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Abstract

The multivariate analysis of a panel of economic and financial time series with
mixed frequencies is a challenging problem. In this paper we propose a weighted
maximum likelihood estimator (ML) for the class of mixed frequency dynamic fac-
tor models that is specified by means of a multivariate model with a low frequency
time index. This weighted ML estimator introduces variable-specific weights in the
likelihood function to let some variable equations be of more importance during the
estimation process. We derive the asymptotic properties of the weighted maximum
likelihood estimator and we show that the estimator is consistent and asymptoti-
cally normal. We show that the weighted ML estimator outperforms the classical
ML estimator in approximating the true unknown distribution of the data as well as
out-of-sample forecasting accuracy. We also verify the weighted estimation method
in a Monte Carlo study to investigate the effect of different choices for the weights
in different scenarios. Furthermore, we characterize the relative computational effi-
ciency of model specifications with different time frequencies. Finally, we empirically
illustrate the new developments for the extraction of a coincident economic indicator
from a small panel of mixed frequency economic time series.

Keywords: Asymptotic theory, Forecasting, Kalman filter, Nowcasting, State space.
JEL classification: C13, C32, C53, E17.

1 Introduction

The multivariate analysis of a panel of economic and financial time series with mixed
frequencies can be treated by a range of different approaches. The problem of mixed
frequency time series is regarded as a challenging problem in many applied econometric
studies. Currently there are two main competing approaches in the literature to handle
mixed frequency time series: partial model and full system methods. This classification
is adopted from Banbura, Giannone, Modugno, and Reichlin (2013). For the partial
model solution, the multivariate model specifications focus particularly on low frequency
∗Contact: f.blasques@vu.nl, s.j.koopman@vu.nl, m.i.p.mallee@vu.nl and z2.zhang@vu.nl
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time series variables while high frequency explanatory variables are aggregated to the
lower frequency. The dynamics of the explanatory variables are not described by the
model. When the full system method is adopted, the low and high frequency variables
are modeled simultaneously. This approach can model feedback between variables since
all variables are endogenous. In most full system methods all variables are modeled at
the high frequency where series observed at a low frequency have missing values.

The most commonly used partial model methods are Bridge models and Mixed Data
Sampling (MIDAS) models. In Bridge models the high frequency data are forecasted
up to the desired forecast horizon in a separate time series model. These forecasts are
then aggregated to the lower frequency and are used as explanatory variables in a lower
frequency time series model as contemporaneous values. Bridge models are often used
to forecast quarterly Gross Domestic Product (GDP) using a set of monthly observed
indicators. Trehan (1989) is the first application of Bridge equations in this setting. Baf-
figi, Golinelli, and Parigi (2004) and Golinelli and Parigi (2007) use Bridge models where
GDP is predicted by the National Accounts income-expenditure identity. The MIDAS
approach was proposed by Ghysels, Santa-Clara, and Valkanov (2006). As in Bridge
models, the series with the lower frequency are regressed on the series with the higher
frequency. However, when forecasting with MIDAS regression only one step is required.
To obtain forecasts at horizon h, the values of yt are simply regressed on the values of the
indicators up to period t− h and the dynamics of the regressors are not specified by the
model. In MIDAS regressions, the higher frequency series are not aggregated, but each lag
has its own regression coefficient. To avoid parameter proliferation, the coefficients of the
different lags are described by a weighting function. Foroni, Marcellino, and Schumacher
(2012) propose the use of unconstrained distributed lags of the high frequency indicators.
This approach is referred to as unrestricted MIDAS or U-MIDAS.

Marcellino, Carriero, and Clark (2014) propose a method for producing current-
quarter forecasts of GDP growth with a large range of available within-the-quarter monthly
observations of economic indicators. Each time series of monthly indicators is transformed
into three quarterly time series, each containing observations for, respectively, the first,
second or third month of the quarter. Hence, there can be missing observations at the end
of some of these three time series, depending on the specific month of the quarter. They
include in the model only the constructed quarterly series without missing observations
at the moment in time the forecast is formed. They use Bayesian methods to estimate
the resulting model, which expands in size as more monthly data on the quarter become
available.

Popular examples of full system methods are common factor models and mixed fre-
quency vector autoregressive (VAR) models. Common factor models are a way to exploit
the whole available information set by condensing all time series into a few factors. One
popular example is the construction of composite indicators (CI). These can be con-
structed for forecasting or for describing the current state of the economy. Stock and
Watson (1990) construct a coincident index by applying maximum likelihood analysis to
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four monthly coincident indicators. Mariano and Murasawa (2003) extend this model by
including quarterly GDP data and thus allowing for mixed frequency data. The model is
cast into state space form and the likelihood is maximized using the Kalman Filter. In
their model, all variables are driven by one unobserved monthly common factor and by
an idiosyncratic factor for each individual series.

In the approach of Mariano and Murasawa (2003) the model operates at the highest
frequency in the data, so all series are treated as monthly time series. All variables are
assumed to be generated, but not necessarily observed, at this highest frequency, and thus
can be used to produce forecasts of any variable at this frequency. The quarterly variable
(GDP growth) is observed every third month and has missing values for the first two
months of every quarter. This series is interpolated in order to estimate the unobserved
latent monthly GDP. The suggested filtering algorithm is only an approximation. Aruoba,
Diebold, and Scotti (2008) extend this model, but avoid approximations. They employ
a one factor dynamic model to extract the unobserved state of the US economy, using
four variables, including real high frequency (weekly and daily) data. The inclusion of
high frequency daily data does not really change the picture compared with using only
monthly indicators, but updates are available sooner.

Wohlrabe (2009) provides an extensive and detailed overview of the different models
that have been explored using both of these approaches. Extensive descriptions of all
model specifications and many empirical examples with comparisons are provided.

In this paper we propose to follow the method studied in Bittanti and Colaneri (2000),
Colaneri (2000,2009), Chen et al. (2012), Ghysels (2012) and Foroni et al. (2014), in which
the higher frequency data is stacked into a vector of observations which has the lower
frequency. [@ SJ: highlight here the difference (if any) between our method
and those employed in the papers mentioned above] This is similar to the method
proposed by Marcellino, Carriero, and Clark (2014). However, it uses a full system
approach, in which the dynamics of all variables are described by the model. To discuss
our methods in more specific terms, we consider a dynamic factor model, similar to the
one proposed by Mariano and Murasawa (2003). We show that there is no need to
introduce artificial missing values in the analysis while all the high frequency information
is preserved and can still be analyzed in a computationally feasible way. Also the high
frequency (monthly) optimal updating of new information can remain without the need
to increase computational complexities.

From an inferential perspective, it is important to highlight the following two fun-
damental characteristics of the mixed frequency dynamic factor model. First, the use
of common factors that extract commonalities in the dynamics of the high-frequency
variables is clearly intended to provide a parsimonious way of linking the low-frequency
variable of interest with the high-frequency variables. In this sense, the model is not
designed with the intent of providing a correct and exact representation of the true un-
known data generating process (DGP). Instead, the factors provide a convenient tool to
model relations that are potentially very complex. Second, mixed frequency dynamic

3



factor model is quite unique in that different variables have markedly different roles. In
particular, while the low-frequency variable plays a ‘central role’ as the variable of interest
for which we wish to obtains accurate forecasts, the high-frequency variables play a more
‘secondary role’ as instruments that may help improve the forecasting accuracy of the
low-frequency variable. These two fundamental characteristics of the mixed frequency
dynamic factor model play an important role in parameter estimation and inference as
they establish a framework in which the ML estimator can be improved upon.

In this paper, we show that there exists a weighted ML estimator that achieves bet-
ter forecasting performance than the classical ML estimator. The proposed weighted
ML estimator gives extra weight to one or more variables of interest in a full system
model approach. In particular, in a dynamic factor model for the nowcasting and fore-
casting of a quarterly growth in gross domestic product (GDP), more weight can be
given to GDP growth in comparison to the other variables in the dynamic factor model.
The variable-specific weights introduced by this novel weighted ML estimator differ con-
siderably from other weighted ML estimators proposed in the literature that introduce
observation-specific weights in the likelihood function. The local ML estimators studied
in Tibshirani and Hastie (1987), Staniswalis (1989) and Eguchi and Copas (1998) assign
a weight to each observation that depends on the distance to a given fixed point. The
robust ML estimator of Markatou, Basu and Lindsay (1997,1998) down-weights observa-
tions that are inconsistent with the postulated model. Similarly, Hu and Zidek (1997)
devise a general principle of relevance that assigns different weights to different observa-
tions in an ML setting. In small samples, this type of estimator can provide important
gains in the trade-off between bias and precision of the ML estimator. The large sam-
ple properties of these estimators are established in Wang et al (2004) for given weights,
and Wang and Zidek (2005) provide a method for estimating the weights based on cross-
validation. Contrary to these examples, we propose a weighted ML estimator that gives
higher weight to a subset of a random vector, i.e. to an entire random scalar sequence
within the modeled multivariate stochastic process. We discuss the asymptotic properties
of this novel weighted maximum likelihood estimator and we show that the estimator is
consistent and asymptotically normal. We further verify our new approach in a Monte
Carlo study to investigate the effect of different choices for the weights in different sce-
narios. We also adopt the weighted likelihood function for parameter estimation in our
empirical study concerning the nowcasting and forecasting of US GDP growth based on
a full system dynamic factor model with mixed frequency variables.

The outline of the paper is as follows. In Section 2 we show how high frequency
autoregressive models can be specified as observationally equivalent models with a lower
frequency. This method is illustrated by means of univariate monthly autoregressive (AR)
processes, which we then formulate as quarterly and yearly AR processes. In many cases
these new formulations lead to computational gains. In Section 3 we show how these
transformations can be used to simultaneously model variables with different frequencies.
We describe the specifications of our new approach in detail and also describe the models
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of other approaches, which will be used as benchmark models in the empirical section.
In Section 4 we present our weighted maximum likelihood approach that is used for
the focusing on key variables within a full system model. Asymptotic properties of the
resulting estimator are derived. We also explore its small-sample properties in a Monte
Carlo study and discuss the effect of using different weights in different scenarios. In
Section 5 we present and explore the results of our empirical study concerning US GDP
growth. We compare the nowcasting and forecasting accuracies of our new approach with
those of benchmark aggregation and interpolation methods. We also study the empirical
relevance of weighted estimation. Section 6 summarizes and concludes.

2 Low Frequency Solution for Univariate Models

2.1 Notation

In this section we discuss a stacking approach used in Ghysels (2012) and Foroni et
al. (2014) and extend it to the mixed frequency dynamic factor model setting. We first
consider the case of monthly data (high frequency) that is represented by quarterly (low
frequency) vectors. We use the notation xmτ for a variable x that is observed on a monthly
(m) basis with monthly time index τ . The observations of the time series xmτ can be
stacked into a quarterly (q) observed 3× 1 vector xqt with quarterly time index t

xqt =


xqt,1
xqt,2
xqt,3

 =


xm3(t−1)+1
xm3(t−1)+2
xm3(t−1)+3

 , (1)

where xqt,i is the i-th element of xqt with index t indicating the number of the quarter
of the observation and index i indicating the number of the month within the quarter;
we have t = 1, . . . , n, i = 1, 2, 3 and τ = 1, . . . , 3n, since each quarter consists of s = 3
months.

