 0.866

)
.

With this formulation, the unconditional error variance matrix is the same as in the ho-

moskedastic version of DGP 1.

DGP 2 is a trivariate VAR(2), with regression coeffi cients given in the second panel of

Table 1 and an error variance-covariance matrix of:

var(εt) =

9.265
0.296 1.746
0.553 0.184 0.752

 .

We set the parameters of DGP 2 to equal OLS estimates of a VAR in GDP growth, inflation

less a survey-based measure of trend inflation (see, e.g., Clark and Doh (2014), Faust and

Wright (2013)), and the federal funds rate less a survey-based measure of trend, over a

sample of 1961-2007.
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To evaluate power properties, DGPs 3 and 4 impose some parameter breaks on the

specification of the bivariate DGP 1. In DGP 3, the breaks consist of one-time shifts in the

intercept of the y1,t equation and the slope and intercept coeffi cients of the y2,t equation.

The pre- and post-break coeffi cients are given in the last panel of Table 1; the error variance-

covariance matrix is kept constant, at the setting used with DGP 1 (see above). The break

is imposed to occur at period R + 1, the date of the first out-of-sample forecast. In DGP

4, the single break takes the form of a shift in the error correlation ρ, from 0.5 to -0.5, at

period R + 1. In this DGP, the other VAR parameters are stable over time, at the DGP 1

values given in Table 1.

In experiments with DGPs 1, 1G, 3, and 4, to keep the conditioning relatively simple

and speed the Monte Carlo replications, we report results for forecast horizons of 1 and 2

periods ahead. In these cases, we forecast the first variable of the VAR in periods t+ 1 and

t+ 2 (i.e., y1,t+1 and y1,t+2), conditional on the actual values of the second variable in those

periods (i.e., y2,t+1 and y2,t+2). In experiments with DGP 2, we extend the conditioning

horizon to 4 quarters ahead. In this case, we forecast variables y1,t+τ and y2,t+τ for τ =

1, . . . , 4 conditional on y3,t+τ equaling its actual values in periods t + 1 through t + 4 –

that is, conditional on ŷc3,t,τ = y3,t+τ , τ = 1, . . . , 4.

4.2 Test implementation

For convenience, we list here the regressions and test statistics we use, referring to variable

1 of the VAR for convenience (in DGP 2, we consider forecasts of an additional variable):

ε̂i1,t,τ = α0 + et,τ , i = u, c, bias: α0 t-stat (2)

ε̂i1,t,τ = α0 + α1ŷ
i
1,t,τ + et,τ , i = u, c, M-Z: α1 t-stat (3)

ε̂c1,t,τ = α0 + α1(ŷu1,t,τ − ŷc1,t,τ ) + α2ŷ
c
1,t,τ + et,τ , F-W: α2 t-stat (4)

(ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 = α0 + et,τ , MSE accuracy: α0 = k(φ̂T ) t-stat (5)

To test bias, we regress (equation (2)) forecast errors (either unconditional or condi-

tional) on a constant and form the t-statistic for the null of a coeffi cient of zero. To test

effi ciency, for all types of forecasts, we consider the Mincer-Zarnowitz effi ciency test of equa-

tion (3). For conditional forecasts, we also consider the t-statistic of the coeffi cient on the

conditional forecast in the Faust and Wright (2008) effi ciency regression (4). Finally, we

use the regression (5) to test whether the difference in MSEs for the unconditional and
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conditional forecasts is different from the population level-value implied by the VAR’s pa-

rameters (where, as noted above, that population value is a function of the VAR’s slope

coeffi cients and error variance-covariance matrix).

In all cases, the forecast error for horizon τ should follow an MA(τ − 1) process. At the

1-step horizon, we form test statistics using the simple OLS estimate of the variance. At

longer horizons, we use a rectangular kernel, with τ − 1 lags.10

4.3 Results

Tables 2 through 5 provide size results from Monte Carlo experiments with DGPs 1, 1G,

and 2, in which the conditional forecasts are computed with the minimum-MSE approach.

These results indicate that comparing tests of bias, effi ciency, and MSE accuracy against

standard normal critical values will often be unreliable. More specifically:

• Under a recursive scheme, without correction for the effects of parameter estimation

error, tests of bias – both unconditional and conditional – range from being about

correctly sized (DGP 1) to modestly oversized (DGP 2). Oversizing is somewhat more

likely at longer forecast horizons, probably because of diffi culties with the finite-sample

precision of HAC variance estimates.

• Under a recursive scheme, tests of effi ciency range from being almost correctly sized

(DGP 1, 1-step horizon) to significantly oversized (DGP 3). Size is comparable for

the M-Z and F-W tests applied to conditional forecasts and the M-Z test applied to

unconditional forecasts. The size distortions generally rise as the forecast horizon

increases, likely reflecting imprecision in the HAC variance estimate. For example, for

forecasts of y2,t in experiments with DGP 2 and R,P = 100,100, the rejection rate for

the normal-based M-Z effi ciency test applied to conditional forecasts rises from 23.0

percent at the 1-step horizon to 29.0 percent at the 2-step horizon and 36.1 percent

at the 4-step horizon. Although not shown in the tables, the oversizing seems to stem

partly from a left-ward shift of the finite-sample distribution of the test statistics.

This shift will become more evident in the application results of the next section.

• With recursively produced forecasts, the MSE accuracy test often, although not al-

ways, leads to significant undersizing. For example, with DGP 2, R,P = 50,100,

10 In the rare occasions in which the result variance estimator is not positive semi-definite, we instead use
the HAC estimator of Newey and West (1987), with 2(τ − 1) lags.
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and the 1-step forecast horizon, the rejection rate for the MSE test is 3.5 percent for

variable 1 and 14.3 percent for variable 2.

• Under the rolling scheme, the failure to correct standard errors for the effects of

parameter estimation error associated with forecast model estimation can have large

consequences. In particular, rejection rates for bias tests are materially lower under

the rolling scheme than the recursive, such that bias tests applied to rolling forecasts

are often modestly or significantly undersized. In the experiments in which P/R >

1, rejection rates for effi ciency tests are higher under the rolling scheme than the

recursive, such that effi ciency tests applied to rolling forecasts are often significantly

oversized. Finally, tests of MSE accuracy in DGP 1 applied under the rolling scheme

range from significantly to slightly undersized.

• Under the recursive scheme, conditional heteroskedasticity in the data-generating

process does not materially affect the results described above. Broadly, size results

under DGP 1G (Table 5) are fairly similar to those under DGP 1 (Table 2). The

oversizing of effi ciency tests is a little greater in the GARCH results than in the

conditionally homoskedastic results, but otherwise results are fairly similar.

In comparison, conducting inference on the basis of our proposed bootstrap yields more

reliable tests of bias, effi ciency, and accuracy. More specifically:

• For both unconditional and conditional forecasts, the median rejection rate across all

bias tests in Tables 2-5 is about 11.4 percent, with a minimum of about 9 percent and

maximum of about 13-14 percent.

