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Abstract

Large dimensional factor models are estimated under the maintained assumption that the loadings
do not change over time. This paper studies least squares estimation of large dimensional factor
models subject to regime shifts in the loadings parameterized according to the threshold principle.
We estimate the unknown threshold value by concentrated least squares, and factors and loadings
by principal components. The estimator for the threshold value is superconsistent, with convergence
rate that depends on the times series and the cross-sectional dimensions of the available panel, and
it does not affect the estimator for factors and loadings: this has the same convergence rate as in
factor models with time-invariant loadings. We further propose model selection criteria robust to
the threshold effect. Empirical application of the model documents an increase in connectedness in
financial variables during periods of high economic policy uncertainty.
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1 Introduction

Factor models are widely used tools to explain the common variations in large scale macroeconomic
and financial data. An extensive literature analyzes factor models under the maintained assumption
of constant loadings over the entire sample period: see Connor and Korajczyk (1986,1988,1993), Forni
et al. (2000,2004,2015), Forni and Lippi (2001), Bai and Ng (2002), Stock and Watson (2002), and
Bai (2003) for seminal contributions on linear factor models. Economic models are however unlikely
to have constant parameters over time and factor models with time-dependent loadings are called for.
Time-dependence in the loadings may be easily implemented through a change-point mechanism: this
may be parameterized as either a structural break or a regime shift driven by the threshold principle,
depending on the underlying data generating process.

Structural breaks in the loadings may arise as a consequence of events such as technological or policy
changes. Several important contributions deal with large dimensional factor models subject to loadings
instabilities. Breitung and Eickmeier (2011) show that ignoring breaks leads to overestimation of the
number of factors and develop statistical tests for the null hypothesis of stability in the factor loadings.
Bates et al. (2013) study the robustness properties of the principal components estimator of the factors
under neglected loadings instability. Chen et al. (2014), Han and Inoue (2014) and Yamamoto and
Tanaka (2015) develop further statistical tools to detect breaks. Chen (2015) considers least squares
estimation of the break date. Cheng et al. (2015) propose shrinkage estimation of large dimensional
factor models with structural breaks.

Regime shift representations of the dependent variables are suitable when "history repeats", as in the
case of financial returns (Timmermann (2008), and Ang and Timmermann (2012)). Ng and Wright (2013)
introduce a threshold mechanism within large dimensional factor models to simulate data and investigate
the effects of nonlinearities on business cycle dynamics!. We take Ng and Wright (2013) intuition as a
starting point and propose a large dimensional factor model with regime changes in the loadings governed
by the threshold principle. We let the threshold value be unknown and focus on estimation and model
selection. To the very best of our knowledge, we are the first to tackle this problem: we therefore believe
this paper provides a valuable contribution to the literature on large dimensional factor models.

Let R° be the true number of factors. Under the maintained assumption that R° is known, we

1See Ng and Wright (2013), p. 1147.



propose to estimate the threshold value by concentrated least squares, and factors and loadings by
principal components (Hansen (2000), and Bai and Ng (2002)). We obtain a number of novel theoretical
results. Let N and T denote the cross-sectional and time series dimensions, respectively. We first
provide sufficient conditions to ensure that our model is identified from a linear factor model: formally,
for 0.5 < a” < 1, we require that at least a fraction O (N "‘U) of the IV cross-sectional units experiences
a regime shift in the loadings, so that the shift resists to the aggregation induced by the principal
components estimator. We then show that the estimator for the threshold parameter is consistent at
a rate equal to NV (22°=1) 7. this depends on the time series dimension 7' and on the number of cross-
sectional units N’ subject to the threshold effect. The convergence rate monotonically increases in o
and it is such that T < N (20‘0_1)T < NT: this shows the direct relationship between identification of the
model and convergence rate of the estimator for the threshold. As a consequence of this superconsistency
property, we finally show that the principal components estimator for both regime-specific loadings
and factors have convergence rate equal to Cyp = min{\/N , \/T} despite the threshold effect, the
convergence rate Cyr is equal to the one derived in Bai and Ng (2002) for linear factor models.

We next consider the case in which the true number of factors R® no longer is known and has to
be estimated. Breitung and Eickmeier (2011) show that structural instability in the loadings leads to
a factor representation with a higher dimensional factor space: due to an analogy argument, the same
issue arises when a regime shift drives time variation in the loadings. Since the convergence rate Cyr of
the estimator for loadings and factors is the same as in linear factor models, we make Bai and Ng (2002)
information criteria robust to the threshold effect by accounting for the induced higher dimensional factor
space representation: this is a further theoretical contribution of our paper.

We finally provide an application to illustrate the potential usefulness of our methodology for applied
work. We show how our theoretical framework may be used to measure connectedness in financial markets
(Acharya et al. (2010), Adrian and Brunnermeier (2011), Billio et al. (2012), Engle and Kelly (2012),
and Diebold and Yilmaz (2014)). We extend Billio et al. (2012) measure based on principal components
analysis to allow for regime-specific connectedness. Using Baker et al. (2013) index of economic policy
uncertainty as threshold variable, we show that connectedness in financial markets increases during
periods of high uncertainty: this result is the empirical contribution of our paper and it may be relevant

for risk measurement and management.



The large dimensional threshold factor model we consider and the factor model with structural
instability are complementary specifications that allow for a change-point within a large dimensional
factor structure. The analogy between the two models suggests that our approach may be used for
estimation and model selection in factor models with structural instabilities: this is considered in Massacci
(2015), which therefore contributes to an existing and growing literature (Breitung and Eickmeier (2011),
Bates et al. (2013), Chen et al. (2014), Han and Inoue (2014), Yamamoto and Tanaka, Chen (2015) and
Cheng et al. (2015)).

The remainder of the paper is organized as follows. Section 2 describes the threshold factor model.
Section 3 deals with estimation. Section 4 proposes information criteria to determine the number of
factors. Section 5 performs a comprehensive Monte Carlo analysis. Section 6 provides an empirical ap-
plication. Finally, Section 7 concludes. Appendix A provides technical proofs.

Concerning notation, I(-) denotes the indicator function; for a given scalar A, I4 and 04 are the

A x A identity matrix and zero matrix, respectively.

2 The Approximate Threshold Factor Model

We consider the model

xe =1(z <O)ALf, +1(z >0) Aok + ey, t=1,...,T, (1)

where T' denotes the time series dimension of the available sample; x; = (14, ..., Nt)/ € RY is the N x1
vector of observable dependent variables; f; = (fi;,..., fre) € R is the R x 1 vector of latent factors;
2 € R is an observable covariate and 6 is the unknown threshold value; e; = (eq, . .. ,eNt)' e RY is the
N x 1 vector of idiosyncratic errors; A; = (Aj1,. .. ,)\jN)/ is the N x R matrix of factor loadings with
i — th row defined as Aj; = (\j;1,. . .,)\jm)/, forj=1,2andi=1,...,N.

The model in (1) belongs to the class of threshold models proposed in Tong and Lim (1980): see Tsay
(1989, 1998), Chan (1993) and Hansen (1996, 2000) for methodological contributions; and Hansen (2011)
for a survey of the literature. According to the threshold principle introduced in Pearson (1900), the
regime prevailing at time ¢ depends on the position of z; with respect to the unknown threshold value 6.

Ng and Wright (2013) simulate data from a large dimensional threshold factor model to investigate the



2: we explicitly focus on estimation and model selection.

effects of nonlinearities on business cycle dynamics
Our results apply to the case in which the threshold variable is a more general linear combination of
exogenous covariates (Massacci (2014)).

The model in (1) extends large dimensional linear factor models to allow for a threshold effect. Given
Assumption C3 stated in Section 3.1 below, we follow Chamberlain and Rothschild (1983) and allow for
some degree of correlation in the idiosyncratic components within each regime: (1) then is an approzimate
threshold factor model; it is more general than an exact threshold factor model, which would extend the

arbitrage pricing theory of Ross (1976) and would not allow for any correlation in the idiosyncratic

components in any regime.

3 Estimation

As in Stock and Watson (2002), we study estimation of (1) under the assumption that the true number
of factors R (i.e., the true dimension of f;) is known. We extend the theory in Bai and Ng (2002) based
on principal components estimation to allow for concentrated least squares estimation, as motivated in
Hansen (2000) for threshold regressions. The plan is as follows: Section 3.1 states the assumptions;
Section 3.2 deals with identification; Section 3.3 describes the principal components estimator; Section

3.4 proves the consistency of the estimator; and Section 3.5 derives the convergence rates.

3.1 Assumptions

We group the assumptions into three sets, depending on the role they play to identify and estimate

the model, and to derive the convergence rates. Let I, (0) = I (2 < 0) and Iy () = I (2 > 0). For

7 = 1,2, denote A(]? = (/\(;1, .. .,/\?N)/, 6° and fY the true values of A;, 6 and f;, respectively. Define
£9,(0) =L;¢ (0) £, for j=1,2and t =1,...,T, and let 6] = A, — A}, fori =1,...,N.

3.1.1 Identification

Assumption I - Threshold Factor Model. For 0.5 < o < 1, 6? # 0 for ¢ = 1,...,N0‘0, and

ZszQOH 8 =0(1).

2See Ng and Wright (2013), p. 1147.



Assumption I requires that at least a fraction O (N 0‘0) of the N series experiences a threshold effect,
for 0.5 < o < 1: this follows up on Bates et al. (2013), who show that if at most O (N0'5) series undergo
a break then the principal components estimator as applied to the misspecified linear model achieves the
same Bai and Ng (2002) convergence rate. Assumption I ensures that enough series experience a regime
shift so that (1) is identified from a linear factor model when factors and loadings are estimated by
principal components. As shown in Theorem 3.4 below, o affects the convergence rate of the estimator
for 0°: the higher the former, the faster the latter. In this paper we do not aim at estimating o and

leave this interesting issue to future research.

3.1.2 Consistency

Assumption C1 - Factors. E||f0]|" < oo; for j = 1,2, TS0 19 ()£, (6°)" 2 % (0,6°) as
T — oo for all # and some positive definite matrix E?f (9, 00) such that E?f (90, 90) — E?f (0, 6‘0)

is positive definite for all 6 # 6°.

Assumption C2 - Factor Loadings. Forj=1,2andi=1,...,N

A <X < oo, and |[AYAY /N - DY || -

0 as N — oo for some R x RY positive definite matrix D(j)\j.

Assumption C3 - Time and Cross-Section Dependence and Heteroscedasticity. There exists

a positive M < oo such that for j = 1,2, for all § and for all (N, T),

(a) E(ey) =0 and E |ey|® < M;
b) E[li; (0)1L, (0) eitein] = Tiite (0) with |75 (0)] < |7j| for some 7,4, and for all 4, and
j j J j J j
T Yy Y ITje] < M;
(©) BT Lt (0) euen| = o5 (0), loju (0)] < M for all 1, and N2, S oy (6)] <
M.

)

4
(d) E ‘T‘1/2 Zthl L;: (0) eirerr — E (L (0) esrere]| < M for every (i,1).

Assumption C4 - Weak Dependence between f?, z; and e;;. There exists some positive constant

M < oo such that for all  and for all (N,T),

T
T-1/2 {Z L (0) ft"eit}
t=1

N 2
E{ng }SM, j=12.