In a similar way, we can represent the monthly observations into yearly vectors. The
monthly observed series xmτ can be stacked into a yearly (y) observed 12 × 1 vector xyt
with yearly time index t. We then have

xyt =


xyt,1
xyt,2
...

xyt,12

 =


xm12(t−1)+1
xm12(t−1)+2

...
xm12(t−1)+12

 , (2)

where xyt,i is the i-th element of xyt with the first t indicating the number of the year of
the observation and second index i indicating the number of the month within the year;
we have t = 1, . . . , n, i = 1, . . . , 12 and τ = 1, . . . , 12n, since each year consists of s = 12
months. Throughout this paper, we will use the superscripts m, q and y to indicate the
frequency of time series; we only use this notation where we deem it is necessary. When
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a variable or vector has only one index, this index typically refers to the number of the
month, quarter or year of the observation. The second index refers to the number of the
month within the quarter or year of the observation.

2.2 Linear State Space Models

The general linear Gaussian state space model can be written in a variety of ways. In
this paper we adopt the notation used in Durbin and Koopman (2012), where the model
is given as

xt = Zαt + εt, εt ∼ NID (0, H) ,
αt+1 = Tαt +Rηt, ηt ∼ NID (0, Q) ,

(3)

where xt is a k × 1 vector of observations called the observation vector and αt is an
unobserved m× 1 vector called the state vector. The system matrices Z, T , R, H and Q
are initially assumed to be known and the error terms εt and ηt are assumed to be serially
independent and independent of each other at all time points. In practice, some or all of
the matrices Z, T , R, H and Q will depend on elements of an unknown parameter vector
ψ.

In the state space model, the state vector αt cannot be observed directly and hence
we base the analysis on observations xt. These equations hold true for any frequency, as
long as the state vector has the same frequency as the observation vector. Therefore, we
do not use a superscript to indicate the frequency of the series, although we use these
mostly for low frequency models.

The initial state vector α1 is generated from N(a1, P1), independently of ε1, . . . , εn
and η1, . . . , ηn, where a1 and P1 are assumed known, although P1 may depend on the
parameter vector ψ.

2.3 Autoregressive Processes

We now adopt the stacking method in an autoregressive (AR) model setting. For brevity,
we illustrate the method using an AR(1). Illustrations with AR(p) models or higher
order p are provided in Appendix A. Detailed derivations for all models are provided in
the Technical Appendix.

Monthly observations from the AR(1) process xmτ = φxmτ−1 + εmτ are stacked into the
quarterly 3× 1 vector xqt of (1). The quarterly process of the stacked variable xqt is then
given by the vector autoregressive process

xqt = Txqt−1 +Rεqt (4)

with
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T =


0 0 φ

0 0 φ2

0 0 φ3

 , R =


1 0 0
φ 1 0
φ2 φ 1

 , (5)

such that the variance matrix of the vector xqt , conditional on xqt−1, is equal to σ2
εRR

′.
We notice that all three elements of xqt depend only on the last element of xqt−1 and on
the associating elements of the vector of disturbances εqt . The vector εqt is the result of
stacking the values of εmτ in similar fashion as in (1). The autoregressive process (4) is
equal to the linear Gaussian state space model (3) with state vector αt = xqt and with
system matrices T and R given by (5) and Z = I3, H = 0, Q = σ2

ε and ηt = εqt .

2.4 Computing Times

The AR(p) models can be specified as a linear Gaussian state space model (3) as we have
illustrated in the previous section. Whether the monthly AR model is represented as the
monthly process xmτ , or as the stacked quarterly 3 × 1 vector xqt or as the yearly 12 × 1
vector xyt has no effect on the value of the loglikelihood function for given parameters
φ1, . . . , φp and σ2

ε . The different model representations are observationally equivalent. In
all cases, the Kalman filter can be used for likelihood evaluation. Hence the maximized
loglikelihood value and the corresponding parameter estimates are the same for each case.

However, the representation has an effect on computing times. For example, when the
data are treated as monthly observations, we have n = 12, 000. When the data is stacked
into quarterly 3 × 1 vectors we have n = 4, 000 and with yearly 12 × 1 vectors we only
have n = 1, 000. Furthermore, with different frequencies we have different state vector
lengths, and hence the transition matrix T and the variance matrix σ2

εRR
′ of the state

vector have different dimensions for the different frequencies. The different dimensions
will have a clear effect on the computations for the loglikelihood evaluation.

To illustrate this, we have evaluated the loglikelihood value 10,000 times for AR(p)
models of different orders p and using the three different representations: monthly, quar-
terly and yearly. For each AR(p) process the calculations were performed on a time series
with an AR(p) data generating process, consisting of 12,000 monthly observations. The
loglikelihood value was calculated 10,000 times using the parameter values that maxi-
mized the loglikelihood function. We have verified that all likelihood evaluations resulted
in the same value.

The computing times for the different combinations of AR(p) processes and frequencies
are shown in Table 1. It is clear that for AR(1) and AR(2) processes, the structure with
monthly single observations is most efficient. In these situations the smaller state vector
outweighs the fact that the Kalman Filter has to go through 12,000 iterations instead of
4,000 and 1,000 for the quarterly and yearly structure, respectively. For AR(3) and higher
orders, the quarterly structure is faster than the monthly. This can be explained by the
fact that both structures have the same vector length for AR(3) and higher but the time
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dimension is three times smaller in the quarterly structure. For AR(10) and higher orders,
the yearly structure is the fastest. For these orders the smaller time dimension starts to
outweigh the larger state vector and for AR(12) and higher, all three structures have the
same vector length, due to the number of lags that has to be included in the state vector
in the monthly and quarterly structure. This example clearly illustrates that stacking
observations into vectors with a lower frequency can lead to large gains in computational
efficiency, especially when many lags of the observations are included in the model.

Table 1: Computing times

Computing time (in seconds) State vector length

Monthly Quarterly Yearly Monthly Quarterly Yearly
p (n = 12k) (n = 4k) (n = 1k) (n = 12k) (n = 4k) (n = 1k)

1 10 13 61 1 3 12
2 11 16 67 2 3 12
3 26 18 76 3 3 12
4 41 27 85 4 4 12
5 59 40 92 5 5 12
6 83 56 100 6 6 12
7 106 73 108 7 7 12
8 129 90 116 8 8 12
9 154 111 124 9 9 12
10 191 137 133 10 10 12
11 226 162 139 11 11 12
12 265 190 146 12 12 12

The left panel of this table presents the average computing time (in seconds) that is required to evaluate
the loglikelihood function for an AR(p) model of order p for a monthly time series xmτ that is generated
by an AR(p) model. Three different approaches are used: treating the data as monthly observations,
stacking the data into quarterly 3 × 1 vectors and stacking the data into yearly 12 × 1 vectors. Each value
represents the average over 10,000 simulation runs. For each value of p the fastest of the three approaches
is highlighted. The right panel of this table presents the state vector length for each scenario.

3 Mixed Frequency Dynamic Factor Models

Another situation in which stacking the data into vectors with a lower frequency is very
convenient is when we simultaneously analyze variables which are observed at different
frequencies. Following Ghysels (2012), we then may stack the series observed at higher
frequencies into vectors of the lowest frequency at which one of the variables is observed.

Suppose we have a monthly observed series xmτ , which is modeled by the AR(1) process
(22) with p = 1, that is xmτ = φxx

m
τ−1 + εmτ with the autoregressive parameter φx. We

also have a quarterly observed series yt, which is modeled by the AR(1) process as given
by yt = φyyt−1 + ξt, with ξt ∼ NID

(
0, σ2

ξ

)
, where φy is the autoregressive coefficient for

the quarterly lagged dependent variable yt−1 and ξt is the Gaussian disturbance that is
possibly correlated with εqt in the formulation of (4) for xmτ . We do not use the superscript
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q for yt and ξt, because we assume throughout this section that they are specifically
quarterly variables for which no monthly values become available.

When we stack the values of xmτ into quarterly 3× 1 vectors xqt , as we have discussed
in Section 2, then the two processes for yt and xqt can be combined into a low frequency
multivariate process

yt+1

xqt+1,1
xqt+1,2
xqt+1,3

 =


φy 0 0 0
0 0 0 φx

0 0 0 φ2
x

0 0 0 φ3
x




yt

xqt,1
xqt,2
xqt,3

+


1 0 0 0
0 1 0 0
0 φx 1 0
0 φ2

x φx 1




ξt

εqt,1
εqt,2
εqt,3

 , (6)

for t = 1, . . . , n. We notice the difference between the autoregressive parameters φx and
φy. The parameter φx measures the dependence of xτ on its lagged value xτ−1 of one
month earlier, whereas the parameter φy indicates the dependence of yt on its lagged
value yt−1 of one quarter earlier.

3.1 Dynamic Factor Models

Until now we reviewed the stacking approach in settings already considered in the litera-
ture. Furthermore, we have shown new simulation-based evidence that in some situations
computing times can be reduced by stacking the monthly data into observation vectors
with a lower frequency. This is especially the case when many lags of the dependent
variable are included in the model. In what follows, we extend the stacking approach to
the setting of a mixed-frequency dynamic factor model.

It is an increasingly common practice to simultaneously model yt and xmτ by means of
an unobserved common dynamic factor. The typical example is to have a large vector of
xmτ variables that are potentially useful for the forecasting of yt. For illustrative purposes,
we initially assume that xmτ is a single variable. We then introduce a dynamic factor with
a monthly frequency and we denote this factor by fmτ . The monthly variable xmτ has
loading βx on this common factor. This process can be described as

xmτ = βxf
m
τ + εmτ , εmτ ∼ NID

(
0, σ2

ε

)
, (7)

where the common factor fmτ is specified by an AR(p) process, using the formulation

fmτ = φf,1f
m
τ−1 + φf,2f

m
τ−2 + . . .+ φf,pf

m
τ−p + ηmτ , ηmτ ∼ NID

(
0, σ2

η

)
, (8)

The quarterly variable yt is also loaded on the common factor fmτ , with loading βy on all
three values of fmτ within the quarter t. This can be described as

yt = βyf
m
(3t−2) + βyf

m
(3t−1) + βyf

m
(3t) + ξt

=
(
βy βy βy

)
f qt + ξt, ξt ∼ NID

(
0, σ2

ξ

)
,

(9)

where f qt is the 3× 1 vector of stacked observations of the process fmτ using the stacking
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approach that was described for the series xmτ in (1).
Hence, the simultaneous process for yt and xmτ can be described by a process in which

the values of xmτ and fmτ are stacked into the quarterly 3× 1 vectors xqt and f
q
t

yt

xqt,1
xqt,2
xqt,3

 =


βy βy βy

βx 0 0
0 βx 0
0 0 βx



f qt,1
f qt,2
f qt,3

+


ξt

εmt,1
εmt,2
εmt,3

 (10)

where the variance matrix of the disturbances is a 4 × 4 diagonal matrix with the first
diagonal element equal to σ2

ξ and the other three diagonal elements equal to σ2
ε . The

vector autoregressive process for f qt is given by

f qt+1 = Tff
q
t +Rfη

q
t , ηqt ∼ NID

(
0, σ2

η

)
, (11)

It is straightforward to generalize the model for yt by having different loadings βy,1, βy,2
and βy,3 for the three values of f qt within the quarter associated with t. Additional
(monthly and quarterly) variables can also be included into the model and the model can
be extended with specific factors for specific variables. The generality of the state space
framework of Section 2.2 can be fully exploited.