• For each type of effi ciency test, the median rejection rate across all experiments in

Tables 2-5 is a little less than 10 percent. In some settings, however, the tests can be

either slightly-to-modestly undersized or slightly-to-modestly oversized. For example,

applied to unconditional forecasts the M-Z test of effi ciency has a minimum of 4.6

percent and maximum of 14.1 percent across experiments. Applied to conditional

forecasts the M-Z test’s rejection rate ranges from 5.9 percent to 14.3 percent.

• Size performance is more variable for the MSE test (unconditional versus minimum-

MSE conditional) than the bias and effi ciency tests. On average, the bootstrap is

reasonably reliable: the median rejection rate across all MSE tests in Tables 2-5 is
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8.9 percent. But the rejection rate ranges from 3.2 to 17.1 percent, depending on the

experiment, variable, horizon, etc.

• With bootstrap inference, using a rolling scheme for estimation or a DGP with

GARCH yields results similar to those obtained for recursive estimation of a DGP

with conditionally homoskedastic innovations.

Tables 6 and 7 provide power results from Monte Carlo experiments with DGPs 3 and 4,

in which the conditional forecasts are computed with the minimum-MSE approach and the

forecasting scheme is recursive. We focus on power results obtained under bootstrap critical

values, because using normal critical values (without correction for parameter estimation

error) does not yield accurately sized tests. These experiments yield the following findings

for power.

• With a break in VAR coeffi cients (DGP 3), tests for bias have relatively good power.

For example, with R,P = 100,100, the 2-step ahead rejection rate is 85.0 percent

for the unconditional forecast and 74.8 percent for the conditional forecast. As this

example indicates, the bias test for unconditional forecasts has somewhat more power

than the bias test for conditional forecasts, likely because conditioning on the actual

future path of y2,t reduces shifts in y2,t as a potential source of instability in the

forecast of y1,t.

• In the same DGP, tests for effi ciency have at best modest power, with the M-Z test

applied to unconditional forecasts having a little more power than the M-Z or F-W

tests applied to conditional forecasts. In the same example (R,P = 100,100 and a

2-step forecast horizon), the rejection rate is 17.3, 7.9, and 7.1 percent for the M-Z

unconditional, M-Z conditional, and F-W conditional tests.

• Similarly, in the DGP with a break in VAR coeffi cients, the test of MSE accuracy has

at least a little power. In the same example, the power of the MSE accuracy test is

14.9 percent (Table 6).

• In the DGP with a break in error correlations (Σ) instead of the VAR’s slope coeffi -

cients, the power rankings of the tests are essentially reversed. In DGP 4, the MSE

accuracy test has the best power, ranging from about 40 percent (with R,P = 50,150)

to as much as 94.5 percent (R,P = 100,50, 1-step ahead forecast horizon). The M-Z
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effi ciency test applied to conditional forecasts ranks second in power, yielding a re-

jection rate as high as 75.7 percent (R,P = 100,50, 2-step ahead forecast horizon),

but also as low as 11.9 percent (with R,P = 50,150, 1-step ahead forecast horizon).

Neither the F-W test for the effi ciency of conditional forecasts nor the M-Z test for

the effi ciency of unconditional forecasts have much power. Bias tests also lack power

in the face of a shift in the error correlation (in Σ), likely due to the absence of any

mean shifts that would lead to bias in forecasts.

In summary, the Monte Carlo results are generally consistent with the analytical findings

described above. With conditional forecasts, comparing tests of bias, effi ciency, and MSE

accuracy against standard normal critical values does not yield generally reliable results. A

likely reason is that, in many cases, the asymptotic distributions of the tests are affected by

parameter estimation error (from forecast model estimation). While the statistics of interest

are normally distributed, parameter estimation error affects the appropriate variance in a

way that is often very complicated. Our proposed (and easily implemented) bootstrap

procedure yields tests with reasonably reliable size properties. As to power, our results

show that shifts in error correlations will lead to rejections of MSE accuracy (unconditional

versus conditional) and the effi ciency of conditional forecasts, but not rejections of the

effi ciency of unconditional forecasts.

5 Empirical Application

In our empirical application, we examine forecasts obtained with a VAR (estimated by

OLS) in the variables included in the DSGE model of Smets and Wouters (2007). The

Smets-Wouters model and variants of it are widely used in other research and practice (e.g.,

Del Negro, Giannoni, and Schorfheide (2015)), and a number of studies, including Smets

and Wouters (2007), Edge and Gurkaynak (2010), and Gurkaynak, Kisacikoglu, and Rossi

(2013), have compared the accuracy of forecasts from the Smets-Wouters model to forecasts

from VARs in the same variables.

This section proceeds by first providing data and forecasting details and then provid-

ing results. In the interest of brevity, we report forecast results for a selected subset of

variables: growth in GDP, growth in private fixed investment, and inflation. We do not

report forecasts for the federal funds rate because we are interested in forecasts of the other

variables conditional on particular paths of the federal funds rate.
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Variables in VAR of Application
GDP, chain-weighted 400∆ lnGDP/population
Consumption (PCE), chain-weighted 400∆ lnPCE/population
Private fixed investment (PFI), chain-weighted 400∆ lnPFI/population
Aggregate hours worked (hours), non-farm business sector 400∆ lnhours/population
Real hourly compensation (comp), non-farm business sector 400∆ ln comp/GDPPI
Inflation, GDP price index (GDPPI) 400∆ lnGDPPI
Federal funds rate level

5.1 Data and Sample

The model variables consist of GDP, consumption, private fixed investment, real hourly

labor compensation, hours worked, inflation in the GDP price index, and the federal funds

rate, all measured on a quarterly basis.11 The GDP, consumption, investment, and hours

worked variables are defined in per-capita terms, and these variables plus real compensation

enter the model as annualized growth rates. To transform to per-capita terms, we normalize

by the non-institutional population, aged 16 and over. We obtained all data from the FAME

database of the Federal Reserve Board, except for the population series, which we obtained

from the (publicly available) Federal Reserve Board’s FRB/US model database.12 The table

below lists the variables and their transformations.

We generate and evaluate forecasts for a sample of 1991 through 2007, at horizons of

1, 2, 4, and 8 quarters. We start forecasting in 1991 and not sooner because, through

the 1980s, inflation was still trending down, presumably due to a deliberate disinflation

effort by the Federal Reserve. We stop our forecast evaluation in 2007:Q4 to avoid possible

complications of the zero lower bound constraints that became relevant in subsequent years.

In all cases, we estimate the model with a sample that starts in 1961:Q1. We begin

by estimating with data from 1961:Q1 through 1990:Q4 and forming forecasts for 1991:Q1

through 1992:Q4. We then proceed by moving to a forecast origin of 1991:Q2, estimating

the model with data from 1961:Q1 through 1991:Q1 and forming forecasts for 1991:Q2

through 1993:Q1. We proceed similarly through time (under the recursive scheme), up

through 2007:Q3, to obtain a sample of forecasts from 1991 through 2007. At each point in

time, we produce conditional forecasts based on the actual future path of the federal funds

11For various reasons, our measurements of these variables differ some from those of Smets and Wouters
(2007) and other studies of similar models. For example, to be consistent with the definitions of the NIPA
accounts, we use real consumption defined as nominal divided by the consumption deflator, whereas Smets
and Wouters used nominal consumption divided by the GDP deflator.
12This series is adjusted for breaks created by changes in population controls that can occur at the

beginning of each year.
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rate over the 8-step forecast horizon. In the presented results, in the interest of brevity, we

focus on conditional forecasts produced with the minimum-MSE approach.