Assumptions C1 to C4 are the natural extensions of Assumptions A to D imposed on linear factor
models in Bai and Ng (2002) and accommodate the threshold effect. Assumption C1 restricts the
sequences {fto }thl and {zt}thl so that appropriate second moments exist; it also imposes full rank
conditions that exclude multicollinearity in the factors. According to Assumption C2, factor loadings
are nonstochastic and each factor has a nonnegligible effect on the variance of x; within each regime.
Under Assumption C3, limited degrees of time-series and cross-section dependence in the idiosyncratic
components as well as heteroscedasticity are allowed. Finally, Assumption C4 provides an upper bound
to the degree of dependence between the factors, z; and the idiosyncratic components: Assumption C4
is stronger than Assumption D in Bai and Ng (2002), which only bounds the dependence between the

factors and the idiosyncratic components.

3.1.3 Convergence Rates

Define D{ () = E (f/£Y |2; = 6) and denote by fz (z;) the density function of z.
Assumption CR - Stationarity, Moment Bound, Continuity and Full Rank.

(a) {f,?, Zts et};il is strictly stationary, ergodic and p—mixing, with p—mixing coefficients satisfy-
ing >, pl? < o0y

(b) E (HftoeitH4 |2 = 9) < C for some C < co and fori =1,..., N, and fz (0) < f < o0;

(c) fz(0) and DY () are continuous at = 6;

(@) 6YDY (6°)8? > 0,i=1,...,N*" and 0.5 < a® < 1, and 89'DY (6°) 82 = 0 (1);

i=Ne® 41

fz (8) > 0 for all 6.

Assumption CR is analogous to Assumption 1 in Hansen (2000). Assumption CR(a) restricts the
memory of the sequence {fto s 2t et}tT:l; it excludes trends and integrated processes. Assumption CR(b)
gives a conditional moment bound. Assumption CR(c) imposes a continuous support on z;. The full-rank
condition in Assumption CR(d) strengthens Assumption I and rules out the "continuous threshold" set
up of Chan and Tsay (1998), which arises in the one-factor model when the scalar factor f{ equals the
threshold variable z; and ° = 0: in this case, 0'E (f2r |zt = 90) 8) = 3VE (f2r |ft0 = 00) 69 =0, for

i=1,...,N, and Assumption CR(d) is violated.



3.2 Identification

Let A? = (5[1), e 6?\,), and write the data generating process of x; as x; = Ay + Iy, (90) AP + e
Define F? = (f?7 e ,f%) and denote A; = (5\11, cee 5\1N>/ the principal components estimator for A
from the misspecified linear factor model x; = A1f; + e;. Let V; be the R® x RO diagonal matrix of the
first RO largest eigenvalues of 3, = (NT) ™" Zthl x:X; in decreasing order: the underlying optimization

problem requires the normalization N _111’1111: Iro. The following theorem states the properties of A.

Theorem 3.1 There exists a R® x RO rotation matriz ﬁl with rank [IjIl} = RY such that

2 L X 7/ 10 2
By N;‘)‘li_Hl)‘li :Op(l)a

as N, T — oo, where

By = min{\/]v, \/T,Nl_“o}

and

FOFY A?I.&l -
= Vi,
! T N !

Theorem 3.1 shows that the average squared deviations between the loadings estimated under the
null hypothesis of linearity and those that lie in the true loading space vanish as N,T — oo at a rate
equal to B%, which drives identification. Under Assumption I, the model in (1) is identified from the
standard linear factor model as the rate of convergence N 1-a° of the principal components estimator is
slower than it would be under correct linear model specification: the model in (1) would not be identified
from a linear factor model if 0 < a® < 0.5, since in this case B+ = min {IV, T}, as derived in Bai and Ng
(2002). If a® = 1 and all cross-sectional units are subject to threshold effect, B%, = 1 and the principal
components estimator from the misspecified linear model is asymptotically biased. As proved in Theorem
3.4, the parameter o regulates the convergence rate of the estimator for the unknown threshold value

0°: this result shows the connection between identification strength and estimation precision.

3.3 Principal Components Estimation

We estimate the common factors and factor loadings by principal components, and the unknown threshold

6° by concentrated least squares: see Bai and Ng (2002) and Hansen (2000), respectively. Define the



N x 2R" matrix of loadings A = (A1, Az) and the R® x T matrix of factors F = (fi,...,fr). Let
A0 = (A(l), Ag) be the true value of A. The objective function in terms of A, F and 6 is the sum of

squared residuals (divided by NT)

S (1&7 1?7 9) = ( ) ! i [Xt - ]Ilt ( )Alft - HQt (9) Agft]/ [Xt - Hlt (0) Alft - ]Igt (0) Agft} : (2)

t=1

the estimators A = (Al,[xg), P = (f'l,...,f'T) and @ for A°, FOand 6°, respectively, with A; =

~ ~ !/
()\jl, cee )\jN> , for j = 1,2, jointly solve
FH:arg/r\néIleS(A F.0).

For given A and 6, and subject to N~} (A;Aj) = Ipo, for j = 1,2, from (2) we have

£ (A0) = NIy (0) Ay + Ty (0) Ao x4, t=1,...,T: (3)
replacing f; in (2) with f; (A, ) obtained in (3) leads to the concentrated objective function

Se(AL0) = (NT) ' 3" x! {In = N71 [y (0) Ay A + Ty (0) AsAD]} (4)

i=1
and the estimators for A? and 6° jointly solve
A0 =arg min Sr (A, 6).
From (4), the estimator for A° for given 6 is defined as

A(0) = [A1(0),As (0)] = argmax Vi (A,6), (5)

where

Ve (A0) = (NT) éﬁ{ [Ls (0) (A1 AL) +Tat (6) (A2 As)] %1}

{Al [Z I (6 )xtx;} Al} +tr {A’Q Lé Iy (0) xtx;] Ag}} .



The problem

max Vr (A, 0)

is equivalent to

max [A’lilx (0) Ay + AbSoy (0) A2] , (6)
where
2A)jx (0) = [(NT)I i:l I;: () thé} , 7=1,2: (7)

for j = 1,2, and for given 6, the estimator for A? solving the problem in (6) is Aj (0), where Aj (0) is equal
to v/N times the N x R matrix of eigenvectors of fijx (6) corresponding to its largest RY eigenvalues.
Replacing A; and A in (4) with A; (6) and A () leads to the concentrated sum of squared residuals

(divided by NT)

™=

Sea (0) = (NT) ™' Y x! {IN _ N1 []Ilt (@)A1 (0) Ay (8) + Lo, (0) Ay (6) Ay (9)’] } x: (8

t=1

the estimator for 6° then solves

0= argmeinS’FA 0).

Given 0, the estimator for A‘; is [Xj = Aj (é), for j = 1,2. Finally, given 6 and A = (Al, Ag), from (3)
~ ~ ~ A~ ~ ~ ~ ~ /
£ =1 (A,H) — N1 [Hlt (9) A+ 1y (9) AQ} x;, t=1,...T.

3.4 Consistency

From Theorem 3.1 the two regimes described in (1) are separately identified under Assumption 1. Define
the R® x T matrices of regime-specific factors ¥} (9) = [£0, (6),...,f5p (0)], for j = 1,2, such that
F (0) + F3(0) = (£),....£0) = FO for any 6, and F{ (6°) F9 (90)/ = Opo. Let Hy; () and Hj,, () be

the rotation matrices

I:IU (9) = T . N VJ (0)_1 y J= 17 2a (9)
. FO (0°)F2(0) AV A (6)
Hmj (0) _ m ( ) 7 ( ) AmAJ (Q)Vj (9)—17 j,m _ 1’27 ] 7& m, (10)

10



where V; (0) is the R® x R" diagonal matrix of the first R? largest eigenvalues of 3,5 (6) defined in (7)

in decreasing order: for 6 = 6° notice that H;; (9) and H,,,; () reduce to

F9 (6°) F9 (0°) AYA, (6°)
T N

T, (6°) = Vi (0°), Hpy (0°) =0ge jim=1,2 j#m,

and ﬁjj (90) becomes a regime-specific rotation matrix analogous to the one derived in Bai and Ng
(2002) for linear factor models®. The following theorem shows the bias of the principal components

estimator induced by the presence of regimes when 6 # 6°.

Theorem 3.2 There exist R® x R matrices H;; (0) and H,,; (9) as defined in (9) and (10), respectively,

with rank {Hjj (9)} = R° for all 0, and rank [Hmj (9)} = R° for 6 # 6°, and Cn7 = min {\/N, \/T},

such that

1N . . . 2 , _
Cir [z A (0) = B 6 X, = F; (0) XS, ]opu), V0, jm=12 j#m

Theorem 3.2 shows that the presence of regimes adds the asymptotic bias flmj ()’ A2, to the principal

0
Ji

components estimator Aj; (9) for the space H;; ()’ AY; spanned by )xg-)i. As in linear factor models, the
rate of convergence is equal to C%,; = min {N, 7} and therefore depends on the panel structure. Taking
into account (10), it follows that for § = 6°,

1 & s -
Cho | 2 A0 09~ 5 (07) x5

2
] =0,(1), 5=1,2, (11)

which extends the result in Theorem 1 in Bai and Ng (2002) to accommodate the presence of regimes
when the threshold 6° is known.
Theorem 3.2 plays a key role in proving the following theorem, which states the consistency of 0 as

an estimator for 6°.
Theorem 3.3 Under Assumptions I and C1-CY, 02 0° as N, T — oo.

Theorems 3.2 and 3.3 imply a number of results analogous to those collected in Theorem 1 in Stock

and Watson (2002): these are stated in Corollary 3.1 below.

3See Bai and Ng (2002), p. 213.
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Corollary 3.1 For j = 1,2, and under Assumptions I and C1-C4, as N,T — oo:

(a) X]’i (é) ﬁ) I:Ijj (90)/A§)2,

(b) B 2 [Ty (6°) By (6°) " + Ty (6°) Py (6°) | £

2
p
= 0;

(c) ;,JZ_VII Hj\ji (9) —Hy; (0°)' X

1 T

(@) 7%

t=1

2
2.

B = [T (6°) By (6°) 7+ Tag (0°) Flaa (6°) 7| 29

3.5 Convergence Rates

The following theorem states the convergence rates of the concentrated least squares estimator for the

threshold 6° and of the principal components estimator for the loadings.

Theorem 3.4 Under Assumptions I, C1-C4 and CR,
N =) (é - 90) =0, (1)

and

13, (5) 5 0 [ =0y, -1

Theorem 3.4 states the superconsistency of 0 as an estimator for 6°: it extends to an infinite di-
mensional system the result in Chan (1993) seminal contribution. The convergence rate N (20°=1)
of @ depends on the time series dimension T and the number of cross-sectional units N a’ subject to

9: since 0.5 < o’ < 1 by Assumption I,

threshold effect: the rate N(2¢°~1)7 monotonically increases in «
then T < N(2e°~1)p < NT; N7 is unknown since a° is unknown. The higher o, the stronger
identification of (1) from a linear factor model, and the faster the convergence rate of @ to 8°: this shows
the connection between identification and estimation. When a® = 1, all cross-sectional units are subject
to threshold effect and the convergence rate is NT. Theorem 3.4 implies that the principal components
estimator for the loadings has the same convergence rate derived in Bai and Ng (2002) in the case of lin-

ear factor models: the estimator for the threshold therefore does not affect the estimator of the loadings.

Corollary 3.2 below follows from Theorem 3.4.