We further can generalize the current specification by considering xmτ as a k×1 vector
of variables. Mariano and Murasawa (2003) analyze such a dynamic factor model with
one quarterly observed variable (in their case GDP growth) and four (k = 4) monthly
observed economic indicators. In their analysis, they extend the Stock and Watson (1990)
coincident index for business cycles, which uses four monthly indicators, with quarterly
observed real GDP growth. Here we adopt this modeling framework but our analysis
is based on the low frequency stacking approach as indicated above. In the empirical
illustration of Section 5 we investigate different approaches for the simultaneous modeling
of the five time series with a mix of quarterly and monthly frequencies.

In what follows, we discuss the stacking approach for this mixed frequency dynamic
factor model. A review of the original solution by Mariano and Murasawa (2003) in
treating mixed frequency data is analyzed in the techincal appendix. Further discussion
concerning a second approach where all series are modeled at the lowest frequency by
aggregating the high frequency series to quarterly totals can also be found in the Technical
Appendix.

3.2 Stacking Approach

We now introduce the stacking method of Section 2 for the mixed frequency dynamic
factor model in the spirit of Mariano and Murasawa (2003). We consider for each quarter
the observed values of yt and xqt , where x

q
t consists of three stacked observations of the

monthly vector variable xmτ , which we define as the k × 1 vector
(
x

(1)
τ , . . . , x

(k)
τ

)′
. In this

approach, no artificial missing values are needed and no information is lost regarding the
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high frequency series and high frequency dynamics. When we drop the superscript q from
the stacked vector xqt , we obtain the following model



yt

x
(1)
t,1
x

(1)
t,2
x

(1)
t,3
...

x
(k)
t,1
x

(k)
t,2
x

(k)
t,3


=



βy βy βy 1 0 0 0 . . . 0 0 0
βx(1) 0 0 0 1 0 0 . . . 0 0 0

0 βx(1) 0 0 0 1 0 . . . 0 0 0
0 0 βx(1) 0 0 0 1 . . . 0 0 0

...
... . . . ...

βx(k) 0 0 0 0 0 0 . . . 1 0 0
0 βx(k) 0 0 0 0 0 . . . 0 1 0
0 0 βx(k) 0 0 0 0 . . . 0 0 1





f qt,1
f qt,2
f qt,3
ut

v
(1)
t,1
v

(1)
t,2
v

(1)
t,3
...

v
(k)
t,1
v

(k)
t,2
v

(k)
t,3



+



ξt

ε
(1)
t,1
ε

(1)
t,2
ε

(1)
t,3
...
ε

(k)
t,1
ε

(k)
t,2
ε

(k)
t,3



(12)
for t = 1, . . . , n. Each vector series x(i)

t and v
(i)
t have dimension 3 × 1 vectors; more

formally we can write x(i)
t =

(
x

(i)
t,1, x

(i)
t,2, x

(i)
t,3

)′
and v

(i)
t =

(
v

(i)
t,1, v

(i)
t,2, v

(i)
t,3

)′
. The quarterly

observed yt has the same loadings βy on all three elements of f qt , which is the 3×1 vector
of stacked values of the monthly unobserved dynamic factor fmτ . Each element of x(i)

t

depends on the corresponding element of the vector f qt with loading βx(i) , for i = 1, . . . , k.

We can also opt for a quarterly unobserved common factor ft so that we only have one
value for each quarter, for all three months. In this case, we do not use the superscript q
and the model equation becomes



yt

x
(1)
t,1
x

(1)
t,2
x

(1)
t,3
...

x
(k)
t,1
x

(k)
t,2
x

(k)
t,3


=



βy 1 0 0 0 . . . 0 0 0
βx(1) 0 1 0 0 . . . 0 0 0
βx(1) 0 0 1 0 . . . 0 0 0
βx(1) 0 0 0 1 . . . 0 0 0
...

... . . . ...
βx(k) 0 0 0 0 . . . 1 0 0
βx(k) 0 0 0 0 . . . 0 1 0
βx(k) 0 0 0 0 . . . 0 0 1





ft

ut

v
(1)
t,1
v

(1)
t,2
v

(1)
t,3
v

(2)
t,1
...

v
(k)
t,3


+



ξt

ε
(1)
t,1
ε

(1)
t,2
ε

(1)
t,3
ε

(2)
t,1
...
ε

(k)
t,3


(13)

where ft is now a univariate quarterly dynamic factor. Here the quarterly observed
variable yt depends on the factor with loading βy while each element of x(i)

t also depends
on ft and with the same loading βx(i) , for i = 1, . . . , k. We will hereafter refer to our
solution as the Mixed Frequency Stacking (MFS) method. The former case of (12) has
a monthly dynamic factor and is labelled as MFS-M while the latter case of (13) has a
quarterly factor and is labelled as MFS-Q.

For both MFS-M and MFS-Q models, the dynamic factor ft and the idiosyncratic
factors ut and vt are modeled as AR processes as in (53). There are no interactions
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between the series of ft, ut and vt nor between the series of v(i)
t and v(j)

t for any i 6= j.

3.3 Generalizations

The mixed frequency dynamic factor model with monthly observed variables xmτ that is
stacked into the quarterly variable xqt and a quarterly observed variable yt, is a specific
example in which our stacking approach can be used to simultaneously model variables
with mixed frequencies. We emphasize that the use of the stacking approach is not
limited to this particular example. The approach can handle multiple variables with
multiple different frequencies, as long as the observations of all variables can be stacked
into vectors that have the lowest frequency. For example, if one or more yearly observed
variables zyt would need to be added to the model, then all variables would have to be
stacked into yearly vectors of observations. It is also possible to include variables with
higher frequencies, such as daily or weekly. It only requires a somewhat more elaborate
representation in state space form.

4 Weighted Maximum Likelihood Estimator

We now turn to the issue of parameter estimation and inference for the mixed frequency
dynamic factor model described in the previous section. Since evaluating the likelihood
function poses no major challenges in this setting, then it is also possible to produce
ML estimates of the parameter vector of interest. As we shall see below however, the
ML estimator is generally not the best estimator in the context of our mixed frequency
dynamic factor model. This occurs essentially because the model is designed to:

(i) provide a parsimonious approximation to a complex DGP;

(ii) achieve accurate forecasts for only a subset of the observed variables.

Point (i) arises naturally since the factor structure of the model is essentially a con-
venient tool for obtaining simple description of a potentially very complex interactions
between the economic variables observed at different frequencies. In particular, the com-
mon factors that summarize the commonalities in the dynamics of the high-frequency
variables deliver a parsimonious description of the relation between the low-frequency
variable of interest and the high-frequency variables. As such, the model is really only
intended to approximate the true unknown DGP. It is not intended to be an exact repre-
sentation of the true underlying dynamics of the economy.

Point (ii) is concerned with the asymmetric treatment of the variables in the mixed
frequency dynamic factor model. Specifically, while the low-frequency variable plays the
role of ‘variable of interest’, the high-frequency variables play only the role of ‘instruments’
that hopefully help improving the forecasting accuracy of the low-frequency variable. In
other words, all efforts lie on improving the forecasting accuracy of the low-frequency
variable, as opposed to approximating the joint distribution of the observed data as a
whole.
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In the context of parameter estimation, points (i) and (ii) force us to address convinc-
ingly (a) the problem of model misspecification; and (b) the crucial focus on a subset of
variables only. Individually, each of these issues are not sufficient to justify abandoning
the ML estimator, but taken together, they are. Indeed, if we are interested only on a
subset of the variables, but the model is correctly specified, then the ML estimator is still
the best under the usual regularity conditions that make it consistent and efficient. In
particular, by converging to the true parameter and attaining a minimum variance, the
ML estimator provides the best possible parameter estimates for the purpose of forecast-
ing the variable of interest. This is true even if the variable of interest happens to be only
a subset of the observed variables. Similarly, if a model is misspecified but our interest lies
in forecasting all observed variables, then there are still very favorable reasons to employ
the ML estimator. Indeed, under well-known conditions, the ML estimator converges to a
pseudo-true parameter that minimizes the Kullback-Leilber (KL) divergence between the
true joint distribution of the data and the model-implied distribution. The KL divergence
has well established information-theoretic properties. Furthermore, under weak regularity
conditions and depending on the distribution of the data, it is also easy to show that the
limit pseudo-true parameter optimizes forecasting accuracy. As we shall see below how-
ever, when taken together, points (i) and (ii) imply that the ML estimator is no longer
the best possible estimator available. As such, these two features that characterize our
dynamic mixed frequency dynamic factor model call for a novel estimation approach that
improves the forecasting accuracy of the variable of interest. We provide both theoreti-
cal and simulation-based evidence that a weighted ML estimator outperforms the classic
ML estimator in forecasting the variable of interest. The ability to outperform the ML
estimator is also visible in empirically relevant applications to economic data.

In this section we consider the basic dynamic factor model (7), (8) and (9) where both
yt and xmτ can be treated as vectors. The same developments can be easily adapted for
more general dynamic factor specifications. The loglikelihood function for the model can
be given by

LT (ψ, fm1 ) := log p(y, x;ψ) = log p(y|x;ψ) + log p(x;ψ), (14)

where p is the Gaussian density function, stacked vectors y and x collect all T observations
available for the variables yt and xmτ in the sample, respectively, the initial value of the
monthly unobserved dynamic factor fm1 is treated as a fixed value, parameter vector ψ
collects all unknown coefficients in the model including the factor loadings βx and βy,
autoregressive parameters for the AR process, and the variances of the disturbances. The
loglikelihood expression shows that the joint density can alternatively be expressed by a
conditional density multiplied by a marginal density. For our purpose this expression is
useful as it highlights the different roles of y and x: the variable yt is our key variable for
which we require accurate model-based forecasts while the variables represented by xmτ
are typically instrumental to improve the nowcasts and forecasts of yt.

Under the assumption that y and x are jointly generated by a Gaussian dynamic factor
model such as (7), (8) and (9), we can apply the Kalman filter to evaluate the loglikelihood
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function via the prediction error decomposition. Koopman and Durbin (2000) discuss an
alternative filtering method in which each element of the observation vector (y′, x′)′ is
brought one at a time into the updating step of the Kalman filter. In effect, the vector
series is converted into a univariate time series where multiple observations are available
for the same time index. In our application, it means that for each available observation,
whether it is for a monthly or a quarterly variable, an update takes place. It results in a
truly online and high frequency filtering method even though the model is formulated in
terms of a low frequency time index.

The Kalman filter is applied to the low frequency model with the (quarterly) time
index t and for the rt × 1 observation vector zt := (yt, x′t)′ where xt is the stacked vector
of monthly variables xmτ within the quarter associated with time t, for t = 1, . . . , n. Hence
the total number of observations is T =

∑n
t=1 rt. The loglikelihood function is then given

by

LT (ψ, fm1 ) = −T2 log(2π)− 1
2

n∑
t=1

`t(zt|f̃t(f̃1);ψ), (15)

where `t is the predictive Gaussian logdensity contribution at time t and f̃t(f̃1) is the
predictor of the unobserved factor fmt conditional on past observations z1, . . . , zt−1 and
its initial value f̃1 = fm1 . The Kalman filter evaluates recursively f̃t(f̃1) from which `t

can be evaluated. In spirit of the likelihood decomposition in (14), likelihood evaluation
via the method of Koopman and Durbin (2000) is partly based on

LT (ψ, fm1 ) = −T2 log(2π)− 1
2

n∑
t=1

`t(yt|f̃t(f̃1);ψ)− 1
2

n∑
t=1

`t(xt|yt, f̃t(f̃1);ψ), (16)

which facilitates a separate treatment of yt and xt.