5.2 Results

Tables 8 and 9 provide the results of bias, effi ciency, and MSE accuracy tests applied to

growth, investment, and inflation forecasts. In particular, Table 8 reports test statistics

(t-statistics) along with bootstrapped 10 percent critical values. Table 9 reports the MSEs

of the unconditional and conditional forecasts, along with the t-test for MSE accuracy and

its 10 percent critical values.

Broadly, using the bootstrap critical values that our Monte Carlo analysis show to be

more reliable than standard normal critical values, Table 8 provides consistent evidence of

bias in forecasts of GDP growth and ineffi ciency in forecasts of inflation. In the case of GDP

growth forecasts, both unconditional and conditional forecasts look to be biased at all or

most horizons considered. For inflation, there is somewhat more evidence of ineffi ciency in

the conditional forecasts than the unconditional forecasts. For the unconditional forecast of

inflation, the Mincer-Zarnowitz test rejects effi ciency at horizons of one and two steps but

not at longer horizons. For the conditional forecasts of inflation, our proposed test rejects

effi ciency at all horizons, and the Faust-Wright test rejects at horizons of one through four

quarters. In addition, there is some more limited evidence of ineffi ciency in forecasts of GDP

growth (both unconditional and conditional, at just the two-step horizon) and investment

growth (conditional at horizons of two and four quarters). Overall, ineffi ciency is rejected

a little more often for conditional forecasts than unconditional forecasts.

Table 8 also shows that using standard normal critical values would overstate the ev-

idence of forecast ineffi ciency, as occurs in some of the Monte Carlo experiments of the

previous section. There are a number of cases (e.g., M-Z tests of effi ciency of unconditional

forecasts of investment growth) in which comparing the reported test statistics against nor-

mal critical values would lead one to reject the null of effi ciency but comparing against the

more accurate bootstrap critical values does not yield rejection. The reported bootstrap

critical values suggest the finite sample distributions of the effi ciency test statistics to be

shifted to the left of a distribution centered about 0. While not detailed in the Monte

Carlo results, in unreported checks we found the same shift present in simulations of DGP

2, which shows significant size distortions of effi ciency tests compared against standard

normal critical values.
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The results in Table 9 indicate that the differences in MSE accuracy between the un-

conditional and minimum-MSE conditional forecasts are generally not significantly different

from what full sample estimates of the VAR imply should obtain (with the exception of one-

step ahead forecasts of GDP growth). To be sure, there are differences in the actual MSEs

that are somewhat different from the MSEs implied by the VAR’s parameters, but these

differentials are not often statistically significant. Consider, for example, 4-quarter ahead

forecasts of GDP growth. In the out-of-sample forecasts, the difference in MSEs (uncon-

ditional less minimum-MSE conditional) is 1.454. The VAR, with full-sample parameter

estimates, implies the difference is MSEs could be expected (in population) to be 2.381.

However, the t-statistic for the equality of the sample difference and population-implied

difference is just -1.490, well above the lower tail of the bootstrap distribution.

Overall, these results suggest some misspecification of the VAR fit to the Smets and

Wouters (2007) variable set and used to produce the forecasts of GDP growth, investment,

and inflation – both unconditional forecasts and forecasts conditioned on the actual path

of the federal funds rate over a two year horizon. Although that misspecification doesn’t

lead to systematic bias in the forecasts of investment or inflation or cause the difference

in the accuracy of unconditional and conditional forecasts to be significantly different than

the VAR’s parameters imply, it leads to a number of rejections of the effi ciency of both

unconditional and conditional forecasts.

6 Conclusions

Motivated by the common use of conditional forecasting in both practical forecasting and re-

search, we develop and apply methods for the evaluation of conditional forecasts from VARs,

using tests of bias, effi ciency, and the MSE accuracy of conditional versus unconditional

forecasts. More specifically, we provide analytical, Monte Carlo, and empirical evidence on

tests of predictive ability for conditional forecasts from estimated models. Throughout, our

intention is to provide usable metrics for evaluating conditional forecasts, in a general sense

and in comparison to the accuracy of unconditional forecasts. To do so, we focus on partic-

ular forms of conditional forecasts for which interpretation of various null and alternative

hypotheses is most straight-forward. In particular, in our analysis, we consider forecasts

conditioned on actual future information on some variables in the VAR model.

For these tests, we establish asymptotic normality in the context of VAR-based con-
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ditional forecasts. Our results follow from an application of West (1996) and West and

McCracken (1998) and as such establish the role of estimation error on the asymptotic dis-

tribution. As a practical matter, the standard errors can be quite complex and as such we

suggest and consider a bootstrap approach to inference that is valid when even estimation

error contributes to the asymptotic variance of the test statistic. Monte Carlo evidence

suggests that the tests can be reasonably well sized in samples of the size often seen in

macroeconomic applications.

Building on these results, in our application, we evaluate unconditional and conditional

forecasts from a common macroeconomic VAR in the Smets and Wouters (2007) set of

variables. We produce unconditional and conditional forecasts of GDP growth, investment

growth, and inflation, in which the conditional forecasts are based on the actual path of

the short-term interest rate over an eight quarter forecast horizon. Using bootstrap critical

values, we find evidence of model misspecification in the form of rejections of the effi ciency

of unconditional and conditional forecasts.
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7 Appendix: Theory Details

In this section we provide proofs of the Theorems described in the text. In addition to the

notation from Section 2, let zt+r = (x′t+r, ..., x
′
t)
′ where r = max(τ ,m). Throughout we

ignore the finite sample difference between P and P − τ + 1.

Proof of Theorem 1: Given A1 - A5, the proof follows from Theorems 4.1 and 4.2 of

West and McCracken (2008).

Proof of Theorem 2: Recall that ft,τ (φ̂t) = (vech−1(ĝtĝ
′
t)
′, ĝ′tε̂

c
1,t,τ )′. Given Theo-

rem 4.1 of West (1996), the result will follow if A1 - A5 are suffi cient for Assumptions 1-4

(W1-W4) in West (1996) when applied to ft,τ (φ̂) and hs. W2 and W4 follow immediately

from A2 and A5. For W1 and W3 it’s useful to recall that every element of ft,τ (φ̂t), hs(φ),

∂ft,τ (φ̂t)/∂φ, ∂hs(φ)/∂φ, ∂2ft,τ (φ̂t)/∂φ∂φ
′, and ∂2hs(φ)/∂φ∂φ′ are twice continuously dif-

ferentiable functions of polynomials of φ and are quadratics of zt+r. This follows from (i)

the fact that the unconditional forecasts are iterated multistep forecasts from a VAR, (ii)

the definition of minimum-MSE conditioning, and (iii) the definition of ft,τ (φ̂t) and hs(φ).