12



Corollary 3.2 Under Assumptions I, C1-C4 and CR,
2 1 I ya 0\ T 0y—1 0\ 1 0y —17 eo|?
Cxr T zleft— [Hlt (6°)Hip (0°) 41 (0”) Hag (6°) }ft H =0,(1).
t=

Corollary 3.2 shows that the convergence rate C 7 also applies to the principal components estimator
for the factors; it also shows that the rotation induced by f; around f? depends upon the regime. Corollary

3.2 justifies the robust Bai and Ng (2002) information criteria proposed in Section 4.

4 Determining the Number of Factors

We now consider the case in which the true number of factors RY in (1) (i.e., the true dimension of
£?) no longer is known and has to be determined. Breitung and Eickmeier (2011) show that neglecting
structural breaks in the factor loadings inflates the estimated number of factors. Given the analogy
between factor models with structural instability and (1), the latter suffers from the same problem.
We rely on Corollary 3.2 and suggest a simple way to robustify Bai and Ng (2002) selection criteria to
account for the threshold effect.

Given (1) and for fixed number of factors R, the loss function in (2) generalizes to

[ — iy (0) ATER — Ty (0) AREE] [0 — Tus (0) ARER — Ty (0) AZEF]

M=

S (AR, FR0) = (NT)™!

t=1

(12)
where AT = (Afl7 Ag), Fi = (flR, ... ,fjl?), and where the superscript R denotes the dependence on the
number of factors. The loss function in (12) depends on . From Theorem 3.4, it easily follows that
for any a priori chosen number of factors R = R such that R > R, the estimator éR for 0" is such
that N (2’1 (@R - 90> = 0, (1), with éRO =0 (see Lemma A.9 in Appendix A.3): in practice, R
may be chosen as discussed below. Given the convergence rate in Corollary 3.2, this naturally suggests
generalizing Bai and Ng (2002) criteria by first setting 6 = 9R in (12) to then select R factor within each
mutually exclusive regime, and therefore (I:i + I%) factors in total.

Let AR (9) and | R (6) be the estimators for A® and F, respectively, for any 6. Given the loss

function in (12), and following Bai and Ng (2002), we want penalty functions g (N, T) to obtain criteria

13



of the form

PC(R,R) =S [AR <9R> JRE (éR) ,éR] +(R+R)-g(N,T),

which consistently estimate the number of factors R” in each regime and therefore (RO + RO) factors in
total: the criterion PC (R, R) accounts for the fact that the threshold effect leads to a factor representa-
tion with a higher dimensional factor space, namely to a representation with (RO + RU) factors. Given

a bounded integer R™?* > RO, the true numbers of factors R is estimated as

R=arg min PC(R,R):
1< R< Rmax

given the convergence rate Cyp in Corollary 3.2, this leads to the threshold effect robust Bai and Ng

(2002) information criteria

IC, (R,R)=InS {AR (éé) JRR <9R> ,éﬂ +(R+R) (NN+TT> In <NN+TT> :

ICp (R, R) =In§ [AR (éé) JFR (éﬁ> ,9R] +(R+ R) (NNJFTT) In (C%1) , (13)
ICys (R, R) =In § [AR (éR) PR (@R) 79R] C(R4R) IH(C?VJQ;T)

R _
In practice, to obtain the estimator 6 for §°, we may set R = R™**. The following theorem states the

validity of the proposed information criteria.

Theorem 4.1 Under Assumptions I, C1-C4 and CR, the criteria ICp (R, R), ICy2 (R, R) and ICp3 (R, R)

defined in (13) consistently estimate the number of factors R,

5 Monte Carlo Analysis

We now assess the empirical validity of the theoretical results, which relate to the consistency and the
convergence rates of the estimators, and to the model selection criteria: the experiments are described

in Sections 5.1 and 5.2, respectively, and the results are discussed in Section 5.3.
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5.1 Consistency and Convergence Rates

In line with the results in Section 3, we assume a known number of factors. As in Breitung and Eickmeier
(2011), we analyze the case of a one-factor model. From (1) we simulate data using the Data Generating

Process (DGP)

wfy =1(2f <OV + 1 (25 > )N +e3, i=1,...,N, t=1,....T,

where s = 1,...,S refers to the replication, N and T are the cross-sectional and time series dimensions,
respectively, and S is the total number of replications. We run the experiment in Ox 7.01 (see Doornik,
2012). We set S = 2000, N = 25,50,100 and 7" = 100, 200,400. In generating the data, we define
60 =Xy, = A}, weset 69 >0fori=1,..., [NO‘O] and 69 = 0 for i = [Nao} +1,..., N, where [-] denotes
the integer part of the argument. We fix the factor loadings )\(1)1- and )\gi and the threshold parameter
0° throughout the replications, with )\(1)2- ~ N (1,1) for i = 1,..., N as in the Monte Carlo experiment
in Breitung and Eickmeier (2011), and 0° = 2. We control for: (i) the number of cross-sectional units
[N"‘O] subject to a regime change, with 0.5 < a® < 1; (i) the magnitude of the threshold effect 5?; and
(#i1) the proportion of observations of z below 6°.

0s .
+° as

We generate the factor

1/2
?S:pff?fl_'—(l_p?) E;ta fgsE)O:O’ €?tNHDN(O’1)a t=-49,...,0,....T, (14)

with p fixed in repeated samples and drawn as p; ~ U (0.05,0.95), so that ( tOs) = (0 and Var ( tos) =1.

We generate z; as

= (L= p) iy + (1= p2) 7 ety 2250 = po € ~TIDN(0,1), t=—49,...,0,...,T,
(15)
where p, and p, are fixed in repeated samples, with p, ~ U (0.05,0.95) and u, calibrated as described
below, so that E (z7) = p, and Var (z]) = 1. We generate the idiosyncratic components ef, as

e = peesi+ o (1—p2) e, e =0, e,~TDN(0,1), i=1,...,N, t=-49,...,0,...,T,

e;t)
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where p, and o;; are fixed in repeated samples with p, ~ U (0.05,0.95) and o;; ~ x (1), fori =1,...,N:
in this way Var (ef,) = oj; fori=1,..., N, and N~! Ef\il o — 1as N — oo.

We control for the number of cross-sectional units [N O‘O] subject to a regime change by setting
a® = 0.60,1.00. As for the threshold effect, we set (5? =0.25,1.00,1.75 fori =1,..., [NO‘O}. Finally, we

let 7° =P (2§ < 6°) and obtain the expression for sz, in closed form as a function of 7° as
WozP(szHO) =P (2 —p, SQO—;LZ) =<I>(90—ﬂz)(:>uZ:90—<Ifl (7T0) :

we consider five values for 7°, namely 7% = 0.15,0.30, 0.50, 0.70, 0.85.

To reduce the effect induced by the initial values f%%; = 0, 25, = p, and €] 5, = 0, we discard
the first 50 observations in the DGPs for fP, 27 and ef,. We estimate factor and factor loadings as
detailed in Section 3.3. Given the convergence rates derived in Theorem 3.4, the estimator for 6° is
asymptotically independent of that for AJ;, X3, and f%5. As in Tong and Lim (1980), Tsay (1989) and
Kapetanios (2000), we estimate 0° by grid search: we implement the algorithm by selecting 19 equally
spaced quantiles of the empirical distribution function of z7, namely {5%, 10%, 15%, . .., 85%, 90%, 95%},

and the true value ° = 2. Given the concentrated least squares estimator 0 for 0°, we estimate factor

and loadings by principal components. We assess the performance of 0 by computing

bias = 51 3° (9 - 90) , RMSE = \/Sl > (és - 90>2.

s=1 s=1

Finally, given the estimator ¢;, =1 (zts < és) X; fts +1I (zf > és) 5\; fts for the generally defined common

component ¢y =1 (zf < 90) A fos 4T (25 > 00) A9, £9% we report

M=
M=

Il
_
~
Il
—

S
MSE = §~* ) {(NT)_l (&, — c?f)Q] .

K2

5.2 Model Selection

We simulate the data using the DGP

fft:H(Zfﬁeo) ()‘(1)11' 0+ A 20t8)+]l(zf>6‘0) ()\gli ?ts"‘)\gmfgts)‘f'efta i=1,...,N, t=1,...,T,
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with A)}; ~ N (1, 1), Ay ~ N (1,1), Ay, = Ay, 4 69 and A9y, = Ay, + 67, We set 6 = 0.25,1.00,1.75
for i = 1,...,[N®], and 6} = 0 for s = [N®] +1,..., N, with ap = 0.60. The factors f¥F and f95 are
generated as an AR(1) process analogous to (14); 2§ and e, are as in (15) and (16), respectively. The
model has R? = 2 factors and it is estimated with R™® = 8. We assess the model selection criteria in

13 by reporting the average number of estimated factors over the 2000 replications.

5.3 Results

The results from the Monte Carlo analysis are collected in three tables: Tables 1 and 2 focus upon

consistency and convergence rates of the estimators; model selection criteria are assessed in Table 3.

Table 1 about here

Table 2 about here

Table 3 about here

Table 1 displays results for the concentrated least squares estimator 6 for 6° = 2 when o® = 0.60
(Panel A) and a® = 1.00 (Panel B). Given Theorems 3.1 and 3.4, a higher o leads to stronger identifi-
cation of #° and faster convergence rate of 0 to 0°, respectively: in line with these theoretical results, the
Monte Carlo outcomes show that the RMSE of § when o = 1.00 generally is lower than the homologous
value when o = 0.60. The RMSE tends to decrease with N, T and 5? > 0. The RMSE generally is min-
imized at 7° = 0.50 and monotonically increases as 7° tends to 0.15 and 0.85: this behavior is mitigated
the higher N, T, (5? > 0 and o are, as 6° is more strongly identified and more precisely estimated and
the frequency of the regimes plays a less important role. The bias displays a pattern somehow similar to
that of the RMSE.

Table 2 shows the MSE of the common components when o = 0.60 (Panels A) and o’ = 1.00
(Panels B). We assess the empirical validity of Theorem 3.4 by considering both unfeasible and feasible
estimators, the former and the latter being obtained by setting 6 = 6° and 6 = 0, respectively. In line
with Theorem 3.4, the MSE of the feasible estimator converges to that of the unfeasible counterpart as
both N and T increase. The MSE monotonically decreases in N and 7', and in 5? > 0 for N = 25,

whereas it does not exhibit any systematically noticeable difference between a® = 0.60 and a” = 1.00.
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Table 3 collects results for the model selection criteria ICp1 (R, R), ICp (R, R) and IC,s3 (R, R)
(Panels A, B and C, respectively) proposed in (13) when a® = 0.60. The criteria /Cp; (R, R) and
IC,2 (R, R) display a similar behavior, with the latter having a hedge over the former: they tend to
overestimate the number of factors for the small cross-sectional dimensions N = 25,50, whereas they
perform well for N = 100. Conversely, ICp3 (R, R) has inferior empirical performance than ICp; (R, R)
and ICps (R, R). Finally, unfeasible and feasible estimators give similar results in terms of model selection
performance.

In conclusion, the Monte Carlo findings corroborate the theoretical results stated in Theorems 3.1 and
3.4. They also confirm the validity of the information criteria in (13), with ICp1 (R, R) and ICps (R, R)

having better finite sample properties than IC)3 (R, R).