Maximum likelihood estimation for the parameter vector ψ is based on applying a
numerical quasi-Newton optimization method for the maximization of LT (ψ, fm1 ), with
respect to ψ. The maximization is an iterative process. After convergence, the max-
imum likelihood estimate of ψ is obtained. For each iteration in this process, various
loglikelihood evaluations are required and they are carried out by the Kalman filter. In
the context of the mixed frequency dynamic factor model, the treatment of the obser-
vations in zt for the construction of the likelihood function is implied by the dynamic
factor model. However, it is very likely that the dynamic factor model is misspecified as
a model representation of the true data generation process for the variables represented
in zt. When our primary aim is to analyze yt in particular, we may be less concerned
with the misspecification of xt, to some extent. To reflect the higher importance of yt in
comparison to xt in the likelihood construction for the misspecified dynamic factor model,
we propose to give different weights to the likelihood contributions of yt and xt explicitly.
Hence we propose the weighted loglikelihood function

LT (ψ,w, fm1 ) = −T2 log(2π)− W

2

n∑
t=1

`t(yt|f̃t(f̃1);ψ) +−1
2

n∑
t=1

`t(xt|yt, f̃t(f̃1);ψ), (17)
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for a fixed and predetermined weight W ≥ 1 and with w := W−1 ∈ [0, 1]. The weight
W is conveniently used in our Monte Carlo and empirical studies below while it is more
appropriate to work with the inverse weight w in the asymptotic theory that is developed
next. The construction of the weighted loglikelihood function does not need further
modifications. The estimator of ψ that maximizes (17) is referred to as the weighted
maximum likelihood (WML) estimator.

This novel WML estimator differ considerably from other weighted ML estimators
proposed in the literature. To the authors’ knowledge, this WML estimator is unique
in introducing variable-specific weights rather than observation-specific weights in the
likelihood function. For example, local ML estimators assign a weight to each obser-
vation that depends on the distance to a given fixed point; see Tibshirani and Hastie
(1987), Staniswalis (1989) and Eguchi and Copas (1998) . The robust ML estimator of
Markatou, Basu and Lindsay (1997,1998) are designed to reduce influence of outliers by
down-weighting observations that are inconsistent with the postulated model. The gen-
eral principle of relevance of Hu and Zidek (1997) assigns different weights to different
observations in the likelihood function.

The motivation for the development of our WML estimator is also considerably dif-
ferent. Our WML estimator is designed to perform well when the model is misspecified
and interest lies in forecasting only a subset of the observed variables. For this reason
we analyze the asymptotic properties of our WML estimator allowing for the possibility
of model misspecification and focus on the approximation to an unknown DGP. In con-
trast, the motivation for the weighted ML estimators found in the literature is typically
related to gains in the trade-off between bias and precision of the ML estimator in the
standard case of correct specification. As a Wang et al. (2004) derive asymptotic prop-
erties for observation-specific weighted ML estimators in the standard context if correct
specification.

4.1 Asymptotic Properties of the WML Estimator

The properties of the weighted maximum likelihood estimator are derived for any choice
of weight w := W−1 ∈ [0, 1]. We show that, when the model is correctly specified, then
the WML estimator ψ̂T (w) is consistent and asymptotically normal for the true parame-
ter vector ψ0 ∈ Ψ. When the model is misspecified, we show that ψ̂T (w) is consistent and
asymptotically normal for a pseudo-true parameter ψ∗0(w) ∈ Ψ that minimizes a trans-
formed Kullback–Leibler (KL) divergence between the true probability measure of the
data and the measure implied by the model. We show that the transformed KL diver-
gence takes the form of a pseudo-metric that gives more weight to fitting the conditional
density of yt when 0 < w < 1. For the special case where w = 1, we obtain the classical
pseudo-true parameter ψ∗0(1) ∈ Ψ of the ML estimator that minimizes the KL divergence.
The proofs of all theorems presented in this section can be found in Appendix B.

Proposition 1 below states well known conditions for the strict stationarity and ergod-
icity (SE) of the true processes {fmτ }τ∈Z, {xmτ }τ∈Z and {yt}t∈Z generated by the linear
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Gaussian system in (7), (8) and (9) initialized in the infinite past.

Proposition 1. Let {xmτ }τ∈Z and {yt}t∈Z be generated according to (7), (8) and (9) with

(i) ‖Tf‖ < 1, 0 < ‖Rf‖ <∞ and 0 < ‖Σ2
η‖ <∞ in (7);

(ii) |βx| <∞ and 0 < σ2
ε <∞ in (8);

(iii) |βy| <∞ and 0 < σ2
ζ <∞ in (9).

Then {xmτ }τ∈Z and {yt}t∈Z are SE sequences with bounded moments of any order; i.e.
E|xmτ |r <∞ and E|yt|r <∞ ∀ r > 0.

Theorem 1 ensures the existence of the WML estimator as a random variable that
takes values in the arg max set of the random likelihood function.

Theorem 1. (Existence) For given w ∈ [0, 1], let (Ψ,B(Ψ)) be a compact measurable
space. Then there exists a.s. a measurable map ψ̂T (w, f̃m1 ) : Ω→ Ψ satisfying

ψ̂T (w, f̃m1 ) ∈ arg max
ψ∈Ψ
LT (ψ,w, f̃m1 ),

for all T ∈ N and every filter initialization f̃m1 .

Theorem 2 establishes the strong consistency of the WML estimator of the true pa-
rameter vector ψ0 ∈ Ψ for any choice of weight w ∈ (0, 1] for the likelihood. This result
is obtained under the assumption that the mixed frequencies common factor model is
well-specified and for any filter that identifies the parameter vector ψ0 ∈ Ψ and is asymp-
totically SE with bounded moments of second order. The identification conditions and
exponential almost sure (e.a.s.) convergence of different filters to an SE process with
bounded second moment is well known and easy to establish in this linear Gaussian set-
ting. For this reason, we do not repeat them here; see e.g. Mehra (1970) for such results
on the classical Kalman filter, Bougerol (1993) for extensions, and Blasques, Koopman,
and Lucas (2014) for identification, convergence results and bounded moments on a wide
range of observation-driven filters. Theorem 2 thus assumes that ψ0 maximizes the like-
lihood and assumes the convergence of the filtered sequence {f̃mτ (f̃m1 )}τ∈N initialized at
f̃m1 to a unique limit SE sequence {f̃mτ }τ∈Z with bounded second moment. Notice that
we just require identification in the usual ML setting w = 1; i.e. identification w.r.t. the
unweighted likelihood function LT (ψ, 1). As shown in the proof, identification of ψ0 in
LT (ψ, 1) implies identification of ψ0 in LT (ψ,w) for any w ∈ (0, 1].

Theorem 2. (Consistency) Let {xmτ } and {yt} be generated by the mixed frequencies
common factor model defined in (7), (8) and (9) under some ψ0 ∈ Ψ, and suppose that
the conditions of Propositions 1 and Theorem 1 hold. Suppose furthermore that

L∞(ψ0, 1) > L∞(ψ, 1) ∀ ψ 6= ψ0
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and there exists a unique SE sequence such that

‖f̃mτ (f̃m1 )− f̃mτ ‖
e.a.s.→ 0 ∀ f̃m1 as τ →∞ with E|f̃mτ |2 <∞.

Then the WML estimator ψ̂T (w, f̃m1 ) satisfies

ψ̂T (w, f̃m1 ) a.s.→ ψ0 as T →∞

for any choice of weight w ∈ (0, 1] and any initialization f̃m1 .

If the data {xmτ } and {yt} are obtained from an unknown data generating process
but satisfy some regularity conditions, then we can still prove consistency of the WML
estimator to pseudo-true parameter ψ∗0(w) ∈ Ψ that depends on the choice of weight
w ∈ (0, 1].

It is well known that the classical ML estimator converges to a limit pseudo-true
parameter that minimizes the KL divergence between the true joint probability measure
of the data and the measure implied by the model. Theorem 3 characterizes the limit
pseudo-true parameter ψ∗0(w) as the minimizer of a transformed KL divergence for every
given w ∈ (0, 1]. Just like the KL divergence, this new transformed divergence is also
a pre-metric on the space of probability measures. The transformed KL divergence is
further shown to be a weighted average of two KL divergences that is bounded from
above (for w = 1) by the KL divergence of the joint density of yt and xτ , and bounded
from below (for w = 0) by the conditional density of yt given xmτ . For w ∈ (0, 1) the
WML estimator converges to a pseudo-true parameter that gives more weight to the fit
of the conditional model for yt than the standard ML estimator.

Below we let p denote the true joint density of the vector zt := (yt, x′t)′, where xt is the
stacked vector of monthly variables xmτ , and let p(zt) = p1(yt|xt) ·p2(xt) so that p1 denotes
the true conditional density and yt given xt and p2 the true marginal of xt. Similarly,
we let q(·;ψ) denote the joint density of zt as defined by our parametric model under
ψ ∈ Ψ, and let q1(·;ψ) and q2(·;ψ) be the counterparts of p1 and p2 for the parametric
model density. Finally, given any two densities a and b, we let KL(a, b) denote the KL
divergence between a and b.

Theorem 3. (Consistency) Let {xmτ } and {yt} be SE and satisfy E|xmτ |2 <∞ and E|yt|2 <
∞. Furthermore, let the conditions of Theorem 1 hold and suppose that

L∞(ψ∗0(w), w) > L∞(ψ,w) ∀ ψ 6= ψ∗0(w)

and there exists a unique SE sequence such that

‖f̃τ (f̃m1 )− f̃τ‖
e.a.s.→ 0 ∀ f̃m1 as τ →∞ with E|f̃τ |2 <∞.

Then
ψ̂T (w, f̃m1 ) a.s.→ ψ∗0(w) as T →∞
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for any initialization f̃m1 and any weight w ∈ (0, 1]. Furthermore, the pseudo-true param-
eter ψ∗0(w) minimizes a transformed KL divergence

TKLw
(
q(·;ψ), p

)
= KL

(
q1(·;ψ), p1

)
+ wKL

(
q2(·;ψ), p2

)
which is a pre-metric on the space of distributions satisfying for any w ∈ (0, 1],

TKL1
(
q(·;ψ), p

)
= KL

(
q(·;ψ), p

)
, TKL0

(
q(·;ψ), p

)
= KL

(
q1(·;ψ), p1

)
,

KL
(
q1(·;ψ), p1

)
≤ TKL

(
q(·;ψ), p

)
≤ KL

(
q(·;ψ), p

)
,

and TKL
(
q(·;ψ), p

)
= 0 if and only if KL

(
q1(·;ψ), p1

)
= 0.

Theorem 4 establishes the asymptotic normality of the WML estimator under the
assumption that the mixed frequencies dynamic factor model is well specified. Below
we let J (ψ0, w) := E`′t(ψ0, w)`′t(ψ0, w)> denote the expected outer product of gradients
and I(ψ0, w) := E`′′t (ψ0, w) be the Fisher information matrix. The asymptotic normality
proof is written for filters whose derivative processes are asymptotically SE and have
bounded moments; see Blasques et at. (2014) for a wide range of observation-driven
filters satisfying such conditions. Below, {d̃fmτ (d̃fm1 )} and { ˜ddfmτ ( ˜ddfm1 )} denote the first
and second derivatives of the filter w.r.t. the parameter vector ψ, initialized at d̃fm1 and
˜ddfm1 respectively. Their SE limits are denoted {d̃fmτ } and { ˜ddfmτ }. Note that asymptotic
normality result holds for any weight w ∈ (0, 1], but the asymptotic distribution of the
WML estimator depends on the choice of weight w.