As such, A1 and A3 suffi ce for W1. Finally, since (i) fourth order stationarity of wt implies

covariance stationarity of ft,τ , ∂ft,τ/∂φ and hs, (ii) mixing is preserved by finite dimen-

sioned functions of mixing variables, and (iii) the existence of 8d moments for wt implies

the existence of 4d moments for ft,τ , ∂ft,τ/∂φ and hs we find that A1 and A4 suffi ce for

W3 and the proof is complete.

Proof of Theorem 3: Define ft,τ (φ̂t) by rewriting the moment condition as (ε̂c1,t,τ )2−

(ε̂u1,t,τ )2 − k(φ̂T ) = ft,τ (φ̂t) − (k(φ̂T ) − k). We provide the proof separately for the case

when π = 0 and when π > 0.

(a) Let π = 0. Assumptions A2 and A4 imply T 1/2(φ̂T − φ)→d N(0, BShhB
′). Since

k(φ) is continuously differentiable in φ, the Delta method implies T 1/2(k(φ̂T ) − k) →d

N(0,KBShhB
′K ′). Since π = 0 implies T/P = o(1), P 1/2(k(φ̂T ) − k) = op(1) and hence

P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )) = P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k) + op(1).

The result will follow if A1 - A5 are suffi cient for assumptions W1-W4 in West (1996)

when applied to ft,τ (φ̂) and hs. Since the arguments used in the proof of Theorem 2 are

applicable when ft,τ (φ̂t) = (ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k, the result follows from Theorem 4.1 of

West (1996).

(b) Let π > 0. From the proof of (a) it’s clear that P 1/2(k(φ̂T )−k) = KB(P 1/2H(T ))+

op(1)→d N(0, π
1+πKBShhB

′K ′). In addition, Lemma 4.1 and Theorem 4.1 of West (1996)

26



imply

P−1/2
T−τ∑
t=R

((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k) = P−1/2
T−τ∑
t=R

ft,τ + FB(P−1/2
T−τ∑
t=R

H(t)) + op(1)

→ dN(0, Sff + 2λfhFBS
′
fh + λhhFBShhB

′F ′).

Together these imply

P−1/2
T−τ∑
t=R

((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )) = P−1/2
T−τ∑
t=R

ft,τ + FB(P−1/2
T−τ∑
t=R

H(t))

−KB(P 1/2H(T )) + op(1) → dN(0,Ω0)

for some asymptotic variance Ω0. The result will follow if we can establish that Ω0 = Ω

as described in the text. To do this note that we can rewrite P−1/2
∑T−τ

t=R ((ε̂c1,t,τ )2 −

(ε̂u1,t,τ )2 − k(φ̂T )) as

P−1/2
T−τ∑
t=R

((ε̂c1,t,τ )2 − (ε̂u1,t,τ )2 − k(φ̂T )) = [I, FB,−KB]

 P−1/2
∑T−τ

t=R ft,τ
P−1/2

∑T−τ
t=R H(t)

P 1/2H(T )

+ op(1)

and hence

Ω0 = [I, FB,−KB] lim
P,R→∞

V ar(P−1/2
T−τ∑
t=R

ft,τ , P
−1/2

T−τ∑
t=R

H(t)′, P 1/2H(T )′)[I, FB,−KB]′.

Straightforward algebra reveals that Ω0 = Ω if (i) limP,R→∞Cov(P−1/2
∑T−τ

t=R ft,τ , P
1/2H(T )′) =

π
1+πS

′
fh and (ii) limP,R→∞Cov(P−1/2

∑T−τ
t=R H(t), P 1/2H(T )′) = π

1+πShh. We establish

both of these below accounting for whether the rolling or recursive schemes are used.

(b-i) Note that P 1/2H(T ) = (PR)1/2

T (R−1/2
∑R−1

s=1 hs+1) + P
T (P−1/2

∑T−1
s=R hs+1). Given

A4, it is straightforward to show that limP,R→∞Cov(P−1/2
∑T−τ

t=R ft,τ , R
−1/2

∑R−1
s=1 h

′
s+1) =

0. In addition, since A5 implies (PR)1/2

T = O(1), we immediately find that

lim
P,R→∞

Cov(P−1/2
T−τ∑
t=R

ft,τ , P
1/2H(T )′) = lim

P,R→∞

P

T
Cov(P−1/2

T−τ∑
t=R

ft,τ , P
−1/2

T−1∑
s=R

h′s+1)

=
π

1 + π
S′fh

and we obtain the desired result. Note that this does not depend on whether the recursive

or rolling scheme is used.

(b-ii) We do the decomposition three distinct ways: once for the recursive, once for the

rolling with P < R, and once for the rolling with P ≥ R.
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(b-ii-recursive) Let aR,s =
∑P−1

j=0 (R + s + j)−1and note that P−1/2
∑T−1

t=R H(t) equals

(R/P )1/2aR,0(R−1/2
∑R−1

s=1 hs+1) + P−1/2
∑T−1

s=R+1 aR,shs+1. And as above, P 1/2H(T ) =

(PR)1/2

T (R−1/2
∑R−1

s=1 hs+1) + P
T (P−1/2

∑T−1
s=R hs+1). Given A4, showing that limP,R→∞

Cov(R−1/2
∑R−1

s=1 hs+1, P
−1/2

∑T−1
s=R hs+1) and limP,R→∞Cov(R−1/2

∑R−1
s=1 hs+1, P

−1/2
∑T−1

s=R aR,shs+1) are

both zero is straightforward. In addition, since A5 implies aR,0 ∼ ln(1 + π) and (PR)1/2

T are

O(1) we find that

lim
P,R→∞

Cov(P−1/2
T−τ∑
t=R

H(t), P 1/2H(T )) = lim
P,R→∞

R

T
aR,0Cov(R−1/2

R−1∑
s=1

hs+1, R
−1/2

R−1∑
s=1

h′s+1)

+ lim
P,R→∞

P

T
Cov(P−1/2

T−1∑
s=R

aR,shs+1, P
−1/2

T−1∑
s=R

h′s+1).

Since limP,R→∞Cov(R−1/2
∑R−1

s=1 hs+1, R
−1/2

∑R−1
s=1 hs+1) = limP,R→∞ V ar(R

−1/2
∑R−1

s=1 hs+1)

we immediately find that the first right-hand side term equals (1 + π)−1 ln(1 + π). That

the second right-hand side term equals π
1+π (1− π−1 ln(1 + π)) is delineated in the proof of

Lemma A6 in West (1996). Adding the two pieces together provides the desired result.

(b-ii-rolling, P < R) Define
∑T−1

t=R H(t) = R−1
∑P−1

s=1 shs+
P
R

∑R
s=P hs+R

−1
∑T−1

s=R+1(P−

s − R)hs = A1 + A2 + A3 and H(T ) = T−1
∑P−1

s=1 hs + T−1
∑R

s=P hs + T−1
∑T−1

s=R+1 hs =

B1 +B2 +B3. Given A4, it is straightforward to show limP,R→∞Cov(Ai, B
′
j) = 0 all i 6= j

and hence limP,R→∞Cov(P−1/2
∑T−τ

t=R H(t), P 1/2H(T )′) =
∑3

j=1 limP,R→∞Cov(Aj , B
′
j).