6 Empirical Application

This section provides an application to illustrate the potential usefulness of our contribution for applied
work. We show how our framework may be used to measure connectedness in multivariate nonlinear
dynamic systems, with a focus on financial variables: a threshold factor specification is suitable when
"history repeats", as in the case of financial markets, which undergo regime shifts (Timmermann (2008),
and Ang and Timmermann (2012)). In what follows, Section 6.1 proposes a measure of connectedness,

Section 6.2 describes the data and the empirical model, and Section 6.3 presents the results.

6.1 Measure of Connectedness

Connectedness is central to risk measurement and management. There exist several measures of connect-
edness, which are based on different underlying metrics: examples are the marginal expected shortfall
of Acharya et al. (2010), the CoVaR of Adrian and Brunnermeier (2011), the equicorrelation approach
of Engle and Kelly (2012), and the network approach of Diebold and Yilmaz (2014). In line with our
methodological contribution, we focus on the principal components approach of Billio et al. (2012).
Given the sequence of N x 1 vectors {xt}thl, let {wr}f,vzl be the sequence of eigenvalues of the N x N
covariance matrix 3, = (NT) ' 23;1 x:x;. In relation to financial markets, Billio et al. (2012) quantify

the degree of connectedness amongst the elements of x; as the risk associated to the first R eigenvalues
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in relation to the overall risk of the system. Formally, they measure connectedness through?

R
ZT:l Wr .

C(R) = :
() 27{\[:1“’7”

by construction C (R) is increasing in R; for given R, a higher C' (R) denotes a higher degree of connect-
edness amongst the underlying variables. The measure C (R) is a powerful tool to capture the degree
of connectedness amongst random variables. However, it suffers from two main drawbacks. First, the
number of eigenvalues R is chosen a priori and not according to a selection criterion. Second, C (R)
refers to the entire time series dimension 7" and is unable to detect variations in connectedness induced
by a threshold effect. Financial markets experience regimes shifts (Timmermann (2008), and Ang and
Timmermann (2012)): the measure C (R) may not provide an accurate description of the dynamics in
connectedness of the variables of interest®. Our methodology allows us to build a measure of connected-
ness that accommodates a regime shift and that relies on the optimally selected number of eigenvalues.

Let {wjr}ivzl be the sequence of eigenvalues of the N x N covariance matrix 3, (9) defined in (7)

in decreasing order, for j = 1,2. We generalize C' (R) and measure connectedness through

C; (R) - @ j=1,2. (17)

N
ZT‘:l ij

Compared to C (R), the measure C} (R) has two distinctive features: it quantifies connectedness within

each regime; and the number of eigenvalues R is optimally determined according to the criteria in (13).

6.2 Data and Model Specification

We construct the vector of dependent variables from the updated monthly financial dataset employed
in Jurado et al. (2015) and, on a quarterly frequency, in Ludvigson and Ng (2007)%: this consists of a
panel of 147 series related to the U.S. financial markets, as detailed in Ludvigson and Ng (2007). As
customary in the literature, all variables are standardized so to have zero mean and unit variance.

The choice of the threshold variable is a function of the research question. We investigate how

4Billio et al. (2012) refer to C (R) as to the Cumulative Risk Fraction.

5Billio et al. (2012) measure the dynamic degree of connectedness in financial returns by computing C (R) over rolling
windows.

61 am very grateful to Sydney Ludvigson for providing me with the updated version of the dataset I am using in the

paper.
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economic policy uncertainty affects connectedness amongst financial variables. As a threshold variable
we use the lagged index of economic policy uncertainty proposed in Baker et al. (2013)": a higher value
of the index denotes a higher level of uncertainty.

Due to data availability issues, we perform the empirical analysis over the period running from
January 1985 to December 2014, a total of 360 observations. The threshold variable has mean, standard
deviation, maximum and minimum equal to 107.640, 32.566, 245.127 and 57.203, respectively.

We consider R™* = 10 and estimate the change-point by setting R = R™®*; we then construct a
grid for the change-point with lowest and highest values equal to 5% and 95%, respectively, and step

equal to 0.5%. The number of factors are selected according to the criteria in (13).

6.3 Results

Results are collected in Table 4. The point estimate of the threshold 6° is § = 131.413: this splits the
sample into a low and a high economic policy uncertainty regimes, with frequencies equal to © = 0.783
and 1 — 7 = 0.217, respectively. The criteria ICp; (R, R) and ICps (R, R) select R = 3 factors, with
corresponding connectedness measures C (Z-i’) = 0.678 and C» (]:2) = 0.865. Conversely, ICps (R, R)
selects Ry = 6 factors: this is consistent with the results from the Monte Carlo analysis discussed in Sec-
tion 5.3, which show that ICp3 (R, R) tends to overestimate the number of factors in finite samples. Our
empirical results therefore show that connectedness amongst financial variables increases with economic

policy uncertainty. This result is likely to be relevant for risk measurement and management.

7 Conclusions

We study least squares estimation of large dimensional factor models subject to a regime shift in the
loadings induced by the threshold effect. Our methodology is appealing as it allows to handle the
general situation in which the threshold parameter is unknown and has to be estimated. We show that
the concentrated least squares estimator of the threshold value is superconsistent: the convergence rate
depends on the time series dimension and on the number of cross-sectional units subject to threshold
effect. The principal components estimators for the factors and the loadings have the same convergence

rate they have in linear factor models: this result allows to robustify Bai and Ng (2002) model selection

"The index is made available at http://www.policyuncertainty.com/ .
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criteria by simply accounting for the fact that the threshold effect leads to a factor representation with
a higher dimensional factor space. In an application, our procedure allows to document an increase in
connectedness amongst financial variables during periods of high economic policy uncertainty: this result
is likely to be relevant for risk measurement and management.

This work may be extended along several directions. We see as a priority the application of our
methodology to large dimensional factor models subject to structural instability: this is the focus of

current research.

A  Proofs of Theorems

A.1 Proofs of Results in Section 3.4

We rely on the following lemmas.

Lemma A.1 Under Assumptions I and C1-C83, there exists some positive constant M < oo such that for all 6, all (N,T)
and j =1,2:
(a) NP L, o2 (0) < M;
2
(b) E {Nﬁ2 PIAD A [T% e L (0) J»’itﬁﬂlt] } < M;

@ B[N [ £ 1 0 e

2
Bz

Lemma A.2 Given ﬁjj (6) and I:Imj (0) defined in (9) and (10), respectively, for j = 1,2, and j # m, and for any 6,
Spa (8) — Sp [A?ﬂu (6) + ASFL,; (0), AFIas (0) + ASHI;, (0) ,0} =0, (C;;) .
Lemma A.3 There exists a 7(0) > 0 such that

plim _inf Sp [A?ﬁu (6) + ASFIy; (6) , AQEIa; (0) + AVH, (0),0] — Sp (A9,A9,00) =7 (0), VO 0°.

s

Proof of Theorem 3.1. As defined in Section 3.2, Vi is the R? x R? diagonal matrix of the first RO largest eigenvalues
of Bx = (NT)™? Z;le x;x} in decreasing order, and Ap is the estimator for A9 in the true data generating process
X¢ = A(l)ft0 + Iot (00) Aoff + e¢ from the misspecified model x¢ = A1f; + e4: the equality ﬁ)xﬂl = ]\1‘71 then holds by
the definitions of eigenvectors and eigenvalues. Applying the normalisation N_lﬂ’lﬂl = IRo to implement the principal

~ 2 ~
components estimator, it follows that N1 Zfil H)\li = O, (1). By Lemma A.3 in Bai (2003), V1 £ V; where V; is a

-~ /e . 2
positive definite matrix: we then focus on HVl ()\11- — H’l)\%) H . Theorem 3.1 relies on the identity

~ ~ ~ N N _
Vi (Ali - H&)\%) = N1 l; A110141 (00) + N1 l; A11141 (90)
N N
+N—t ZZ A1o2q (0°) + N2 ZZ Xire2i (69)
1 =1

+
2
2l

- N N N N _
-t 1>\11<.0iz+Nfllzl>\1l<ﬂz¢+Nfllzl)\1ﬂ9u+N71llelﬁu-i—N*llZl)\uwﬂ,
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where

T
s (0) =T71 S Ly (6) evers — i (6),

=1

o~

j=12

T
3 (0) =T~ % 13 6) 1 (0°) AP + o () A0 s, 5= 1.2
t=

T
©i = 1 (0) + 9o (0) =T71 2:1 [I1¢ (90) AP + Iy (90) )‘ggfto} Clt,

T
30 (0) = T 3 1500) T (0°) XDUED +Tor 0°) MEP) e 5= 1.2,
t=

Pli

T
=13, (0) + @g; (6) = T2 tgl [T1e (6°) AD7£2 + L2 (6°) )‘glfto]/ €it,

T T
9y =T"1 t; To¢ (60) XY £2£276D, 9y =T1 t; To¢ (6°) A9 £2£Y 69,

The matrix H; depends on N and T this dependence is implicitly suppressed to keep notation simple. Notice that

5] <]

T
Yy =T"1 tgl Iy, (0°) 8 £0£0' 7.

FOFOI 1/2 1/

T

AL,
N

AYA
N

by Assumptions C1 and C2. By Loéve’s inequality,

1 N \/ X (7’ 20
NS |9 (R - R
i=1

where

&ji~ (9) =N—2

i=1

2
VY| =00,

N 2 N 2
> Auoiu ()| 5 e (0) = N2 3 Asa 0)|| 5 5 =1,2,
=1 =1
] s 2 ] N 2
@;. =N~ ZZ Aupql s @ =N" ZZ Auel| s
=1 =1
~ N 2 N 2
Yi. = N723 Apda|| » D =N"2| 3 Audy|
=1 =1
N 2« 2
P, =N~ lZ Ay
=1

We first consider &1;. (0): G2;. (0) is analogous and omitted. We have

and

N
H > Ao (0)
=1

7

2 N - 2 N
< (S10) | o)
=1 =1

X -1 1 X 12 XX, -1
NS o @< NN S Rl ) [N S S ot )] =0, (V)

by Lemma A.1(a). As for 3j;. (6), for j =1 (j = 2 is analogous),

Z

14. (0)
1

7

Since

4

N || N _ 2
= N723 I3 Ay (0)
i=1 |[l=1
) N N N _, .
= N723 Y Ay Rig (6) 1 (6)
i=11=1q=1
N N ,., . 2 1/2 N
< (NPE X (RAy) N72Y
1=1qg=1 1
- 2 N N N
< (MR AN E S |2
=1 1=1¢=1 |i=1

22

—1q=1

|

2y 1/2
it (0) »14q (9)] }

2y 1/2

(18)

2 ~ ~ ~
‘ <ONT' Y [&u‘ (0) + 21 (0) + 624 (9) + 2225 (0) + @y + @i + 04 + 90 + w] ;



and
4

E e (0)* = T72E|T™ <T2M

T
1/2 Z Hlt (9) €itelt — E [Hlt (9) eitelt}
t=1

by Assumption C3(d), then

o8

Il
—

2

3

and N~1 qu\;1 #15. (0) = Op (T™1). Regarding @;., we have

N 2
gbz = N7 lgl A 1P
N _ T 2
= N72IX AT 3 [Tue (0°) AYED + Iz (60°) ASED] e H
l - 2 N T 2
XAy [T ! leﬂlt (6° )ftoelt:| } + {N2 z; A |71 t; Ia: (6°) f?ﬁzt} }

-2 I ] 2 _ N X 2
72| 5 1 00 96| | a0y <N IZHAUH)
t=1 =1
gl (v & )
=1

N 2
72 A2+ {N‘l P {T : ] } ngiu?} 0y (1)
g {f g o [ & |Jowlon-aw

by Assumptions C2 and C4. In a similar way, it is proved that ., = Op (T*I). As for 9,., under Assumption I,

T2

i
M=

T 2
2 Tt (0°) Pew
t=1

Il
—

3
M=

Z I: (6°) £y
=

IN

IN IN
——t ———— =

Zl 2

= [Mz L

T
21 Ine (0°) flen
t=

Il
-

(60°) fess

M=

(60°) fess

2
R
[=)

0r
All}‘li

Il
b

N N . 2
191 = N~ Z A l"92l
=1
N /
= N2 (Z >\1ﬂ911> <Z )\111911>
=1
N ! N T
= N3OS XAy |71 Z]Igt (6°) £2£2760 | & N=1L S A AY |71 3 Iy (6°) £2£27 67
=1 t=1 =1 t=1

T
T=1 3 Ty (6°) f?f?’&?]
t=1

T N ~
T=1 3 Iy (6°) f,?fto’é?] + > Ay
t=1 1=NaO 11

Il
-

N X or
2 AuAg;
1=No®41

0
N T
xN~1 { ZZ:I Ay -1 El I (6°) ftof?’é?} }

= N0, (N") NTlo, (N2°)

= 0, (N-2).