Theorem 4. (Asymptotic Normality) Let the conditions of Theorem 2 hold and ψ0 be a
point in the interior of Ψ. Suppose furthermore that there exists a unique SE sequence
{d̃fmτ } such that

‖d̃fmτ (d̃fm1 )− d̃fmτ ‖
e.a.s.→ 0 ∀ d̃fm1 as τ →∞ with E|d̃fmτ |4 <∞

and a unique SE sequence { ˜ddf τ} such that

‖ ˜ddfmτ ( ˜ddfm1 )− ˜ddfmτ ‖
e.a.s.→ 0 ∀ ˜ddfm1 as τ →∞ with E| ˜ddfmτ |2 <∞.

Then, for every f̃m1 and every w ∈ (0, 1], the ML estimator ψ̂T (f̃m1 ) satisfies

√
T
(
ψ̂T (f̃m1 , w)− ψ0

) d→ N
(
0 , I−1(ψ0, w)J (ψ0, w)I−1(ψ0, w)

)
as T →∞.

Naturally, we can extend the asymptotic normality results to the mis-specified mixed
measurement dynamic factor model by centering the WML estimator at the pseudo-true
parameter ψ∗0(w).

Theorem 5. (Asymptotic Normality) Let the conditions of Theorem 3 hold and ψ∗0(w)
be a point in the interior of Ψ. Suppose further that {xmτ } and {yt} are SE and satisfy
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E|xmτ |4 <∞ and E|yt|4 <∞ and there exists a unique SE sequence {d̃fmτ } such that

‖d̃fmτ (d̃fm1 )− d̃fmτ ‖
e.a.s.→ 0 ∀ d̃fm1 as τ →∞ with E|d̃fmτ |4 <∞

and a unique SE sequence { ˜ddf τ} such that

‖ ˜ddfmτ ( ˜ddfm1 )− ˜ddfmτ ‖
e.a.s.→ 0 ∀ ˜ddfm1 as τ →∞ with E| ˜ddfmτ |2 <∞.

Then, for every f̃m1 and every w ∈ (0, 1], the ML estimator ψ̂T (w, f̃m1 ) satisfies

√
T
(
ψ̂T (f̃m1 )− ψ∗0(w)

) d→ N
(
0 , I−1(ψ∗0(w), w)J (ψ∗0(w), w)I−1(ψ∗0(w), w)

)
as T →∞.

4.2 Selecting Optimal Weights

In this section we follow Wang and Zidek (2005) in proposing a method for estimating
optimal weights that is based on cross-validation. In particular, we will focus on obtain-
ing weights that optimize the out-of-sample forecasting performance of the low-frequency
variable of interest. Furthermore, we propose a test that allows us to infer if the improve-
ments in forecasting accuracy produced by different choices of weights are statistically
significant. We derive the exact finite sample distribution of the test statistic under
the assumption of Gaussian residuals, and an approximate asymptotic distribution for
non-Gaussian residuals.

For the purpose of estimating w by cross-validation, we will split the sample in two
parts. The first part of the sample is used to estimate the model parameters, for any
given choice of w. The second part of the sample is used to evaluate the out-of-sample
forecast performance of the model and select the optimal weight w. Specifically, for some
given w, we first estimate the parameter vector ψ using observations from period t = 1
to t = T ′. The parameter estimate, denoted ψ̂1:T ′(w, f̃m1 ), is used to produce a on-step-
ahead prediction ŷT ′+1(ψ̂1:T ′(w, f̃m2 )) for the low-frequency variable. Next, we obtain an
estimate ψ̂2:T ′+1(w, f̃m2 ) using observations from period t = 2 to t = T ′ + 1 and produce
another one-step-ahead prediction ŷT ′+2(ψ̂2:T ′+1(w, f̃m2 )). We repeat this procedure and
obtain H = T −T ′− 1 one-step-ahead predictions using recursive samples, each based on
the previous T ′ observations, as illustrated below,

y1 y2 y3 · · · · · · yT ′ ŷT ′+1

y2 y3 · · · · · · yT ′ yT ′+1 ŷT ′+2

· · · · · ·
yH · · · yT ′ yT ′+1 yT ′+2 · · · yT ′+H ŷT ′+H+1 .

If the WML estimator is well defined, then the one-step-ahead forecasts can effectively
be written as a function of w since the WML estimator ψ̂2:T ′+1 maps every weight w to a
point in the parameter space that defines a forecast value ŷT ′+i(w) ≡ ŷT ′+i(ψ̂i:T ′+i(w)).
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Finally, we define the H out-of-sample one-step-ahead forecast errors as follows

ei(w) = ŷT ′+i(w)− yT ′+i , i = 1, ...,H

and use these to obtain a cross-validation criteria for selecting the weight w that minimizes
the one-step-ahead root mean squared forecast error (RMSFE1(w))

ŵH = arg min
w∈[0,1]

(
1
H

H∑
i=1

(
ei+1(w)

)2) 1
2

= arg min
w∈[0,1]

RMSFE1(w)

Naturally, the criterion can be easily redesigned for w to minimize the n-step-ahead
forecast error (RMSFEn). Since w is directly chosen to minimize the forecast error, it
is clear that any estimate ŵH 6= 1 will only occur if the WML estimator can improve
the error compared to the ML estimator. However, it is important to take into account
the possibility of spurious reductions in the RMSFE that occur only because H is small.
For this reason we devise also a test statistic that allows us to test if the improvement in
forecast accuracy is statistically significant or not.

We propose a typical F -statistic

rH′,T ′(w) :=
H′∑
i=1

(
ei+1(1)

)2/ 2H′+1∑
i=H′+1

(
ei+1(w)

)2
.

that has known F distribution under the null hypothesis that the variance of the error
term is the same under the ML estimator (w = 1) and some alternative WML estimator
(w 6= 1)1

H0 : Var(eT+1,i(1)) = Var(eT+1,i(w)).

We naturally take the alternative hypothesis to be

H1 : Var(eT+1,i(1)) > Var(eT+1,i(w)).

Note that this test statistic uses the first H ′ < H/2 residuals {eT+1,i(1)}H′i=1 obtained
under w = 1 from the cross-validation sample, and further H ′ residuals {eT+1,i(w)}2H′+1

i=H′+1
obtained under w 6= 1 in order to obtain a valid F statistic with known finite sample
distribution.

Naturally, on finite samples, rH′,T ′(w) follows an F distribution when the residuals are
approximately Gaussian and serially independent. In any given application, the assump-
tions of approximate Gaussianity and serial independence can be tested using standard
well known tests.

Lemma 1. For some given w ∈ [0, 1], let {eT+1,i(1)}H′i=1 and {eT+1,i(w)}2H′+1
i=H′+1 be iid

Gaussian. Then, it follows that rH′,T ′(w) ∼ FH′,H′ under the null hypothesis H0.
1The test focuses on the variance of the error term since any model with an intercept can set the mean

of the error term to zero.
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The test is thus designed to reject the null hypothesis for realizations of rH′,T ′(w) that
seem too large to be draws from an FH′,H′ with some reasonable probability. Lemma 2
shows that this rejection rule is appropriate for residuals that are approximately NID.

Lemma 2 bellow gives the usual degenerate asymptotic distribution for this F statistic
that is obtained as both the estimation sample size T ′ and the cross-validation sample size
H ′ diverge to infinity. Naturally, the power of the test is small against local alternatives
Var(eT+1,i(1)) ≈ Var(eT+1,i(w)). Lemma 2 uses weaker conditions and is obtained by
application of a law of large numbers for SE sequences and an application of Slutsky’s
theorem.

Lemma 2. Let {eT+1,i(1)}H′i=1 and {eT+1,i(w)}2H′+1
i=H′+1 be SE and satisfy E|eT+1,i(1)|2 <∞

and E|eT+1,i(w)|2 <∞. Then rH′,T ′(w) p→ 1 under H0 and rH′,T ′(w) p→ c > 1 under the
alternative.

4.3 Small Sample Properties of WML: Monte Carlo Study

Next we investigate the finite sample effects of different choices for the value of W in (17)
on the in-sample fit in different scenarios using Monte Carlo simulations. We generate
data for yt and xmτ for different number of variables, k = 2, k = 5 and k = 10. The
length of the time series is set to n = 100 for all scenarios. We consider two different data
generating processes (DGPs) for the vector of observations zt = (yt, x′t)′ in the simulations,
where xt is the stacked vector of monthly variables xmτ .

The first DGP for zt is a multivariate common factor model with one common factor
fτ and one idiosyncratic factor u(i)

τ for each variable. The model is given by

zt = βzft + ut + εt, ετ ∼ NID
(
0, σ2

ε

)
(18)

All factors, both common and idiosyncratic, are driven by AR processes of order 1 as in
(53) and the autoregressive parameters are all set at 0.80. The factor loadings of variable
x(i) on the common factor are set equal to 1

i , for i = 1, . . . , k. Furthermore, we choose
σε = 0.50 and ση = 0.25.

The second DGP for zt is the multivariate VAR(1) process

zt = Φzt−1 + εt, ετ ∼ NID
(
0, σ2

ε

)
(19)

where all diagonal elements of the k × k matrix Φ are set equal to 0.80 and the off-
diagonal elements are randomly generated values between −0.5 and 0.5 but we only allow
for stationary VAR processes. As in the first DGP, we choose σε = 0.50. In our simulation
study, we consider three different scenarios in particular.

Scenario 1: Underspecification In the first scenario, we adopt the common dynamic
factor model (18) as the DGP but for the analysis we consider the model

zt = βzft + εt, ετ ∼ NID
(
0, σ2

ε

)
. (20)
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This model does not include idiosyncratic factors and hence it is underspecified.
We expect that in this setting we can improve the in-sample accuracy for yt when
we take the value of W larger than unity. For different dimensions, k = 2, k = 5
and k = 10, we generate 1,000 datasets from the first DPG and we estimate the
parameters from the model (20) with values of W ranging from 1 to 25.

Scenario 2: Misspecification In the second scenario, we adopt the VAR(1) model (19)
as DGP. Similarly as in the first scenario, we generate 1,000 datasets from the
VAR(1) with k = 2, k = 5 and k = 10, and we estimate the parameters of the
dynamic factor model (20) with values of W ranging from 1 to 25. Since the DGP
model is different from the model that we consider for te analysis, the model is
misspecified. Hence we expect that increasing the value of W can be beneficial for
the in-sample fit of yt. Theorem 3 has shown that such large improvements are
explained by the fact that we can use the weight W to control the limit pseudo-
true parameter to which the weighted MLE will converge. In particular, the larger
the W , the more the WML estimator will focus on minimizing the KL divergence
between the true conditional density of yt and the conditional density implied by
the model.

Scenario 3: Correct Specification In the third and final scenario, we adopt the dy-
namic factor (18) as DGP and we consider the same model in the analysis. We
generate 1,000 datasets for k = 2, k = 5 and k = 10, and we estimate the parame-
ters for values of W ranging from 1 to 25. This model is correctly specified and we
expect that increasing the value of W will not improve the in-sample fit for yt much
in comparison to the previous two scenarios. In effect, in Theorem 2 we have shown
that asymptotically the different values of W must yield the same results since the
weighted MLE is consistent to the true parameter for any W . Any improvements
in the correct specification setting are thus only finite-sample improvements.