For the second term13 it’s clear that limP,R→∞Cov(A2, B
′
2) = limP,R→∞

P (R−P )
RT Cov((R −

P )−1/2
∑R

s=P hs, (R− P )−1/2
∑R

s=P h
′
s) = π

1+π (1− π)Shh.

For the first and third terms a bit more detail is needed. For ease of presentation let hs

be a scalar and define γj = Ehshs−j , dj =
∑P−1−j

i=1 i, and cj =
∑P−1−j

i=1 (P−i). Direct mul-

tiplication and taking expectations implies limP,R→∞Cov(A1, B1) = (RT )−1[
∑P−2

j=1 γjdj +∑P−2
j=1 γjcj+γ0d0]. A5 and straightforward algebra imply (RT )−1d0 = P 2

RT (P−2
∑P−2

i=1 i)→
π2

2(1+π) . Since γ0 + 2
∑P−2

j=1 γj → Shh the result will follow if P−2|
∑P−2

j=1 γj(dj − d0)|

and P−2|
∑P−2

j=1 γj(cj − d0)| are both o(1). We show the former, the proof of the lat-

ter is very similar. To do so note that dj ≥
∫ P−1

1 (x − j)dx and d0 ≤
∫ P

0 xdx. In-

tegrating we obtain |dj − d0| ≤ |P + j(P − 3
2)| and hence P−2|

∑P−2
j=1 γj(dj − d0)| ≤

P−2
∑P−2

j=1 |γj ||P + j(P − 3
2)| ≤ P−1

∑P−2
j=1 |γj | + P−1

∑P−2
j=1 |γj ||j|. Since A4 implies∑P−2

j=1 |γj | and
∑P−2

j=1 |γj ||j| are O(1) it is clear that P−2|
∑P−2

j=1 γj(dj − d0)| = o(1) and we

13Here we treat the case in which |P −R| diverges as P,R→∞. When the difference is finite the second
term is trivially op(1). The distinction does not effect the ultimate formula for the asymptotic variance
since, if |P − R| diverges and π = 1, we still obtain the result that the second term is op(1) (because the
asymptotic variance of this term is zero).
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conclude that limP,R→∞Cov(A1, B1) = π2

2(1+π)Shh.

Moving to the third term, direct multiplication and taking expectations implies limP,R→∞

Cov(A3, B3) = (RT )−1[
∑P−2

j=1 γjdj +
∑P−2

j=1 γjcj +γ0d0] if we redefine cj =
∑P−j

i=2 i. Unsur-

prisingly, since this expansion is nearly identical to that for the first term, nearly identical

arguments imply limP,R→∞Cov(A3, B3) = π2

2(1+π)Shh.

Finally, if we add the three terms together we find that
∑3

j=1 limP,R→∞Cov(Aj , B
′
j) =

π2

2(1+π)Shh + π
1+π (1− π)Shh + π2

2(1+π)Shh = π
1+πShh and the proof is complete.

(b-ii-rolling, P ≥ R) Define
∑T−1

t=R H(t) = R−1
∑R

s=1 shs+
∑P

s=R+1 hs+R
−1
∑R−1

s=1 shT−s =

A1 + A2 + A3 and H(T ) = T−1
∑R

s=1 hs + T−1
∑P

s=R+1 hs + T−1
∑R−1

s=1 hT−s = B1 +

B2 + B3. Given A4, it is straightforward to show limP,R→∞Cov(Ai, B
′
j) = 0 all i 6= j

and hence limP,R→∞Cov(P−1/2
∑T−τ

t=R H(t), P 1/2H(T )′) =
∑3

j=1 limP,R→∞Cov(Aj , B
′
j).

For the second term14 it’s clear that limP,R→∞Cov(A2, B
′
2) = limP,R→∞

(P−R)
T Cov((P −

R)−1/2
∑P

s=R+1 hs, (P −R)−1/2
∑P

s=R+1 h
′
s) = π−1

1+πShh.

Once again, for the first and third terms a bit more detail is needed. For ease

of presentation let hs be a scalar and define γj = Ehshs−j , dj =
∑R−j

i=1 i, and cj =∑R
i=j+1 i. Direct multiplication and taking expectations implies limP,R→∞Cov(A1, B1) =

(RT )−1[
∑R−1

j=1 γjdj+
∑R−1

j=1 γjcj+γ0d0]. A5 and straightforward algebra imply (RT )−1d0 =

R2

RT (R−2
∑R−1

i=1 i)→ 1
2(1+π) . Since γ0+2

∑R−1
j=1 γj → Shh the result will follow ifR−2|

∑R−1
j=1 γj(dj−

d0)| and R−2|
∑R−1

j=1 γj(cj − d0)| are both o(1). We show the former, the proof of the

latter is very similar. To do so note that dj ≥
∫ R−1

1 (x − j)dx and d0 ≤
∫ R

0 xdx. In-

tegrating we obtain |dj − d0| ≤ |R + j(R − 2)| and hence R−2|
∑R−1

j=1 γj(dj − d0)| ≤

R−2
∑R−1

j=1 |γj ||R + j(R − 2)| ≤ R−1
∑R−1

j=1 |γj | + R−1
∑R−1

j=1 |γj ||j|. Since A4 implies∑R−1
j=1 |γj | and

∑R−1
j=1 |γj ||j| are O(1) it is clear that R−2|

∑R−1
j=1 γj(dj − d0)| = o(1) and

we conclude that limP,R→∞Cov(A1, B1) = 1
2(1+π)Shh.

Moving to the third term, we again find that limP,R→∞Cov(A3, B3) = (RT )−1[
∑R−2

j=1 γjdj+∑R−2
j=1 γjcj + γ0d0] if we redefine dj =

∑R−1−j
i=1 i and cj =

∑R−1
i=j+1 i. Unsurprisingly, since

this expansion is nearly identical to that for the first term, nearly identical arguments imply

limP,R→∞Cov(A3, B3) = 1
2(1+π)Shh.

Finally, if we add the three terms together we find that
∑3

j=1 limP,R→∞Cov(Aj , B
′
j) =

1
2(1+π)Shh + π−1

1+πShh + 1
2(1+π)Shh = π

1+πShh and the proof is complete.