T
T 3 Iz (6°) £2£77 67
t=1

23



In a similar way, it can be proved that 9. = Op (NQO‘O’Q) under Assumption I. Finally, under Assumptions I, C1 and C2,

. N ?
1/]1 = N~ ZE A thz
=1
N _ "N -
= N2 X Auyvy > Audy
=1 =1
/
— -1 AN 71T 0\ 507200/ 50 — AN —lT 0) §0/¢0£0/ 50
= N S Au [T Y I (6°) 89 £2£0 65 Z)\ T=1 5" TInt (6°) 69 £0£ 67
= =1 =1 =1
lNiO ¢ . Nl tT /
= N1{ X [T71 30 Toe (0°) 896282760 | + S0 Ay |[T71 3 I (6°) 59’ft0ft0'5?}
=1 t=1 1=Na® 41 t=1
N”0 T N T
XN~ 3 T Y Io (6°) 89 €060 879 S Ay [T Y I (69) ag’f?ft()'&?]
=1 t=1 1=Na® 11 t=1

= N-lO, (Na0> N-lO, (N"‘O)

= 0y (N2°-2).

Combining all above results, we have
N ~ ~ ~
0 0 (o B =0, (470 503 ) 0, (32,
i=1

which completes the proof of the theorem. m

Proof of Theorem 3.2. As shown in Theorem 3.1, by Assumption I the regime indicator Ij; (6) is identified, for j =1, 2:
we can then split the sample according to the value of Ij; (9). We consider the case j = 1: the case j = 2 is analogous and
omitted. As defined in Section 3.4, V1 (0) is the R® x RO diagonal matrix of the first R? largest eigenvalues of 315 () in
(7) in decreasing order: the equality 3315 (0) A (6) = A1 (0) V1 (0) holds by the definitions of eigenvectors and eigenvalues.
From the normalisation N~1Aj (8)' A1 (8) = Igo, it follows that N~1 Zfil Hj\h (0)H2 =0Op (1) for all §. By Lemma A.3
in Bai (2003), V1 (0) 2 V1 (6) where V1 (0) is a positive definite matrix for all 6, and "Vl (9)H = Op (1): we then focus

2
on . Theorem 3.2 relies on the identity

V1(0) [Avi (0) = Fiu (0)' AY; — Flau (6)' AY;]

1(0) [3ac(0) ~ B 0 AL~ B 0 A%] = N1 A (001 (0) + N7 30 Ay (6) 10 6)

where 14 (0), @14 (6) and @y;; (0) are defined in (18). The matrices Hiy () and Haj (8) both depend on N and T this

dependence is implicitly suppressed to keep notation simple. Notice that

by Assumptions C1 and C2. In an analogous way, it can be shown that HI:Igl (O)H = Op (1). By Loeve’s inequality

90 AYAY |12

N

Ay (0) Ay (0)
N

2
for 000w

NS [[¥10) [Aas 0) — B (0) A%~ B 0 A3 [ AN TE S (610 0) 4 210 (0) +-610.(0) 4 614 01,
where N ) N )
610 (0) = N72|| 32 A (0) o140 (0)]] S0 (0) = N72{| 32 Aqy (0) 2100 (0)]]
l]:v ) ) lzl ) )
@14 (0) = N2 l; A1 (0) 14 (O)|| $1.4(0)=N"2 l; A1 (0) @145 (0)
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Starting from &1;. (6),

and
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t=1

T
> The () ey
t=1

IN
|
=

X[ + {N‘l 5 {T‘Q
=1

] }Op 1) + {N‘l |:T_2

by Assumptions C2 and C4. In an analogous way, it can be proved that

”HA&-IIQ}% (1)

2

M=

T T
S Lhe () fers > Ty (0) £es
=1 =1

—1 N _ —1 N -2
N Zi:l ?14.(0) = {{N > |:T

} Op (1)} Op (1) = Op (T_l)

Ny 1 (0) =0, (T71).
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Combining all results above, we have

NS HV (6) [Avi (6) — F11 (6)' AY; — Flaa (6)' A,
= 1 17 11 14 21 24

This completes the proof of the theorem. m

Proof of Theorem 3.3. In order to prove the theorem, it is sufficient to prove that

lim P A;FA 0) < SF/\ 90 =0 VO 75 190
N,Tl [ ( ) — ( )] ? ’
where SF/\ (0) is defined in (8) Consider the 1dent1ty

Sea (0) — Spa (0°) = Sra (0) — Sk [Agﬁu (0) + A9FLa (), AQHy, (0) + AOFLy5 (6) 9]
+Sp [Agﬁn (0) + AQFLa (), AQFlys (0) + A0FL;5 (6) 9] ~ Sp [A?ﬁn (6°) , AQFia, (6°) ,90]

+Sr [AYHL (6°), AQH2 (6°),6°] — Sea ()

where Sg (A, 0) is defined in (4). By Lemma A.2, Spa (0) — Sp [A?ﬁn (0) + AJH21 (6), AYHao (0) + A9H 1> (9),9] =
Op (C&;) for any 6, including # = 6°. Since A?I:Ill (00) and AgI:IQQ (00) span the same column space as A(l) and Ag,
respectievly, we have

S [A9H1 (6°), ASF2: (6°),6°] = Sk (A9, AS,6°)

and Sp [Agﬁn (0) + AQFLa; (), AQFas (0) + AOFLyo (9),9] — S (A9,A9,0°) has a positive limit by Lemma A.3. This
completes the proof of the theorem. m

Proof of Corollary 3.1. Corollary 3.1 easily follows from Theorem 3.3 and the proof is omitted. ®

Proof of Lemma A.1. Consider j = 1 (j = 2is analogous and omitted). As for (a), let py;; (0) = o141 (9) /[Uui (6) 011 (6)]Y/2

such that |pq; (0)] < 1: since |oqy; (0)] < M for all I by Assumption C3(c), then

N N N
N—1 21 l; 02,0) = NI 121 l; o1ii (0) o111 (0) p3,; (0)
T N N 1/2
< MN7YY S o1 (0) o1 (0)]M2 |p1y ()]
i=11=1
N N
= MN 1Y} lovi ()] < M2
1=11=1

by Assumption C3(c). In order to prove (b), for j = 1 (the proof for j = 2 is analogous) it is sufficient to prove that

E [Ii; (8) zs|* < M for all (6,i,t): we then have

Eli; (0)zul* = B ’Hu (9) [Hlt (0°) AQ£D + Io (0°) ASIEP + eit] ’4
< E { []Ilt (60)Trs (6°) Ag);fg] 4} +E { []Ilt (0) Tt (6°) Ag;fg} 4} +E L1 (8) ese|*
< N'E|[Tue (0) Tne (6°) £2]|* + X*E |[Tue (6) Tz (6°) £2|* + EL1¢ (6) s
< M

by Assumptions C1, C2 and C3(a). As for (c), set j = 1 (the proof for j = 2 is analogous and omitted) and consider

2

T T T ,
E|(| 7712 3 it (0) eir XY, = T71 Y 3 Bl (0) T (0) eirein] A A,
t=1 t=1v=1
21 I 12
< XT3 ] S ATM
t=1v=1
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by Assumptions C2 and C3(b). m

Proof of Lemma A.2. Given Aj (0) defined in (5), for j = 1,2, define

Pa (0)=A;0)[A; 0 A; 0] A, 0y,
Pron,; a0 0, ) = [AJHJJ (0) + AS o (9)] j,m=1,2,
{ [ASE8,5 )+ A% By )] [A98 @) 4 ASE, @]}
A% (0) + A H,p; (9)}
(19)
so that

Sea (0) = (NT) ' 3" x} {In = [Le 0) PR, (0) +12: (0) Py, (0)] } xt
t=1

and
Sk [A?I:In (9) + Agﬁgl (9) s AgI:IQQ (9) + A?ﬁlz (9) s 9:|

T )
-1
= )T o {IN - [Hlt ()P pog,, 1 agfty, (0) + T2t (O Progy,, s avs,, (9)] } X

where Sy (A, 0) and Sga (0) are defined in (4) and (8), respectively: it follows that

Spa (8) — Sp [AOﬂn (6) + AQFLa (6) , AQFlas (0) + AOFL;5 (6) e]
= (NT)” i i1t (0) [PAgﬁuﬂ\gﬁm (0) — Pz, (9)] x¢ + (NT)~ XZ: xil2t (0) [PAgl:I22+A‘1JI:112 (0) — Pz, (9)] x¢

Let
Dy, (6) = N7'A; (0) A; (0),
0) = N1 [AOFL;; (6) + A%, P (0)] [A9FL; (0) + A Fm; (0)]

D.on -
AJH ;A (

so that for j = 1,2 and j # m,
- -1 .
PA,(0)=Ppog iaom,, © = NUA;0)[Dx 0] A )

- ~ ~ ~ !
N [AYE, () + AL BL )] (Do, wag i, O] [AVF 0) + A FL 0)

]
+N 1 [AYH; (6) + A% (0)]

~ - ’
x [AYFL; (0) + A% HLy; (0)]
We consider the case j = 1: the case j = 2 is analogous and omitted. We have

(NT)~! i x{112 (6) [P 4, (6) = P rogy,, s avssy, (0)] o

= (NT) ,i xTae (0) N1 [Ax (0) — ASE (0) — ASED: (0)] [Da, 0] [Ar (6) — A9y (6) — ASHLz: (9)] 0

+(NT)™? z SATC, [ 1(0) — A9H1, (0) — AQH (9)] [DAl (9)]*1 [Agﬁu (0) + A5, (9)]’xt
+(NT)? z /Iy, (0) N~1 [ OF1,; (6) + AQHy (a)] [DA1 (9)]*1 [A1 (6) — AFLy, (0) — AQFLy (9)]’xt
HOVT)T i (0) N [A9 0) + A3Fn 0)] { [P, 0] [Dage,,saga, @]} [AVEN 0) + A3 0)]'x:

= a1 (9) + a2 (9) + a3 (9) —+ agq (9) .
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Starting from a1 (0),

[ (0) = Fuy (0) A — Fizu (0)' A,
a1 (0)

Il
4
b
7=
M=

=1

[A1i (0) — F11 (0)' A9, — Fi21 (0)' A3,] [P, 0)]
X T71 i ]Ilt (0) witwlt:|
t=1

N N
2y

1/2
P [5\11‘ ) — Hi; ) A?i —Hs 0 Agz}/ [D[\1 (9)] - [lel ) — Hi; ) >‘(1)l —Hy 6 )\gl} }2}

. 0y 1/2
T-! Z Ty (6) xitxlt:| }

IN
—N
=
—

N N
N2 Y

1=11=1

X

—

Z
[t uMz

>
et

IN

- 2
— FLu1 (0)' X9, — Flay (0) A, 0, (1)

el

Op (1)

2

N 2
Hll )‘Oi — Hy; (9)1 )‘giH

by Lemma A.1(b) and the fact that

-1
[Df\l (9)] H = Op (1), which is proved below: from Theorem 3.2 it follows that

a1 (0) = 0, (C;V?T) for all 0. As for as (),

—

N N N N N 12 —1 7. N T
a2(0) = N2 Z{ AL (0) — Hyy (0)' A9, — Iy (9)/)\32.] [DA1 (9)] [Hll(e)/A?l+H21 (0)’Agl] T % I (.9)%1“]}

N N . ~ ~ 20 R 5 IARYA
< {5 5 [0~ 03, - 058 [ 03+ B 034 [0, 0] [

- ];f_ N T 2) /2

X {N—2 21121 {T—1 ;:1]11,5 6) xitmltil }
o B 1/2 1/2
N N 2 —1 N N N 2
< {N ol PIORS SOBNES OB ] |[oa, @] [N_lgleH11(9)'>\?i+H21 O o
1/2

- {N ol EORS SHOBORS: STORUA o IECHGR

and a2 (0) = Op (C ) for all 6. In an analogous way it is proved that a3 (8) = Op (C&;) for all 6. Finally,

~ 3 ! 71 71 : :
N N {Hu (0)’ X9, + Ha1 (6) )\gi] { [D]\l (9)} - {DA?ﬂllJrAgﬁ?l (9)] } [Hll e Agl]
as() = N2 Y a
—11=1 x |T71 3 114 (0) $itl’lt:|
=1
PR AT 7y0 | T 7yo |12 |Ivy A0 +H 29| - _121/2
< N igl l; ”Hu (0)" AL; + Ha1 (0) >\2iH HHH (0)" Aj, + Ha1 (0) AQ’H [DAI (0)] - [DA?ﬁu-‘—Agﬁm (0)]
9y 1/2
N N T
X {N2 > > [Tl > T (0) xitﬂt} }
i=11=1 t=1

IN

o
>

3

-1 N N ~ 2
Dageryeagin @] | [N [ 0 X0+ B 0 3+ 0, )

+ || o) {Nl Zé ||/\Si||2] }Op (1)

IN

A9 +AGH,, (9)]71” {Hﬁll (9)H2 {Nl éf:l 1A%,

|
.—..F—.

I
U

-1
' Op (1)

AOI:I11+A81:I21 (6)]
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where Op, (1) comes from Lemma A.1(b) and Assumptions C1 and C2. Now, HD[\1 6) — DAcl’qu-kAgFIQl (H)H =0y (C&;)

for all 8: this is because

A A ! ~ ~
A1 (0) Ay () [A?Hll (6) + AJH>;, (9)] [A?Hn (6) + AJH> ('9)]
D3, ©) DA?I:I11+ASI:I21 © = N - N
N « ~ . . N . ’
= N % {A (0) Axi () — [y (0)' Y, + Fia1 (0)' A3,] [Fiux (0)' XY, + Fian (60)' AY,] }
N r. N . . . N ’
= NS [Aai (6) = Fua (6) A, — Fian (6)' A%,] [Sas (6) — Fua (6)' A% — Fia (6) A,
i=1
NS (R (0) = F1 (0 X, — Fran (0)' A3, ] [Fur (0)' Ay, + Faar (0)' A '
= 17 11 (9) 1i 21 (0) 24 11 (9) 1t 21 (0) 24
N ) ’ ) ! N ") ! ) ’ !
FNT 3 [Bu (0) A9, + Bz (0) A [Ai (0) — Flua (0)' A9, — Fraa (6)' A3,
so that
1315 s /' %0 s 7o |I?
[Da, 0) = Dager,, oagem, @ < N7 T [Rai @)~ B 0 AL - B 0 25,
N REE
+2 (N7 _Zl A1 (0) — i1 (0)' AY; — Ha1 (0)' X3,
=
N R , R , 9 1/2
x | N=1 S || H11 (0)' AY; + Hay (0)' NS,
=1
1 N X & /20 & /30 2
= N~ Z:l A1i (0) — Hu (0)" A7; — Ho1 (0) A3,
= N ,11/2
2| N7 S A 0) — B ) A% B (0 N[ 0p ()
=
and the result follows. In general,
-1 -1 -1 ~1
P4, @] = [Pagriagi, @] = [Pa, @] [P4, 0 = Dagiy, sagiss, @] [Paginy, sagass, ©)

and

H [D[‘l (0)]71 B [DA?ﬁ11+Agﬁ2l (9)]71” <

‘Df\l @) - DA?ﬁ11+Agﬁ21 (O)H H [DAI (9)] -

—1
H [DA?ﬁ11+A8fI21 (0)]

The matrix A?’A? /N converges to a positive definite matrix by Assumption C2, for j = 1,2, and the rank of H; (0)
is equal to RO for all §: since the rank of Ho; (9) is equal to RO for 6 # 6°, and H (6‘0) = Ogo, this implies that
DA?I:IquAgI:IQl (0) converges to a positive definite matrix. Since HDAI 9) — DA?I:IquAgI:Izl (0)” =0p (CX,;), Dy, (9)

also converges to a positive definite matrix: this implies that

[Ds, @] H — 0, (1): therefore,

—1

[Iox, 0] - Pagnenge,

HDAl (0) = Dagrr,, + A5, (9)H Op (1)
-1

0y (Cx71)

and aq (0) = Op (C’K,;) for all 8. Combining all above results, we have

a1 (0) + a2 (0) + az (0) + as (0) = Op (C33) + Op (CNE) +Op (CNE) +0p (CE) = O (C3T) +

this completes the proof of the lemma. m

Proof of Lemma A.3. Let

-1
— AO 0/ A0 s .
PA(J?*A]' (Aj Aj) Aj7 71=12,

29



and recall PA?I:Ijj+A97LI:Imj (0) as defined in (19). Write

S [A9H11 (60) + AQH1 (6), AQF2: (6) + AQF1: (6) 6] — Sy (A9, A3,6°)
T
= WD)y (110 (0°) Pro —Tu (O) P pogr,,  agiay, (0] + [T2e (62) Py a0 () P gy, nvmy, (0] } 30
(10 (6°) AQEP + Tt (60°) ASEP + et

T
~1
(NT) t;1 % {[Hlt ) Pag =T (0) PAos,, AR, (0)] * [H2t (¢°) Pag — T2t (0) P AgH 0+ A, (9)]}

x [Ine (0°) AYEP + Tt (0°) ASEY + ef]

b1 (6) + b2 (6) + bs (6),

where
bi6) — (NT) § i () Tue (6°) [£7AYP g AVEY — E9AYP rog  ro (6) O]
+(NT) ; Ia¢ (0) Int (6°) [fP,A(l)lPA?A?fP — £ AYP A9 11,y a0T,, (0) A‘ffto]
HOVT) S D (0T (0°) [ AYPpgASED — 69 AZP g,y g, 0) ASEY]
+(NT)~ é: ot (6) Tzt (6°) [ftO’Ag’PAgAgftO — £AYP pogi,, s a0, (O) Agfto]
= b11(0) + b12(0) + b3 (0) + b14 (9),
b2(0) = 2(NT)! é Lt (0) Tt (6°) [} P agASEY — eiP pom,, 1 agry, () ADEY)
+2 (NT)*lté1 Io¢ (0) I1e (6°) [efPADA 0 —e,P A+ A%, (0) Agf,?]
+2(NT) ! é Lt (60) Tt (0°) [eiPAgASEY — eiP pogy,, 1 agisy, (6) ASEY)
+2(NT)? é ot (0) To: (6°) [e;PAgAgftO — &P pof1,, 4 a0y, (0) Agf,?]
= b21 (0) 4 b22 (0) + bas (6) + b2a (),
and
b3 (0) = (NT)™* i e} [I1e (6°) — It (6)] Ppoer

+(NT)™! - e} [I2¢ (6°) — g4 (0)] Ppger

= b31(0) + b32 (0) + b33 (0) + b34 (6) .
Consider b; (0) first. We have
T
b1 (0) = tr{N-! [A?’PAoA?—A?’PAOﬁ AOH (9)A(1’] T=1 3 Iy (0) Tny (eo)ftofto'”
i TH11+A5H2 =
—1 A0/ 0 —1 z 0 00/
=t {NTIAY [Pag — Pron,, gy, (0] AL} |T 2 Tue (O)Tue (6°) £
Lo Jim NTIAY P o — Phog q (0)] AL 329, (6,60)
p A AYF11+AJH S, 1 1f \7»

= tr [Bll (0) E 1F (9 90)]

where B11 () = plimy .o {N*lA(lV [PAO — PAOﬂ11+AOﬁ21 (9)] A?}. Now Bi11 (0) is different from zero by Assumption

C2 and it is also positive semi-definite. The matrix %9 if (9 00) is positive definite by Assumption C1. It then follows that
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plimy 700 b11 (6) = tr [BH 6) ~E(1)f (9, 90)] > 0. Consider now

T
bia(6) = trq NU[AYPA0AY — AYProq pos,, (0) AS)] {Tlt;bt(o)ult (eo)fffg']}
T
= (Y [Pag - Paga g, 0] 80} {7 5 1@l 00 200}
= o {NTIAY [Pro — Paon O] A0V 71 S L (69) Ty (69) £9£9 — 71 3 Ty, (6) Ly (6°) £9£
1 A9 AJHo+AJH 5 1 = t t t it = t 1t

LA {p Jim {NTIAY [Pao — Prog,, s aom,, (0] AS [B9 (0°,0°) — =5 (0,6°)] }

= {Bua () [B (6°,0°) — 3%, (0,6°)]}

where B2 (0) = plimy 0 {N_IA?/ [PA? - PAQI:I22+A(1’I:I12 (9)] A?}: taking into account Assumption C1, it follows
that plimy 700 b12 (#) > 0. In an analogous way it can be proved that plimy 70 b13 (#) > 0 and plim N, 17—, o0 b14 (6) >

0. Then
p Jim by (0) =p Jim bi1(6)+p lim bz (6) +p Jim big(0) +p lim bra(6) >0, V006"
Consider now bz (0). We have
—1 L 0 / 00 —1 L 0 / 00
bar (6) = 2(NT)™" 32 Tae (6) e (6°) efPpg AREY = 2(NT)™" 32 Tar () Lne (6°) €iP agrr,, 4 agina, (0) AT

By Lemma A.1(c) and Assumption C1,

T N
(NT)™* t; Tt (6) Tne (6°) P 5o ADEY >

T
’wmlz;M@MWMMm
i=1t=

IN

T
7-1/2 t; Ipe (6°) et A,

T 1/2 N 271/2
T=1 3 ||l (9)ft0||2} N-1/2 | N-1 21
t=1 i=
1
= Op|—].
”(\/ﬁ)
Further,

£ 1
-1 0\ o/ 0e0 __
(NT) tgl I[]_t (9) Hlt (9 )etPAll)I:In«l»AgI:Igl (9) Alft = Op ( N) .