In the left panel of Table 2 we present the mean squared error (MSE) averages for
the variable of interest yt. Each column is scaled to the value at W = 1, the maximum
likelihood estimate. From Table 2 we find that increasing the value ofW leads to a better
in-sample fit for yt for all three dimensions k. However it is not necessary to choose very
large values for W . The improvements in MSE appear to converge to some upper limit
for increasing values of W . To illustrate we also report the results for W = 1, 000 from
which we learn that there is not much difference with W = 25. Furthermore, we observe
that more gains can be made when more variables are included in the model.

In the first panel of Figure 1 we present the MSE of yt and the average MSEs for the
variables of xt for W = 1, . . . , 25. As we have learned from Table 2, increasing the value
of W improves the in-sample fit for yt while the actual improvements diminish when W
increases. It comes at the cost of the accuracy for the variables in xt. The right panel
of each figure presents the average MSE for xt and it is clear that increasing W leads to
a worse in-sample fit for these variables. We also find that the marginal effect becomes
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smaller for larger values of W . Since the MSE of yt is decreasing as a function of W ,
there is no clear optimal value for W . The choice of W should depend on how important
the different variables are considered to be.

For scenario 2 we present the improvements in average MSE for yt in the middle panel
of Table 2. As in the first scenario, we observe that increasing the value of W leads to a
better in-sample fit for yt for all the three values of k, and again the improvement in MSE
seems to converge to some upper limit for increasing values of W . This is consistent with
the findings of Theorem 3. We can also conclude that the gains for k = 5 and k = 10
are much larger than in scenario 1. However, more gains can be made in the model with
k = 5 than in the model with k = 10.

Table 2: Average MSE of target variable yt for different values of W

Scenario 1 Scenario 2 Scenario 3

W k = 2 k = 5 k = 10 k = 2 k = 5 k = 10 k = 2 k = 5 k = 10

1 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000
2 0.983 0.962 0.931 0.977 0.890 0.952 0.9996 0.9994 0.9999
3 0.974 0.947 0.889 0.973 0.737 0.891 0.9994 0.9994 0.9998
4 0.972 0.942 0.874 0.973 0.653 0.834 0.9993 0.9993 0.9997
5 0.970 0.938 0.865 0.973 0.592 0.812 0.9992 0.9993 0.9993
10 0.968 0.928 0.844 0.972 0.509 0.718 0.9990 0.9990 0.9989
15 0.967 0.925 0.837 0.971 0.488 0.713 0.9989 0.9989 0.9986
25 0.966 0.920 0.831 0.969 0.476 0.705 0.9988 0.9987 0.9984

1000 0.965 0.914 0.809 0.965 0.442 0.685 0.9986 0.9976 0.9958
This table presents the average MSE for the target variable yt over 1,000 simulation runs. In scenario 1
an underspecified DFM (without idiosyncratic factors) is estimated on a DFM with idiosyncratic factors.
In scenario 2 a DFM (without idiosyncratic factors) is estimated on a dataset with a VAR(1) process as
DGP and in scenario 3 a DFM model with idiosyncratic factors is estimated on a dataset with the same
model as the DGP. For each column all numbers are scaled to the value at W = 1.

Finally, for scenario 3 we present the results in the right panel of Table 2. The
improvements in in-sample fit are negligible when the value of W increases. This is
consistent with Theorem 2, as any improvements can only be attributed to small-sample
variations.
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5 Empirical Results

In our empirical study we consider four different methods for treating mixed frequency
dynamic factor models (DFMs): the MFI method of Section 3.2, the MFA method of
Section 3.3 and the MFS-M and MFS-Q methods of Section 3.4. We first present the
estimation results for the four models based on the original dataset that was used by
Mariano and Murasawa (2003). We will evaluate the forecasting and nowcasting accu-
racy for the various methods and compare the results. These different approaches to
handle mixed-frequencies with a dynamic factor model, are all examples of full system
approaches. We will also compare the forecasting and nowcasting results with two partial
model approaches: Bridge models of Trehan (1989) and the MIDAS regression of Ghy-
sels, Santa-Clara, and Valkanov (2006). We refer for some details of these two approaches
to the Technical Appendix. Furthermore we assess the improvements in forecasting and
nowcasting accuracy when we adopt the method of weighted maximum likelihood that is
presented in Section 4.

5.1 Data

The original Mariano and Murasawa (2003) data set consist of quarterly observed US real
GDP and four monthly observed indicators; see Table 3 for their descriptions. The sample
period is January 1959 until December 2000. The first difference of natural log for each
series is taken and multiplied by 100, which is approximately equal to the quarterly or
monthly growth rate. The number of parameters in the model is reduced by demeaning
all series, so that no intercept coefficients are required. Furthermore, the loading of the
dynamic factor on quarterly GDP is fixed at a value of 1 for identification purposes. In
the forecasting and nowcasting studies, we use an extended version of this dataset, with
the sample period from January 1960 until December 2009.

Table 3: Data definitions

Indicator Description

Quarterly
GDP Real GDP (billions of chained 1996 $, SA, AR)

Monthly
EMP Employees on non-agricultural payrolls (thousands, SA)
INC Personal income less transfer payments (billions of chained 1996 $, SA, AR)
IIP Index of industrial production (1992 = 100, SA)
SLS Manufacturing and trade sales (millions of chained $, SA)

This table presents the definitions of all the quarterly and monthly variables that are used in the models
in this section and the abbreviations that are used for these variables. SA means ’seasonally adjusted’
and AR means ’annual rate’.
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5.2 Parameter Estimates by Maximum Likelihood

We have obtained our estimation results by following Mariano and Murasawa (2003)
closely. We have set the variances of the disturbance terms in the observation equations
of all models equal to zero and we also adopt the orders that they use for the AR(p)
processes by which the factors are modeled. That is, the common factor ft is modeled by
an AR(1) process and all idiosyncratic factors ut and vt are modeled by AR(2) processes
for all models.

The parameter estimates for MFI model are presented in the first panel of Table 4.
These estimates are very similar to the estimates obtained by Mariano and Murasawa
(2003) for the same dataset. The MFS-M model targets the same modeling framework as
assumed for the MFI model. However, the MFI model describes the dynamic information
for ∆ ln GDP from a high frequency monthly process, while the MFS-M model adopts
a low frequency quarterly dynamic process. Overall, we obtain similar estimation results
for both methods. The only notable difference is in the estimated parameters φu,1 and
φu,2 for ∆ ln GDP. The third panel presents the parameter estimates for the MFS-Q
model, which are also very similar to the estimates of the MFI and MFS-M methods.
However, we notice that all elements of βx are now estimated at about 1

3 of their value in
the MFI and MFS-M models: in the MFS-Q model this is the loading on the quarterly
value of ft, whereas in the MFI and MFS-M models it is the loading on the monthly
value of ft. Finally, the fourth panel reports the parameter estimates for the MFA model.
Given that the number of observations for the quarterly model has reduced, the variances
of the idiosyncratic factors have increased for all four indicators. The estimates of the
other variables are quite similar to those of the MFS-M model, with the exception of
the AR process for ∆ ln EMP (x(1)). This process has become rather persistent with an
estimated φ1,1 of 0.69 when ∆ ln EMP is modeled by a quarterly frequency. When it is
modeled with a monthly frequency, the estimate of φ1,1 has been close to zero, while the
φ1,2 estimates have been at 0.45 and 0.43 in the MFI and MFS-M models, respectively.

5.3 Nowcasting and Forecasting Comparisons

Next we compare the forecasting results of our three approaches at handling mixed-
frequencies in the dynamic factor model. We also compare these results to the forecasting
results that are obtained with bridge models and MIDAS regressions.

We compare the models using the same set of variables as in Mariano and Murasawa
(2003), but with the data extended until December 2009. Table 5 presents the MSE
of the predictions for the quarterly observed yt in the different models with forecasting
horizons h = 0, 1, 2, 3, 6 months ahead. These predictions are made using a rolling window
of 25 years of data to estimate the parameters. Forecasting horizons of h = 0, 1, 2 are
usually referred to as nowcasting. When h = 0, all values of xt are known until the
quarter that is to be forecasted. When h = 1, the values of xt are known until the first
two months of the quarter. When h = 2, only the first month of the quarter that we
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want to forecast is observed. When h = 3, we are forecasting one quarter ahead, no
observations are available for the quarter that we forecast. All values until the previous
quarter are observed. Similarly, when h = 6 we are forecasting two quarters ahead without
observations being available from the quarter to forecast and its previous quarter. In the
MFA model, there are no monthly dynamics, so it is only possible to forecast at h = 0, 3, 6.

From Table 3 we learn that the MFS-M model provides the more accurate ∆ ln GDP
predictions for all forecasting horizons. The accuracy is higher than the original MFI
model. The MFA model is only more accurate for h = 3 and h = 6 while the MFS-Q
model is most accurate for h = 6 while it is less accurate than both the MFI and MFS-M
models for all other horizons.

When we further take into account the benchmark Bridge and MIDAS models, we
find that the predictions of the MIDAS model are most accurate for nowcasting at h = 0
and h = 1. For longer forecasting horizons, MIDAS forecasts become less accurate.

We consult the Diebold and Mariano (1995) test to verify whether forecast accuracy
differences are significant at the 5% level. In our study, the only significant differences
between any of the models for the nowcasting horizons h = 0, 1, 2 is found for (i) h = 2,
where the MFS-M model is more accurate than the MFS-Q model; (ii) h = 3, where the
MFA model is significantly more accurate than the MFI and MIDAS models; (iii) h = 6,
where the MFS-Q model is significantly more accurate than all other models and the MFA
model is significantly more accurate than the rest of the models, except for the MFS-M
model. Given the large similarity in the structure of these models and their parameter
estimates, it is perhaps only surprising that we find any difference at all. Finally, we have
found that the MIDAS model performs significantly worse than all of the other models
for h = 6.

Table 5: Forecast comparisons for US GDP growth

h = 0 h = 1 h = 2 h = 3 h = 6

MFI 0.1779 0.1918 0.2340 0.3156 0.4023
MFS-M 0.1666 0.1730 0.2108 0.2935 0.3986
MFS-Q 0.1765 0.1909 0.2411 0.2989 0.3701
MFA 0.1693 0.2809 0.3754
BM 0.1833 0.2056 0.2455 0.3046 0.4180
MIDAS 0.1597 0.1658 0.2464 0.3635 0.4873

This table presents the forecast MSEs for the quarterly observed US GDP growth from January 2000 until
December 2009 for four dynamic factor models and two benchmark models at forecasting horizons h =
0, 1, 2, 3, 6. The four dynamic factor models are Mixed frequency Interpolation (MFI), Mixed frequency
Stacking with Monthly common factor (MFS-M), Mixed frequency Stacking with Quarterly common
factor (MFS-Q) and Mixed frequency Aggregation (MFA). Benchmark models are Bridge models (BM)
and MIDAS regressions. All results are based on parameter estimates obtained from the same dataset
with sample period from January 1960 until December 2009 and using the data definitions as described in
Table 3. For each forecasting horizon the MSEs of the two most accurate models are highlighted, where
the darkest shade is used for the most accurate model.
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5.4 Parameter Estimates by Weighted Maximum Likelihood

Dynamic factor models are often considered in the simultaneous modeling of a group of
variables, but all variables in the model are of equal importance to the likelihood function.
However, it can be desirable to have somewhat more focus on fitting a particular variable
of interest. In our case, this may be ∆ ln GDP. In Section 4 we have proposed a method
to implement this idea by giving extra weight to the most important variables in the log-
likelihood function. In our model we will give extra weight to GDP growth, the variable
yt.