14See the previous footnote.
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Table 1. Monte Carlo DGP coeffi cients
explanatory y1,t y2,t y3,t
variable equation equation equation

DGP 1 (size)
y1,t−1 0.50 0.00
y2,t−1 0.10 0.80
intercept 0.00 0.00

DGP 2 (size)
y1,t−1 0.234 0.029 0.059
y1,t−2 0.164 -0.039 0.031
y2,t−1 -0.134 0.575 0.038
y2,t−2 -0.150 0.138 0.019
y3,t−1 -0.057 0.200 1.006
y3,t−2 -0.165 -0.184 -0.087
intercept 2.425 0.054 -0.110

DGP 3 (power)
y1,t−1, pre-break 0.50 0.00
y1,t−1, post-break 0.50 0.25
y2,t−1, pre-break 0.10 0.80
y2,t−1, post-break 0.10 0.40
intercept, pre-break 0.00 0.00
intercept, post-break 0.50 0.40

Notes :
1. The table provides the coeffi cients of Monte Carlo DGPs 1-3. Other details of DGPs 1G and 4 are given in section 4.1.
2. The variance-covariance matrix of innovations and other aspects of the Monte Carlo design are described in section 4.1.
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Table 2: Monte Carlo Results on Size, Minimum-MSE Conditioning, DGP 1
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. Normal 0.115 0.132 0.118 0.123
bias, condit. Normal 0.119 0.121 0.119 0.116
M-Z effi ciency, uncond. Normal 0.142 0.117 0.141 0.113
M-Z effi ciency, condit. Normal 0.170 0.132 0.146 0.114
F-W effi ciency, condit. Normal 0.147 0.102 0.126 0.101
equal MSE Normal 0.008 0.005 0.057 0.026
bias, uncond. bootstrap 0.118 0.122 0.128 0.114
bias, condit. bootstrap 0.116 0.114 0.129 0.105
M-Z effi ciency, uncond. bootstrap 0.128 0.103 0.130 0.104
M-Z effi ciency, condit. bootstrap 0.121 0.095 0.132 0.103
F-W effi ciency, condit. bootstrap 0.129 0.104 0.127 0.100
equal MSE bootstrap 0.107 0.100 0.135 0.098

2-step horizon
bias, uncond. Normal 0.116 0.126 0.130 0.121
bias, condit. Normal 0.118 0.117 0.131 0.117
M-Z effi ciency, uncond. Normal 0.257 0.227 0.264 0.182
M-Z effi ciency, condit. Normal 0.205 0.174 0.196 0.148
F-W effi ciency, condit. Normal 0.240 0.188 0.235 0.162
equal MSE Normal 0.022 0.006 0.086 0.043
bias, uncond. bootstrap 0.119 0.114 0.120 0.114
bias, condit. bootstrap 0.118 0.115 0.132 0.110
M-Z effi ciency, uncond. bootstrap 0.085 0.061 0.116 0.075
M-Z effi ciency, condit. bootstrap 0.114 0.089 0.117 0.090
F-W effi ciency, condit. bootstrap 0.085 0.064 0.110 0.074
equal MSE bootstrap 0.074 0.046 0.115 0.079

Notes :
1. The data generating process is a bivariate VAR(1), with coeffi cients given in Table 1 and error variance matrix given in
section 4.1.
2. For each artificial data set, forecasts of y1,t+1 and y1,t+2 are formed recursively using OLS estimates of a bivariate
VAR(1). We consider both unconditional forecasts and conditional forecasts obtained under the minimum-MSE approach.
The conditional forecasts of y1,t+1 and y1,t+2 are based on a condition of ŷ

c
2,t,τ = y2,t+τ , τ = 1, 2. These forecasts are then

used to form bias, effi ciency, and accuracy tests, detailed in sections 3 and 4.2.
3. R and P refer to the number of in—sample observations and forecasts, respectively.
4. In each Monte Carlo replication, the simulated test statistics are compared against Gaussian critical values and critical
values obtained with the bootstrap of the VARs described in section 3.5.
5. The number of Monte Carlo simulations is 2000; the number of bootstrap draws is 499.
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Table 3: Monte Carlo Results on Size, Minimum-MSE Conditioning, DGP 2
(nominal size = 10%)

1-step horizon, variable 1 1-step horizon, variable 2
source of R=50 R=50 R=100 R=100 R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100 P=100 P=150 P=50 P=100
bias, uncond. Normal 0.145 0.129 0.130 0.132 0.139 0.133 0.136 0.134
bias, condit. Normal 0.132 0.132 0.122 0.124 0.150 0.143 0.144 0.134
M-Z effi ciency, uncond. Normal 0.414 0.427 0.215 0.248 0.251 0.256 0.199 0.189
M-Z effi ciency, condit. Normal 0.482 0.499 0.232 0.284 0.320 0.344 0.228 0.230
F-W effi ciency, condit. Normal 0.403 0.407 0.234 0.240 0.234 0.251 0.196 0.193
equal MSE Normal 0.035 0.018 0.066 0.038 0.143 0.155 0.111 0.103
bias, uncond. bootstrap 0.120 0.104 0.127 0.101 0.109 0.091 0.123 0.103
bias, condit. bootstrap 0.119 0.118 0.124 0.107 0.111 0.096 0.133 0.101
M-Z effi ciency, uncond. bootstrap 0.096 0.086 0.107 0.099 0.097 0.102 0.104 0.108
M-Z effi ciency, condit. bootstrap 0.085 0.066 0.100 0.089 0.094 0.105 0.100 0.103
F-W effi ciency, condit. bootstrap 0.087 0.080 0.099 0.096 0.097 0.102 0.093 0.110
equal MSE bootstrap 0.079 0.048 0.110 0.090 0.054 0.043 0.086 0.069

2-step horizon, variable 1 2-step horizon, variable 2
bias, uncond. Normal 0.141 0.131 0.143 0.125 0.142 0.133 0.150 0.135
bias, condit. Normal 0.124 0.127 0.141 0.131 0.142 0.133 0.154 0.128
M-Z effi ciency, uncond. Normal 0.312 0.292 0.211 0.206 0.315 0.310 0.294 0.242
M-Z effi ciency, condit. Normal 0.399 0.393 0.245 0.251 0.394 0.388 0.310 0.290
F-W effi ciency, condit. Normal 0.305 0.288 0.251 0.214 0.290 0.289 0.296 0.241
equal MSE Normal 0.060 0.037 0.093 0.059 0.073 0.066 0.093 0.079
bias, uncond. bootstrap 0.116 0.107 0.126 0.104 0.107 0.091 0.123 0.105
bias, condit. bootstrap 0.115 0.116 0.122 0.113 0.108 0.097 0.126 0.098
M-Z effi ciency, uncond. bootstrap 0.090 0.089 0.104 0.097 0.088 0.098 0.102 0.100
M-Z effi ciency, condit. bootstrap 0.081 0.077 0.102 0.091 0.091 0.092 0.101 0.102
F-W effi ciency, condit. bootstrap 0.082 0.084 0.103 0.090 0.087 0.097 0.102 0.110
equal MSE bootstrap 0.070 0.043 0.099 0.084 0.058 0.048 0.100 0.075

4-step horizon, variable 1 4-step horizon, variable 2
bias, uncond. Normal 0.138 0.129 0.169 0.142 0.141 0.126 0.171 0.136
bias, condit. Normal 0.132 0.131 0.168 0.144 0.147 0.118 0.177 0.136
M-Z effi ciency, uncond. Normal 0.313 0.274 0.285 0.217 0.561 0.554 0.462 0.418
M-Z effi ciency, condit. Normal 0.358 0.345 0.285 0.254 0.499 0.493 0.392 0.361
F-W effi ciency, condit. Normal 0.311 0.264 0.300 0.225 0.530 0.524 0.464 0.415
equal MSE Normal 0.097 0.088 0.154 0.105 0.056 0.042 0.116 0.062
bias, uncond. bootstrap 0.104 0.110 0.120 0.114 0.106 0.093 0.112 0.100
bias, condit. bootstrap 0.103 0.107 0.120 0.111 0.110 0.090 0.117 0.102
M-Z effi ciency, uncond. bootstrap 0.066 0.059 0.099 0.064 0.061 0.061 0.092 0.069
M-Z effi ciency, condit. bootstrap 0.077 0.080 0.105 0.086 0.072 0.081 0.094 0.082
F-W effi ciency, condit. bootstrap 0.057 0.061 0.100 0.062 0.065 0.062 0.081 0.084
equal MSE bootstrap 0.048 0.032 0.095 0.073 0.044 0.036 0.090 0.068