Therefore, b21 (0) = Op (1 /\/N) In an analogous way, it can be proved that b2z (0) = Op <1 /\/ﬁ) bas (0) =
Op <1/\/]V) b24 (0) = Op (l/ﬁ) Therefore, bz (0) = Op (1/\/N) 2 0as N — oo.
Finally, consider bz (). We have, b31 (0) = op (1) and bsz2 (8) = op (1). Further, [PA&) — PA?ﬁ11+Agﬁ21 (9)] and
[PAg =P rof,, 1AV, (9)] are positive semi-definite matrices, which implies that b3z (#) > 0 and bsq () > 0: this
2 1

implies that plimy 70 b3 (#) > 0. This completes the proof of the lemma. m

31



A.2 Proofs of Results in Section 3.5
Let
g% (01,02) = |Ia¢ (02) — I2¢ (01)] ||fest||, i=1,...,N, t=1,...,T,
a9 (01,02) = |I2¢ (62) — I (01) ||IE0)], t=1,....,T,

w®, (0) = |Tz¢ (0) — Tz¢ (6°)] (89€0)%, i=1,...,N, t=1,...,T,

0( 0 9) 1 1 é\’: i 0 (0)

w? (a?,0) = il WS 7
N T 2™

0 (.0 118 Z 0700

B (a®.0) = 5 3 3 Tat (0) 67 e

Lemma A.4 There exists a C1 < 0o such that for all 0 < 01 < 02 <0y and s <4,

E{[¢% (01,02)]°} <C1102—01], i=1,...,N, (20)

and

E{[¢) (01,02)]°} < C1102 — 61]. (21)

Lemma A.5 There exists a K < oo such that for all 0, < 61 < 02 <0y,

2
< K |02 —01].

% ZT: {[Q? (61,62)]° —E{[Q? (91,92)]2}}

T =1

Lemma A.6 There exist constants B > 0 and 0 < d < co such that for allm > 0 and € > 0, there exists a v < oo such
that for all N and T,
0 (0
w" (a”,0
Pr ~inf (70)
<o—o0|<p |0 —06°|
T

U
N(2o¢071)

Lemma A.7 For alln >0 and e > 0, there exists some v < oo such that for any B < oo,

<(1-n)d| <e.

[ (0°.6) - 10 (a,6°)]
=

Pr sup
<|6—69|<B

>n| <e.

v
N(2a071)T

Proof of Theorem 3.4. Let B and d be defined as in Lemma A.6. Pick n > 0 small enough so that
(1—-n)d—2n>0. (22)

Let Ex7 be the joint event that )9 - 6’0’ < B, Hj\;if} — )\%f,? is small enough so that (25) below is satisfied, for j = 1,2,

i=1,...,N,t=1,...,T, and

w0 (ao,e)
inf L0 s (-, (23)
WSW*@O\SB |970 |
T
and
hO 0 _hO 0 po
) sup H (Oc ’6) . (Oé ’0 )H ST? (24)
po iy iU S [0=0°]
NE T

Fix € > 0 and pick ¥, N and T so that Pr (Exyr) > 1 —¢ for all N > N and T' > T, which is possible under Corollary 3.1,

and Lemmas A.6 and A.7. Given S (A, F,0) defined in (2), let

1 T
S (a, A, F,6) = Narp 3 B = Aufe = Afa (0)] i — Aufy — Af2 (0)],
t=1
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where fo; (6) = I2¢ () f and A = Ay — Aq. Since S (0407 AF, 9) is continuous in (A, F), for small enough HS\;ZE — A%ftOH,

forj=1,2,i=1,...,N,t=1,...,T, it follows that

s <a0,A, F,e) _s (aO,A,F,eo) - ﬁ ) [xt — A — ARy («9)]' [xt — Avf, — Ay (0)]
t=
1 L ALF A £ 0 ! AP A F 0
i & [xt = Aaf — Abae (69)] [xe — Aufi — Afz (6°)]
t=1

1 T
- D NaO T o [xe = AVEY = ARE, O] [xe — AJE? — A5, ()]
- ST

~ e o [ — A - AN, (0°)] [xe — AJE? — A5, (0°)]

= D[S (a® A% F% 09) — S (a A, F°,6°)],

for some D > 0, where for (0) = Io¢ (0) f1, A = Ay —Aq, £, (0) = Loy (0) £2 and A® = A— A0 the sign of S (ao, AR, 0) -

S (oco7 A F, 90> is then equal to the sign of S (ao, AO FO, 0) -5 (ao, AO FO, 90). We have

1 T
§ (a0, A0, FO,0) = (a®, ACFO,00) = oo 57 (6, (0) 5, (0°))' AVAC [, (0) 15, (¢°)
1 T
2o 2 [8,0) ~ 85, ()] A

= 5 (a,0) + 55 (a,0)

and

S (a® A% FO 9) — S (a9, A° FO ¢° 1 T
( = b - e 580 -5 0] a8 [, 0 8, )
1 T
2 Narr e g0 o [ (O~ BB (7)) Ae: (26)
S1 (aO,G) n So (aO,Q)
ECIM T

Suppose 0 € [90 + T)N7(2a071)T*1, 69 + B] and that event Ex7 holds. It follows that

S1(ad,0 1 N T
O - ) B B0 - 5,00 86 8,0 -, (@)
1 AR 0 07£0)2 27
NT (600 2 2 2 (O~ e ()] (87'E) 27)
. wO(aO,e)
o 0—0"
and (a0 )
Sa (a”, 0 1 T
oo T ANerie ] g O T @) AV
= -2 . 5 3 [£9, (0) — £, (69)] 8%;
= N (=) o L (O~ B ()] e N
. . N T / (28)
> - g0 W‘—ltzl [£5, (0) — £, (6°)]" 60eit
_o 1% (2%,6) — b° (o?, 6%)]]
6 —0° ’

By (22) through (28) it the follows that for some D > 0,

S (ao,[x,]?‘,e) _s (aO,A,F,90> .
>

w9 (ao,é') ||h0 (aO,G) —hO (aO,QO) H
-2
9700 = 0

0—0 0—6°

> D[1-n)d—2n] >0.

Given the event En7p, if 6 € [90 +17N7(2°‘071)T_1,90 + B] then S (aO,A, F, 9) - S (aO,A,F,90> > 0. In a sim-

ilar way, it can be shown that if 6 € [90 - B,6° fﬁNf(zo‘O*l)T_l] then S <a0,]\,F,0> - S (aO,A,F,Q()) > 0. As
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S(aO,A,F,@> — S(aO,A,ﬁ‘,90> < 0, if Ey7 occurs then ’9—90‘ < 17N7(2“071)T’1: since Pr (Byr) > 1 — ¢ for
N > N and T > T, then Pr <’9— 6’0’ > T)N_(2a0_1)T*1) < efor N> N and T > T: this is sufficient to show that
N(2-1)p (@ - 00) = Op (1). The convergence rate of the estimator for the loadings follows from (11). m

Proof of Corollary 3.2. Corollary 3.2 easily follows from Theorem 3.4 and the proof is omitted. ®

Proof of Lemma A.4. We show (20): the proof of (21) is analogous. Given a random matrix A,

O B[ALy (0)] = E(Al2 = 0) /2 (6). (20)
Under Assumption CR(b)
SB[ R @] = B (el 2 =0) 7z ©)

IN

(B (I0cil* 12 = 0)] " 1z 0)
< Ctf<o,

where C1 = max [1,C] f. Notice that Io; (01) — I2¢ (f2) is either equal to one or to zero: by a first-order Taylor expansion

it follows that
E{[90 (01,02)]"} = B [[|feit|" T2¢ (01)] — B [[|fPeit || T4 (62)] < C1 02 — 01].
[ |

Proof of Lemma A.5. Lemma 3.4 in Peligrad (1982) shows that under Assumption CR(a) there exists a K’ < oo such

that, taking into account (21) in Lemma A .4,

2
E|:\/1Tt§1{[qg(91,92)]2E{[‘I?(91,92)]2}} :| < K/E{{[q?(al’ez)f7E{[qg(01’92)}2}}2}
< 2kn{ [ (00.02)]}
< 2K'Cy |02 —04] :

setting K = 2K’C1 completes the proof of the lemma. m

Proof of Lemma A.6. For 0 < 09,

1 N
E [wo (cyo7 9)] = Nao Z-;l E [w?t (9)]
L B o) e B B o)
= w s w,;
NO‘O = it NO‘O i:NL!O+1 it
1N000/O 0 (90 p0V] 50 4 L A 0 (p0 g0\ 50
= Nao > 67 [25:(0,0) — =9 (6°,0°)] 67 + Nao > 8y [29:(0,0) — =5, (6°,0°)] 87,
i=1 i=No® 41
and [ o/ 0 ]
OE [w® (aY,0 1 XN
# = Jo 159’Dg (0) fz (0) 82
i=
1o 0110 0 1 l 0/190 0
= N Zl 8;'DR (0) fz (0) 67 + Nao >, 87'DR(0) fz(0)9;

i=Na® 41

by (29) (the sign is reversed if § > 6°). By Assumptions CR(c) and CR(d), OE [w® (a®,0)] /90 is continuous at § = 69,

and OE [wo (ao, 00)} /00 > 0, respectively: there then exists a B small enough such that

0 0
de min E[(a%0)]

> 0.
|o—60|<B a6
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The first-order Taylor expansion of E [wo (040, 0)} about 8 = 0° results in

lei;nokaE [0 (a®,0)] > d|o—6°|, (30)

since E [wo (ao, 90)] = 0. Notice that

2

B{Ju’ (a.0) =B [u® (a.0)] "} = E{'Nio;ﬁlé{wm—E[wnw)]} }
2

< E{;Til{wgw)—mwﬁwn} }

for some Ca < 0o, and

2 2
1 T 1 I
Eq (5 3 {wf (0) - E[w) (0)]} < |21 TS| = 2 {af (6.6°) —E[qf (6.6°)]}
T 1= VT =1 ; t=1,...,N,
S e
by Lemma A.5: since
020 = 1A = A%ill < ATl + [AS: ]l < 2X, i=1,....N, (31)

by Assumption C2, it follows that

B {u® (a0,6) — B [u® (ao,e)]|2}§021765‘41(|0790|. (32)
N(2a071)T
For any n and ¢, set
po /2y (33)
1—n
and
<4

b= 8C216\" K (34)

n2d2 (1—1/b)%e’
Assume N and T large enough so that 17/[N(2O‘071)T} < B, otherwise the lemma is trivially satisfied. For Iy =
1,...,N+landlp =1,...,T+1,set 01, = 09 + ﬂbZN’lblel/[N(anfl)T] , where N and T are integers such that
Ong — 00 = GoN—1pT~1 /[N(%"*l)T] < B, Ony17 —60°> Band Oy 7.1 —0° > B (since 17/[N(2“0’1)T] < B then