How much additive weight we give to yt depends on the choice of W in (17). To
investigate the effects of different values of W we study the in-sample fit. The MSE of
the one-step ahead prediction errors of the Kalman filter is plotted as a function of W
for yt and for the four different series of xt in Figure 2 for the MFS-M model. For each
variable, all MSE values are divided by the MSE value at W = 1, in order to make the
graphs comparable with each other.

By increasing W , the in-sample fit for yt improves considerably, but the in-sample
fits for all xt become less accurate. Furthermore, from the first graph in Figure 2 it is
clear that the marginal effect of increasing W becomes less for higher values of W . For
example, increasing W from 1 to 6 leads to a 9.5% improvement in MSE for yt while
increasing W further to a value of 60 leads to a 14.0% improvement compared to W = 1.
At W = 6 the largest increase in MSE is found for x(3) with 5.3%, while at W = 60 we
find a 17.6% increase in MSE for this variable. Since the MSE of yt is decreasing as a
function of W , there is not one clear optimal value for W , but the optimum depends on
how important the different variables are.

From the results presented in Figure 2 and from the results of our Monte Carlo study
in Section 4.2, we may conclude that choosing the optimal value for W is a trade off
between the gain in in-sample fit for yt and its loss for xt. However, when we focus on
the effect of W on forecasting accuracy we obtain a different picture. In Table 6 we
show the forecasting accuracy at different horizons for yt for different values of W for
the MFS-M model. It becomes apparent that increasing W also improves the accuracy
of the forecasts for all horizons. Furthermore, we find that increasing the weight too
much eventually leads to a decrease in the forecasting accuracy, because the fit of the
xt variables becomes worse with further increases in W . As a consequence, forecasted
values for xt+h become less informative for the forecasts of yt+h. In our study we find
that W = 6 is the optimal weight for h = 0, 1, 2 and W = 5 is optimal for h = 3. For
h = 6 we find the lowest MSE with W = 4, so the optimal value for W appears to be
lower for longer forecast horizons.

The Diebold and Mariano test indicates that the WML method with W = 6 leads to
a significant improvement at a 5% level over the model with W = 1 (which provides the
original estimates for the MFS-M model) for h = 0, 1, 2 and at a 10% level for h = 3, 6.
The parameter estimates with W = 5 at h = 3 and W = 4 at h = 6 are also significant
improvements over the models with W = 1 at these horizons.
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Figure 2: In-sample accuracy using WML
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This figure presents the in-sample MSE of the one-step ahead predictions for all variables in the Mixed
frequency Stacking model with Monthly common factor (MFS-M) for different values of W in the weighted
loglikelihood function (17). All models are estimated on the same dataset with sample period from January
1960 until December 2009 and using the data definitions as described in Table 3. The numbers on the
horizontal axis represent the value of W and all numbers are relative to the values at W = 1.

In the next part of the study we take different integer values for W to determine the
optimal value of W afterwards. Optimization techniques can be used to determine the
optimal value of W for each forecasting horizon, as W is not limited to integer values
only. However, our presented results provide a clear picture of the usefulness of the WML
estimation method.

The weighted maximum likelihood method can be applied to all four dynamic factor
models studied in this section. Based on our findings for the MFS-M model, we choose
W = 6 as the optimal value and we estimate the MFI, MFS-Q and MFA models. The
forecasting accuracy of the models withW = 6 is presented in Table 7. We find that for all
models and for all forecasting horizons we obtain clear improvements when compared with
the results for the models with W = 1 in Table 5. These improvements are all significant
at 5% level. Furthermore, the MFS-M model has produced the most accurate forecasts
for all horizons. Only in the case of h = 6 the MFI model performs best. For h = 2
and higher, all four models perform better than the benchmark BM and MIDAS models.
For these benchmark models, weighted maximum likelihood is not possible, because these
models are estimated using least squares methods.
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Table 6: Forecast comparisons for US GDP growth with weighted likelihood function

W h = 0 h = 1 h = 2 h = 3 h = 6

1 0.1666 0.1730 0.2108 0.2935 0.3917
2 0.1600 0.1689 0.2049 0.2826 0.3708
3 0.1571 0.1674 0.2028 0.2783 0.3614
4 0.1556 0.1670 0.2013 0.2759 0.3534
5 0.1517 0.1703 0.2004 0.2745 0.3662
6 0.1513 0.1560 0.1914 0.2777 0.3733
7 0.1611 0.1668 0.2034 0.2773 0.3715
8 0.1608 0.1670 0.2033 0.2772 0.3699
9 0.1612 0.1682 0.2032 0.2775 0.3683
10 0.1614 0.1690 0.2033 0.2781 0.3662
11 0.1615 0.1698 0.2035 0.2786 0.3577
12 0.1617 0.1705 0.2037 0.2792 0.3572

This table presents the MSEs of the forecasts for the quarterly observed US GDP growth for the Mixed
frequency Stacking model with Monthly common factor (MFS-M) at forecasting horizons h = 0, 1, 2, 3, 6
using different values for W in the weighted loglikelihood function (17). All models are estimated on the
same dataset with sample period from January 1960 until December 2009 and using the data definitions
as described in Table 3. For each forecasting horizon the MSE of the most accurate model is highlighted.

Table 7: Forecast comparisons for US GDP growth with WML and W = 6

h = 0 h = 1 h = 2 h = 3 h = 6

MFI 0.1787 0.1885 0.2078 0.2841 0.3629
MFS-M 0.1513 0.1560 0.1914 0.2777 0.3733
MFS-Q 0.1630 0.1676 0.2249 0.2849 0.3670
MFA 0.1576 0.2809 0.3677
BM 0.1833 0.2056 0.2455 0.3046 0.4197
MIDAS 0.1597 0.1658 0.2464 0.3635 0.4873

This table presents the MSEs of the forecasts for the quarterly observed US GDP growth for four different
dynamic factor models and two benchmark models at forecasting horizons h = 0, 1, 2, 3, 6 using W =
6 in the weighted loglikelihood function (17) for the four dynamic factor models. The four dynamic
factor models are Mixed frequency Interpolation (MFI), Mixed frequency Stacking with Monthly common
factor (MFS-M), Mixed frequency Stacking with Quarterly common factor (MFS-Q) and Mixed frequency
Aggregation (MFA). Benchmark models are Bridge models (BM) and MIDAS regressions. All models are
estimated on the same dataset with sample period from January 1960 until December 2009 and using the
data definitions as described in Table 3. For each forecasting horizon the MSEs of the two most accurate
models are highlighted, where the darkest shade is used for the most accurate model.

However, the comparisons in Table 7 has given the MFS-M model some favor, because
the value of W = 6 was chosen based on this model. Therefore, we next determine the
optimal (integer) value of W for each model and for each forecasting horizon. These
forecasting accuracy results are presented in Table 8. In the right panel of Table 8 we
present the optimal values ofW . The MFS-M model still performs best for all forecasting
horizons, except for h = 6. Furthermore, it is very difficult to detect a clear pattern in
the optimal values of W . Therefore, when adopting this method in a practical setting for
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forecasting purposes, we would take a moderate fixed value for W , such as W = 5.

Table 8: Forecast comparisons for US GDP growth with WML and optimal value for W

Mean Square Error
h = 0 h = 1 h = 2 h = 3 h = 6

MFI 0.1687 0.1765 0.1966 0.2835 0.3559
MFS-M 0.1513 0.1560 0.1914 0.2745 0.3593
MFS-Q 0.1629 0.1670 0.2215 0.2835 0.3621
MFA 0.1576 0.2769 0.3566
BM 0.1833 0.2056 0.2455 0.3046 0.4197
MIDAS 0.1597 0.1658 0.2464 0.3635 0.4873

Optimal vale of W
h = 0 h = 1 h = 2 h = 3 h = 6

MFI 2 2 2 5 2
MFS-M 6 6 6 5 4
MFS-Q 7 8 3 3 2
MFA 6 2 8

The first panel of this table presents the MSEs of the forecasts for the quarterly observed US GDP growth
for four different dynamic factor models and two benchmark models at forecasting horizons h = 0, 1, 2, 3, 6
using the optimal integer value for W in the weighted loglikelihood function (17) for the four dynamic
factor models. The optimal values for W are presented in the second panel of the table. The four dynamic
factor models are Mixed frequency Interpolation (MFI), Mixed frequency Stacking with Monthly common
factor (MFS-M), Mixed frequency Stacking with Quarterly common factor (MFS-Q) and Mixed frequency
Aggregation (MFA). Benchmark models are Bridge models (BM) and MIDAS regressions. All models are
estimated on the same dataset with sample period from January 1960 until December 2009 and using the
data definitions as described in Table 3. For each forecasting horizon the MSEs of the two most accurate
models are highlighted, where the darkest shade is used for the most accurate model.

6 Conclusions

This paper has introduced a novel weighted ML estimator for the class of mixed frequency
dynamic factor models. Our weighted ML estimator introduced a variable-specific weight
in the likelihood function to let some variable equations be of more importance during the
estimation process. We derived the asymptotic properties of the weighted ML estimator
and provided an information-theoretic characterization of the weighted ML estimator
based on the Kullback-Leibler divergence. Furthermore, we proposed a cross-validation
method to estimate the weights that optimize the forecasting performance of the model
and an F -statistic to test the statistical significance of the improvements in forecasting
accuracy. A Monte Carlo study was used to investigate the finite-sample behavior of
the WML estimator. This simulation-based study highlighted the good performance of
the weighted ML estimator. The presented illustration shows that our solutions lead to
empirically relevant improvements in nowcasting and forecasting. We expect that our
proposed solutions also have consequences in other applications and in other modeling
frameworks. Further research in these directions are planned in future.
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APPENDICES

A Higher-Order Autoregressive Processes

AR(3) process

The monthly observations from the AR(3) process xmτ = φ1x
m
τ−1 + φ2x

m
τ−2 + φ3x

m
τ−3 + εmτ

are stacked into the quarterly 3× 1 vector xqt of (1). The quarterly process of the stacked
variable xqt is again given by the vector autoregressive process (4) with

T =


φ3 φ2 φ1

φ1φ3 φ1φ2 + φ3 φ2
1 + φ2

φ2
1φ3 + φ2φ3 φ2

1φ2 + φ1φ3 + φ2
2 φ3

1 + 2φ1φ2 + φ3

 ,

R =


1 0 0
φ1 1 0

φ2
1 + φ2 φ1 1

 ,
(21)

The variance matrix of the vector xqt , conditional on xqt−1, is equal to σ2
εRR

′. We
notice that all three elements of xqt depend on all three elements of xqt−1 and on the
associating elements of the vector of disturbances εqt . The state space formulation (3) has
state vector αt = xqt with T and R given by (21) and with system matrices T and R given
by (5) and Z = I3, H = 0, Q = σ2

ε and ηt = εqt .
For the AR(2) process, matrix T is the same as in (21) but with φ3 = 0, such that its

first column reduces to a zero vector and R is the same matrix as for the AR(3) process
in (21).