Notes :
1. The data generating process is a trivariate VAR(2), with coeffi cients given in Table 1 and error variance matrix given in
section 4.1.
2. For each artificial data set, forecasts of y1,t+τ and y2,t+τ are formed recursively using OLS estimates of a trivariate
VAR(2) and an iterative approach to computing multi-step forecasts. The conditional forecasts of y1,t+τ and y2,t+τ (for τ
= 1, 2, and 4) are based on a condition of ŷc3,t,τ = y3,t+τ , τ = 1, . . . , 4.
3. See the notes to Table 2.
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Table 4: Monte Carlo Results on Size, Minimum-MSE Conditioning,
DGP 1, rolling estimation

(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. Normal 0.018 0.009 0.099 0.057
bias, condit. Normal 0.022 0.013 0.100 0.065
M-Z effi ciency, uncond. Normal 0.192 0.233 0.142 0.087
M-Z effi ciency, condit. Normal 0.212 0.269 0.142 0.088
F-W effi ciency, condit. Normal 0.160 0.148 0.122 0.073
equal MSE Normal 0.026 0.013 0.059 0.037
bias, uncond. bootstrap 0.116 0.097 0.123 0.114
bias, condit. bootstrap 0.117 0.095 0.138 0.110
M-Z effi ciency, uncond. bootstrap 0.132 0.098 0.141 0.112
M-Z effi ciency, condit. bootstrap 0.122 0.076 0.143 0.106
F-W effi ciency, condit. bootstrap 0.128 0.076 0.132 0.103
equal MSE bootstrap 0.104 0.091 0.134 0.103

2-step horizon
bias, uncond. Normal 0.013 0.004 0.112 0.058
bias, condit. Normal 0.018 0.009 0.115 0.064
M-Z effi ciency, uncond. Normal 0.567 0.711 0.276 0.236
M-Z effi ciency, condit. Normal 0.324 0.417 0.200 0.136
F-W effi ciency, condit. Normal 0.435 0.508 0.245 0.195
equal MSE Normal 0.040 0.017 0.090 0.050
bias, uncond. bootstrap 0.118 0.101 0.126 0.117
bias, condit. bootstrap 0.116 0.088 0.132 0.112
M-Z effi ciency, uncond. bootstrap 0.079 0.046 0.115 0.066
M-Z effi ciency, condit. bootstrap 0.099 0.059 0.126 0.095
F-W effi ciency, condit. bootstrap 0.079 0.038 0.099 0.077
equal MSE bootstrap 0.088 0.061 0.113 0.088

Notes :
1. In these experiments, forecasts of y1,t+1 and y1,t+2 are formed recursively using OLS estimates of a bivariate VAR(1).
2. See the notes to Table 2.
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Table 5: Monte Carlo Results on Size, Minimum-MSE Conditioning, DGP 1G
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. Normal 0.118 0.120 0.114 0.114
bias, condit. Normal 0.117 0.112 0.118 0.113
M-Z effi ciency, uncond. Normal 0.147 0.141 0.140 0.117
M-Z effi ciency, condit. Normal 0.192 0.173 0.155 0.147
F-W effi ciency, condit. Normal 0.134 0.130 0.134 0.122
equal MSE Normal 0.024 0.013 0.082 0.045
bias, uncond. bootstrap 0.109 0.124 0.129 0.108
bias, condit. bootstrap 0.120 0.114 0.127 0.101
M-Z effi ciency, uncond. bootstrap 0.110 0.114 0.135 0.103
M-Z effi ciency, condit. bootstrap 0.117 0.102 0.120 0.097
F-W effi ciency, condit. bootstrap 0.114 0.102 0.128 0.108
equal MSE bootstrap 0.114 0.099 0.122 0.114

2-step horizon
bias, uncond. Normal 0.118 0.111 0.126 0.116
bias, condit. Normal 0.113 0.105 0.130 0.110
M-Z effi ciency, uncond. Normal 0.267 0.246 0.237 0.205
M-Z effi ciency, condit. Normal 0.227 0.199 0.218 0.180
F-W effi ciency, condit. Normal 0.224 0.223 0.217 0.183
equal MSE Normal 0.028 0.021 0.095 0.061
bias, uncond. bootstrap 0.110 0.123 0.130 0.108
bias, condit. bootstrap 0.115 0.115 0.124 0.107
M-Z effi ciency, uncond. bootstrap 0.064 0.062 0.107 0.073
M-Z effi ciency, condit. bootstrap 0.107 0.092 0.123 0.095
F-W effi ciency, condit. bootstrap 0.074 0.068 0.106 0.076
equal MSE bootstrap 0.079 0.057 0.106 0.083

Notes :
1. The data generating process is a bivariate VAR(1) with GARCH, with coeffi cients given in Table 1 and and section 4.1.
2. See the notes to Table 2.
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Table 6: Monte Carlo Results on Power, Minimum-MSE Conditioning, DGP 3
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. bootstrap 0.628 0.642 0.740 0.850
bias, condit. bootstrap 0.444 0.481 0.587 0.694
M-Z effi ciency, uncond. bootstrap 0.244 0.315 0.113 0.158
M-Z effi ciency, condit. bootstrap 0.134 0.126 0.120 0.100
F-W effi ciency, condit. bootstrap 0.136 0.159 0.089 0.085
equal MSE bootstrap 0.115 0.104 0.132 0.119

2-step horizon
bias, uncond. bootstrap 0.632 0.657 0.738 0.850
bias, condit. bootstrap 0.510 0.535 0.643 0.748
M-Z effi ciency, uncond. bootstrap 0.230 0.314 0.108 0.173
M-Z effi ciency, condit. bootstrap 0.104 0.113 0.099 0.079
F-W effi ciency, condit. bootstrap 0.115 0.127 0.079 0.071
equal MSE bootstrap 0.104 0.064 0.171 0.149

Notes :
1. The data generating process is a bivariate VAR(1), with coeffi cient breaks, using the coeffi cient values given in Table 1
and the error variance matrix given in section 4.1. In each experiment, the coeffi cient break occurs in period R+1.
2. See the notes to Table 2.
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Table 7: Monte Carlo Results on Power, Minimum-MSE Conditioning, DGP 4
(nominal size = 10%)

1-step horizon
source of R=50 R=50 R=100 R=100

test critical values P=100 P=150 P=50 P=100
bias, uncond. bootstrap 0.141 0.120 0.122 0.106
bias, condit. bootstrap 0.096 0.103 0.097 0.069
M-Z effi ciency, uncond. bootstrap 0.129 0.104 0.128 0.114
M-Z effi ciency, condit. bootstrap 0.199 0.119 0.609 0.466
F-W effi ciency, condit. bootstrap 0.147 0.103 0.169 0.178
equal MSE bootstrap 0.490 0.398 0.945 0.876