NT > 1). By Markov’s inequality, (30), (32) and (34),

b ) | al o2y g g B JER0 e
r sup _ N = < z .
LSy <N, E [w (a®, 01y1r)] 2 m/ ixFiirs |E [w® (a2, 01y17)]|
_ 0_ _ 4
. % L LGN (2e%-1)-116} K(ZelN,T—e)
" in=1lp=1 d? Oryir '90)

c AGINVE (= 1) (= 1

- 9?2 d*% 1y=o bIN L= bIT

4 GIeN'K 1 <€

Toom? d25 (1-1/b)% " 2

it follows that for all 1 < Iy < N and 1 <lp < T, and with probability greater than 1 —¢e /2,

w’ (0‘0791N1T)

_— \ O TNIT) g
E [wO (a0701NlT)]

RS
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Using (33), for any € such that 17/[N(2“071)T] < (9 — 90) < B, there exists some Iy < N and I < T such that

Oinip <0 < min {91N+1,1T,91N,1T+1} and on the event (35)

wY (ao,é’)
(0 —0°)

. w® (a2, 6, 1,.) E [u® (a®,0;,1,)] > (1 B n) [ d (011 —0°)

E [w® (a®,0;,1,)] [min {01N+1»1T>9lw,lu1} _ 90] 2/ [inin {elN+17lT’01N,lT+1} N 00] =({1-nd

where we set (QZNZT — 90) /[min {elN+1vlT’9lelT+1} — 00] = 1/b: this event has probability greater than 1 —e /2 and

then
0 0
- o v’ (a%,6)

ﬁg(e—w)g; (6 —69)
N T

€
<(I-md| <,
2

0
holds. Taking the infimum over —ﬁ/[N(%‘ 71)T] > (6’ - 60) > —B allows to prove a similar inequality using the same
argument: this completes the proof of the lemma. m

Proof of Lemma A.7. Given some C3 < oo to be determined later, fix n > 0 and set

8 C1052°
p=—p GO (36)
(0.5)%(0.5)% 7%

For iy =1,...,Nand Ilpr = 1,...,T, set 0,1, — 00 = 172lN’12lT’1/[N(2“071)T} < B. Markov’s inequality, (20) in

Lemma A.4, (31) and (36) ensure that

E [|[B (0.01,1,) ~ b (a2,6%) ]

pr| sup P70 001p) —0O (. 00)] L5
LS iz =0 IR (Oini, — )’
ST
1 1 Xz 0 070 ’
E w07 2 2 (T2 (Oiyig) —T2e (0)] 87 Eein
1 % i N i=1t=1
<
I e il (CIr— 60)2
LG 11X s E{||[T2¢ (Ouyiy) — Tae (6°)] 8" €eur]| }
T2 N2OT2 2 S i (611, —0°)°
N B G 189117 B { [12¢ (61ir) — Tz (6°)] [|E0:e >}
T O N2 T 223 (0151 — 0°)°
< G 1 1N L]0 (B —07)
N 772 N(2D‘071) T In=1lp=1 (GlNlT - 90)2
_ 401035\2 N 1 i 1
n?% In=1 (Z}N_l) lr=1 (2ZT_1)

- 4 C1C3X2 <€
= (0.5)2(0.5)2 m2v T 2

It follows that for all 1 < Iy < N and 1 < lp < T, and with probability greater than 1 —e /2,

[ (a® O1y1,) — 0O (a®, %) |
(elNlT 790)

<n,

which implies that

0 (0 g) _ 1O (0 o0
o " [ (a0,0) ~B° (a2, 00)|

ﬁg(g—ﬂo)gg (6 —0°)
N T

>n| <

N ™

0
Taking the infimum over —o / [N(zo‘ 71)T] > (0 — 90) > —B allows to prove a similar inequality using the same argument,

which completes the proof. m
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A.3 Proof of the Result in Section 4

~ ~ ~ !
Given the loss function in (12) and for any fixed R > 1, let Af 0) = [)\ﬁ @)),.. .,)\fN (9)] be the N X R matrix of

estimated loadings for fixed 6, for j = 1,2. Let \7? () be the R x R diagonal matrix of the first R largest eigenvalues of

3ix (0) in (7) in decreasing order, for j = 1,2. Define the R? x R rotation matrix

A
FO (0°) F (6°)' AVAF (6°)
T N

- - -1
H (0°) = VE@), j=12, (37)
where F9 (0) is defined in Section 3.4.

Lemma A.8 For any fited R > 1, there exists a R® x R matriz I:IJRJ (90) as defined in (37), with rank [I:Iﬁ (90)] =

min{RO,R}, and CnT = min{\/]v, \/T}, such that
1 N <R - 2 .
Ao |3 S50 -8 @[ <o, 512

R
Lemma A.9 Let 0 be the estimator for 89 obtained from the loss function in (12) for any a priori chosen number of

factors R = R such that R > R®. Then under assumptions I, C1-C4 and CR,
N(a®=1)p (éR - 90) —0,(1).
Proof of Theorem 4.1. Consider
x; = T1y (6°) A0 +Tpy (6°) AJEY + e = A° [Ty (6°) £/, Tay (6°) £27]" + e,

where A% = (A%, A9) = [(A%, - A%n) s (A1 A8x) | = (A%, A%) s a RO x 2RO matrix, with AD = (A%}, A)’
a 2RY x 1 vector, and [I1¢ (6°) £, T2 (6°) fto’}l is a 2RO x 1 vector. Given the loss function in (12), let ££ (9) be the R x 1
vector of estimated factors for fixed 6, for t = 1,...,T. Further, let ﬁﬁ* (6°) be the generalized inverse of ﬁf‘j (6°) in

(37) such that I:Ifj (00) I:Ifj"' (00) =1Ig, for 5 =1,2. Lemmas A.8 and A.9 imply that

1 N <r (4R) g 2 .
Cr {Ni; Aji (9 )fo/j (6°)" A9, ]:opu), ji=12,
so that
(1 . R R . 2
Chr |7 25, (%) = e (07) B ) + a0 () B 0] 52 | = 00 1)
t=1
or
AR\ 4 ~R 2
, 1| T (0 )fﬁ (6’ ) Iy (6°) AT (6°) £9
Onr ?Z R\ ap (AR - R =0p(1),
S D (9 )ftR (9 ) Io: (6°) AL (6°) £2

which is analogous to Theorem 1 and Corollary 2 in Bai and Ng (2002): this is sufficient to complete the proof of the
theorem. m

Proof of Lemma A.8. The proof of Lemma A.8 is similar to that of Theorem 3.2 and omitted. ®
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Proof of Lemma A.9. Given the loss function in (12) and following similar steps as in the proof of Theorem 3.3, it can
be shown that
im P{s [AR ), FR (0),9] <s [AR (6°) , FR (6°) ,90]} —0, V9#6°, RO<R< Rmax

N, T—oco

In order to prove the lemma it is then sufficient to show that
S [AT (6°), B (6°),6°] — S [A (6°),F (6°) ,6°] = 0, (C33)

for any fixed R such that R® < R < R™a where § [A ), (8) ,0] -3 [AR° ), FR (8), 0]. Notice that

|5 [A% (6°) B (6°),0°] — S [A (6°) , F (6°) ,6°]|
< |S[AR(69),F7 (6°),6°] - 5 (A%, FO,09)| + |5 (A%, F0,60) — S [ (6°) , F (6°),6°] |
< 2 omax s [AR (69) ,F7 (6°),6°] — 5 (A%, FO,0)] :

it therefore is sufficient to show that
AR (p0\ faR [0\ Ao 0 0 0y _ —2
S [AT (6°) B (69),6°] - 5 (A%, F°,6°) = 0, (C33)
for each R such that RO < R < R™2X_ We have

Tie (0°) AQED + To¢ (0°) AJED + ¢

Ly
[

Ty (0°) AQHT, (0°) T (0°) £ + T (0°) AJHE, (0°) Fg5h (60°) £ +er,
where I:IJRJJr (90) is defined in the proof of Theorem 4.1, for j = 1,2. This implies

T (0°) AfF (0°) BT (6°) £ + Tor (6°) AST (0°) FL5" (6°) £7

Xt =
ter —Tu, (0°) [AF (0°) — ASTEER (6°)] FLEF (69) 60 — T, (6°) [AF (6°) — ASTEE, (0°)] FLLSF (%) €0
= T (6°) AT (6°) HITF (60°) £ + Tt (6°) ASF (6°) FZ5" (6°) £ + e,
where

ur = e —Tug (6°) [AF (0°) — ASELE, (6°)| FAfT (6°) €7 — 1ot (6°) [AF (60°) — ASFLE, (6°) ] FHLST (6) £7.

Notice that

M=

S (A% FC,0°%) = (NT)™! 3 ejeq

-
Il
—
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and

t=1
T
= (NT)™' Y ejes
t=1
T T, (6°) EH (69) [AR (6°) — AOHE (09)]
oyt g ] T OOV B (00)" AT (00) - ATE )], .
EU e (00) BET (0°) [AR (6°) — ASHE, (0°)]

vyt Eo ] T OV [AR @) At )] [Af 00) - apis @] w0 |,
t=1

o (0°) B (6°) [AF (0°) — AQAE (00)] [AF (0°) — AGE, (00)] B (0°)

= S(A%FO,00) + 5D [AR (6°) , B (0°) 0 ] + 8@ [AR (6°) , B R (°), 90]

so that

|S[AR (0°) B (69),6°] — S (A%, FO,0°)| =[S [AR (6°),FF (6°),6°] + 5™ [AR (6°) , B (6°) ,6°]|

~ R (00) 790] ’ + )5(2) [AR (90) JBR (90) 790] ‘ i

A
W
=
»
2y
=
N

For any A x A matrix A, |tr (A)] < A||A||, where A denotes the trace operator. It follows

| [AR (6°) B (6°) 6] |

)|

T T, (6°) RS () [AR (6°) — AOHE, (6°)]
B D o A L >[ < > o) |
T A (6°) ﬂ§;+ [ — AgEg, ()]
[ AR (%) — AYHER ( 1
HR+ 90 H H ) \/N 11 ‘\/7 Z Hlt (00) ethl
< 2R ) AOHR 90
+ HHR+ GO)H H N 22 H T z Ios (9 )etfo’
( 1/2 N 27 1/2
0 o2 L LML 0) o £0
o [ (9 ) — Li } Nl B igl \/"ft§1 Iie (6°) eqf]
. +HHR+ 90 H N R (90) _fAR (90)/)\0‘ 2 v RN IXV: 1 i I (90)6, £0 ik
= 1 21 22 21 \/T N = T &~ 2t atly

= O (CKIIT> \/» +Op <CNT> \/IT =0p <CKI?F>

by Assumption C.4 and Lemma A.8. Further,

| [AR (6°) ,BF (6°),6°]| = S [AF (6°) ,FF (6°),6°]
T YOsR 00 err 7400 10 |12 1 0y ||I£0]|2
< NZ Ari (07) —H{Y (6°)° A%, ] Tzﬂlt(e)Hft”]
=1 t=1
- . , R T
v Z R e -an @) *%ﬂ [t @) | 7 £ e (09) ||f£||2}
1 Ny -~
1 2 |:N11 i (00) H (60) AO ”
< (rmwer)d B
Flx B8 00 - @y a0

Op (1) - [OP (C&%) <Op (1) + Op (C;f%> -Op (1)] =0p (C;JQT) )

which completes the proof of the lemma. ®
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