2-step horizon
bias, uncond. bootstrap 0.153 0.140 0.128 0.115
bias, condit. bootstrap 0.091 0.103 0.099 0.072
M-Z effi ciency, uncond. bootstrap 0.082 0.067 0.127 0.086
M-Z effi ciency, condit. bootstrap 0.335 0.198 0.757 0.723
F-W effi ciency, condit. bootstrap 0.112 0.081 0.147 0.130
equal MSE bootstrap 0.459 0.418 0.854 0.822

Notes :
1. The data generating process is a bivariate VAR(1), with a break in the error correlation described in section 4.1. In each
experiment, the coeffi cient break occurs in period R+1.
2. See the notes to Table 2.
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Table 8. Tests of unconditional and conditional (min.-MSE) forecasts
from 7-variable VAR, 1991-2007

(significant tests bolded; 10% bootstrap critical values in parentheses)

GDP growth τ=1 τ=2 τ=4 τ=8
bias, uncond. -3.603 -3.424 -3.019 -2.258

(-1.687, 1.973) (-2.002, 1.942) (-1.878, 2.002) (-1.806, 2.102)
bias, condit. -2.970 -2.265 -2.756 -1.983

(-1.616, 1.891) (-1.636, 1.679) (-1.749, 1.830) (-2.235, 2.238)
M-Z effi ciency, uncond. -3.429 -4.866 -2.574 -1.844

(-4.619, -0.204) (-4.732, -0.040) (-6.021, 0.155) (-5.845, 0.928)
M-Z effi ciency, condit. -3.953 -5.033 -2.025 -4.964

(-4.877, -0.243) (-4.821, -0.144) (-4.774, 0.392) (-5.728, 1.298)
F-W effi ciency, condit. -3.571 -6.950 -2.590 -1.991

(-4.660, -0.161) (-4.857, -0.088) (-5.004, 0.301) (-4.863, 1.521)
Investment growth τ=1 τ=2 τ=4 τ=8
bias, uncond. -1.062 -1.368 -1.013 -0.613

(-1.675, 1.737) (-1.820, 1.936) (-1.686, 1.981) (-1.795, 2.064)
bias, condit. -0.717 -0.613 -0.619 -0.840

(-1.647, 1.706) (-1.646, 1.708) (-1.504, 1.715) (-1.994, 2.230)
M-Z effi ciency, uncond. -3.290 -3.599 -4.604 -1.123

(-4.758, 0.000) (-4.642, 0.232) (-4.711, -0.014) (-6.513, 1.348)
M-Z effi ciency, condit. -2.962 -3.676 -2.434 -1.861

(-4.155, -0.083) (-3.618, -0.027) (-3.655, 0.290) (-5.580, 1.529)
F-W effi ciency, condit. -3.229 -5.666 -5.955 -0.790

(-4.106, 0.040) (-4.121, 0.168) (-4.386, 0.172) (-5.230, 1.884)
Inflation τ=1 τ=2 τ=4 τ=8
bias, uncond. -1.656 -1.968 -2.000 -3.459

(-2.581, 1.531) (-2.768, 1.494) (-3.117, 1.581) (-4.171, 2.397)
bias, condit. -1.340 -1.622 -1.196 -1.290

(-2.685, 1.750) (-2.873, 1.821) (-3.189, 1.954) (-3.952, 3.228)
M-Z effi ciency, uncond. -5.996 -7.000 -4.901 -5.852

(-4.794, 0.226) (-5.632, 0.275) (-5.090, 0.367) (-6.933, 0.908)
M-Z effi ciency, condit. -5.395 -6.164 -5.523 -8.453

(-4.767, 0.609) (-5.074, 0.683) (-4.949, 0.554) (-6.828, 0.854)
F-W effi ciency, condit. -5.288 -7.291 -5.477 -6.065

(-4.761, 0.460) (-5.435, 0.614) (-5.376, 0.567) (-6.719, 1.209)

Notes :
1. As described in section 5.1, forecasts of growth in GDP, growth in private fixed investment, and inflation in the
GDP price index (all defined at annualized rates) are obtained from recursive OLS estimates of a 7-variable VAR.
The forecasts included are unconditional and minimum-MSE conditional. At each forecast origin t, the conditions
imposed are that, over an eight quarter forecast horizon from t+1 through t+8, the federal funds rate take its actual
values over the period.
2. The bias, effi ciency, and MSE accuracy tests detailed in section 4.2 are compared against standard normal critical
values and critical values obtained with the bootstrap described in section 3.5. The number of bootstrap draws is
999.
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Table 9. Accuracy of unconditional and conditional (min.-MSE) forecasts
from 7-variable VAR, 1991-2007

(significant tests bolded; 10% bootstrap critical values in parentheses)

GDP growth τ=1 τ=2 τ=4 τ=8
unconditional MSE (RMSE) 4.495 (2.120) 5.273 (2.296) 5.504 (2.346) 4.533 (2.129)
conditional MSE (RMSE) 4.351 (2.086) 5.028 (2.242) 4.050 (2.012) 5.203 (2.281)
MSEU −MSEC 0.144 0.245 1.454 -0.670
population estimate of MSEU −MSEC 0.710 1.293 2.381 2.053
MSE t-test -2.391 -2.337 -1.490 -3.740
10% bootstrap crit. vals. (-2.230, 0.814) (-2.380, 1.127) (-3.119, 1.633) (-6.494, 1.247)
Investment growth τ=1 τ=2 τ=4 τ=8
unconditional MSE (RMSE) 35.231 (5.936) 36.387 (6.032) 46.746 (6.837) 32.976 (5.742)
conditional MSE (RMSE) 31.229 (5.588) 33.255 (5.767) 34.962 (5.913) 36.411 (6.034)
MSEU −MSEC 4.002 3.132 11.784 -3.435
population estimate of MSEU −MSEC 7.973 13.109 16.686 12.616
MSE t-test -1.841 -3.104 -1.447 -3.229
10% bootstrap crit. vals. (-2.324, 1.372) (-3.122, 1.555) (-3.681, 1.129) (-4.524, 1.824)
Inflation τ=1 τ=2 τ=4 τ=8
unconditional MSE (RMSE) 0.733 (0.856) 0.941 (0.970) 1.065 (1.032) 2.000 (1.414)
conditional MSE (RMSE) 0.645 (0.803) 0.698 (0.836) 0.904 (0.951) 1.835 (1.355)
MSEU −MSEC 0.088 0.243 0.161 0.165
population estimate of MSEU −MSEC 0.062 0.193 0.402 1.051
MSE t-test 0.652 0.554 -2.146 -4.784
10% bootstrap crit. vals. (-1.600, 1.109) (-1.485, 1.175) (-2.415, 1.288) (-3.681, 1.741)

Notes :
1. The table reports forecast MSEs (and RMSEs) for the 1991-2007 sample. It also includes estimates of the population
difference in MSEs (unconditional less conditional) based on the full sample VAR estimates, computed as described
in section 3.4.
2. See the notes to Table 8.
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