AR(p) process for p ≥ 4

Suppose that the univariate monthly observed variable xmτ is modeled by the autoregres-
sive (AR) process with p lagged dependent variables, that is

xmτ = φ1x
m
τ−1 + φ2x

m
τ−2 + . . .+ φpx

m
τ−p + εmτ , εmτ ∼ NID

(
0, σ2

ε

)
, (22)

where φ1, . . . , φp are fixed and unknown autoregressive coefficients for monthly lags and
εmτ represents a serially uncorrelated Gaussian disturbance sequence with zero mean and
a fixed and unknown variance σ2

ε .
In the remainder of this subsection we provide quarterly model specifications for

monthly AR processes. Some derivations and the initial properties of the state vector
are provided in Appendix A. The generalizations to yearly, or other low frequencies,
model specifications are straightforward.
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For AR(p) processes of order p > 3 in the state space formulation, the state vector
in (3) is extended with more lags of xqt . In case of the AR(4) process, we have αt =(
xqt−1,3, x

q
t,1, x

q
t,3, x

q
t,3

)′
and we have

T =


0 0 0 1
φ4 φ3 φ2 φ1

φ1φ4 φ1φ3 + φ4 φ1φ2 + φ3 φ2
1 + φ2

φ2
1φ4 + φ2φ4 φ2

1φ3 + φ2φ3 + φ1φ4 φ2
1φ2 + φ1φ3 + φ2

2 + φ4 φ3
1 + 2φ1φ2 + φ3

 ,
(23)

where the variance matrix of the process is defined as σ2
εRR

′ with

R =


0 0 0 0
0 1 0 0
0 φ1 1 0
0 φ2

1 + φ2 φ1 1

 . (24)

For higher order AR(p) processes the same principle can be used. The state vector αt has
to be extended with the necessary lags of xqt and rows and columns with ones and zeros
need to be added to the matrices T and R.
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B Proofs of Theorems and Propositions

Proof of Proposition 1. Let {fτ (fm1 )}τ∈N be generated according to (8) with initialization
fm1 and ‖Tf‖ < 1, ‖Rf‖ <∞ and ‖Σ2

η‖ <∞. Then by Theorem 3.1 in Bougerol (1993),
{fτ (fm1 )}t∈N converges to an SE sequence {fτ}t∈Z satisfying E|fτ |r <∞ ∀ r. Uniqueness
of the limit SE sequence is obtained in Straumann and Mikosch (2006). Furthermore, since
{ft} is a linear Gaussian process with E|xmτ |r < ∞ ∀ r > 0. The bounds |βx| < ∞ and
0 < σ2

ε <∞, together with the iid Gaussian nature of the innovations {ετ}m ensure that
{xmτ } is SE and Gaussian with bounded moments of any order. Similarly, the bounds
|βy| < ∞ and 0 < σ2

ζ < ∞ and the iid Gaussian nature of {ζt} ensure the SE linear
Gaussian nature of {yt} with E|yt|r <∞ ∀ r > 0.

Proof of Theorem 1. For every given w ∈ [0, 1], the random likelihood function LT (·, f̃m1 )
is trivially almost surely continuous on Ψ. The compactness of Ψ implies by Weierstrass’
theorem that the arg max set is almost surely non-empty. As a result, ψ̂T exists almost
surely ∀ T ∈ N. The continuity of the likelihood function in fmτ , xmτ and yt for every ψ ∈ Ψ
implies also measurability of the likelihood under the Borel σ-algebra. For every given
w ∈ [0, 1] the measurability of the WML estimator can now be obtained by application
of Theorem 2.11 of White (1994) or Lemma 2.1 and Theorem 2.2 in Gallant and White
(1988).

Proof of Theorem 2. The consistency of the WML estimator can be obtained by appealing
to the classical extremum estimation theory found e.g. in Theorem 3.4 of White (1994)
or Theorem 3.3 of Gallant and White (1988). In particular, for any weight w ∈ (0, 1] and
initialization f̃m1 , the consistency ψ̂T (w, f̃m1 ) a.s.→ ψ0 follows from the uniform convergence
of the weighted likelihood

sup
ψ∈Ψ
|LT (ψ,w, f̃m1 )− L∞(ψ,w)| a.s.→ 0 ∀ f̃m1 ∈ R+ as T →∞, (25)

and the identifiable uniqueness of the true parameter ψ0 ∈ Ψ defined e.g. in White (1994).
To establish the uniform convergence of LT (ψ,w, f̃m1 ) we use the norm sub-additivity

inequality

sup
ψ∈Ψ
|LT (ψ,w, f̃m1 )− L∞(ψ,w)| ≤ sup

ψ∈Ψ
|LT (ψ,w, f̃m1 )− LT (ψ,w)|+ sup

ψ∈Ψ
|LT (ψ,w)− L∞(ψ,w)|

where LT (ψ,w) denotes the likelihood evaluated at the filtered f̃τ (ψ) starting in the
infinite past. The term

sup
ψ∈Ψ
|LT (ψ,w, f̃m1 )− LT (ψ,w)|

vanishes by the assumption that ‖f̃mt (ψ,w, f̃m1 ) − f̃mt (ψ)‖ a.s.→ 0, the continuity of the
likelihood function and the continuous mapping theorem.
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The ergodic theorem for separable Banach spaces of Rao (1962) ensures that

sup
ψ∈Ψ
|LT (ψ,w)− L∞(ψ,w)| a.s.→ 0

(see also Theorem 2.7 in Straumann and Mikosch (2006)) for the sequence {LT (·, w)} of
points in C(Ψ,R) under:

(i) the SE nature of {LT (·, w)}T∈Z which is ensured by SE nature of {f̃mτ }τ∈Z, {xmτ }τ∈Z
and {yt}T∈Z, by the continuity of and Proposition 4.3 in Krengel (1985);

(ii) the moment bound E supψ∈Ψ |`t(ψ,w)| <∞ ensured by the Gaussian log likelihood
under the bounded second moment of f̃mτ , xmτ and yt.

The identifiable uniqueness of the true parameter ψ0 ∈ Ψ, typically defined as

sup
ψ:‖ψ−ψ0‖>ε

`∞(ψ,w) < `∞(ψ0, w) ∀ ε > 0

is ensured by the uniqueness of ψ0, the compactness of Ψ, and the continuity of E`t(ψ,w)
on Ψ, which is obtained through the continuity of LT on Ψ for every T ∈ N and the
uniform convergence of the likelihood; see e.g. White (1994). The uniqueness of ψ0 as
the maximizer L∞(·, w) for any w ∈ (0, 1] is ensured by Theorem 3 which shows that the
maximizer L∞(ψ0, w) = 0 if and only if L∞(ψ0, 1) = 0.

Proof of Theorem 3. The consistency statement follows by the same steps as the proof of
Theorem 2 with the exception that the SE nature of {yt} is assumed rather than derived
through Proposition 1.

Let zt denote a dz-variate random vector with joint density p(zt). Furthermore, con-
sider a family of parametric joint densities indexed by the parameter vector ψ, defined as
Q(Ψ) := {q(zt;ψ), ψ ∈ Ψ}. Note that it is possible but not necessary that p(zt) ∈ Q(Ψ).
If ψ∗0(1) is the pseudo-true parameter that maximizes the limit log likelihood function

ψ∗0 := arg max
ψ∈Ψ

E0 log q(zt;ψ),

then it is well known that ψ∗0 also minimizes the the Kullback–Leibler divergence KL
(
p, q(·;ψ)

)
between p(zt) and q(zt;ψ) because

arg max
ψ∈Ψ

E0 log q(zt;ψ) = arg min
ψ∈Ψ

E0 log p(zt)− E0 log q(zt;ψ) = arg min
ψ∈Ψ

KL
(
p, q(·;ψ)

)
.

Let now the joint density q(xt;ψ) be factorized into

q1(z1,t|z2:dz ,t;ψ0)× q2(z2:dz ,t;ψ0) := q1(z1,t|z2,t, ..., zdz ,t;ψ0)× q2(z2,t, z3,t, ..., zdz ,t;ψ0)

and define ψ∗0(w) as the pseudo-true parameter that maximizes the weighted limit log
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likelihood function

ψ∗0(w) := arg max
ψ∈Ψ

E0 log q1(z1,t|z2:dz ,t;ψ) + w logE0q2(z2:dz ,t;ψ).

Then it follows naturally that ψ∗0(w) is the minimizer of the weighted average of KL
divergences

ψ∗0(w) = arg min
ψ∈Ψ

KL(q1, p1) + wKL(q2, p2)

because

arg max
ψ∈Ψ

[
E0 log q1(z1,t|z2:dz ,t;ψ) + w logE0q2(z2:dz ,t;ψ)

]
= arg max

ψ∈Ψ

[
E0 log q1(z1,t|z2:dz ,t;ψ)− E0 log p1(z1,t|z2:dz ,t)

+ w logE0q2(z2:dz ,t;ψ)− w logE0p2(z2:dz ,t)
]

= arg min
ψ∈Ψ

[
E0 log p1(z1,t|z2:dz ,t)− E0 log q1(z1,t|z2:dz ,t;ψ)

+ w
(

logE0p2(z2:dz ,t)− logE0q2(z2:dz ,t;ψ)
)]

= arg min
ψ∈Ψ

[
KL(q1(·;ψ), p1) + wKL(q2(·;ψ), p2)

]
.

Clearly, if w = 1, then we obtain the usual ML pseudo-true parameter since

ψ∗0(1) = arg min
ψ∈Ψ

KL(q1(·;ψ), p1) + KL(q2(·;ψ), p2) = arg min
ψ∈Ψ

KL(q(·;ψ), p).

For w = 0 we obtain the ML estimator for the conditional model

ψ∗0(0) = arg min
ψ∈Ψ

KL(q1(·;ψ), p1)

Finally, it is also clear that the transformed KL divergence TKL(q, p) := KL(q1(·;ψ), p1)+
wKL(q2(·;ψ), p2) satisfies

KL(q1(·;ψ), p(·;ψ)) ≤ TKL(q(·;ψ), p) ≤ KL(q(·;ψ), p)

and that TKL(q(·;ψ), p) is a pre-metric for any w ∈ (0, 1] as it inherits positivity TKL(q(·;ψ), p) ≥
0 from the positivity of the KL divergence, and satisfies also the identity of indiscernibles
since

TKL(q(·;ψ), p) = KL(q1(·;ψ), p1) + wKL(q2(·;ψ), p2) = 0

if and only if q1(·;ψ) = p1 and q2(·;ψ) = p2, and hence, if and only if q(·;ψ) = p.

Proof of Theorem 4. Asymptotic normality of the WML estimator can be obtained by
verifying the conditions of Theorem 6.2 of White (1994):
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(i) ψ̂T (f̃m1 , w) a.s.→ ψ0 ∈ int(Ψ);

(ii) LT (·, w, f̃m1 ) ∈ C2(Ψ) a.s.;

(iii)
√
TL′T

(
ψ0, w, f̃

m
1 , d̃f

m
1 ) d→ N(0,J (ψ0, w)

)
;

(iv) supψ∈Ψ
∥∥L′′T (ψ,w, f̃m1 , d̃f

m
1 ,

˜ddfm1 )− `′′∞(ψ,w)
∥∥ a.s.→ 0;

(v) `′′∞(ψ,w) = E`′′t (ψ,w) = I(ψ,w) is non-singular

(i) and (ii) follow naturally from Theorem 2, the additional assumption that ψ0 ∈
int(Ψ) and the differentiability of the Gaussian likelihood.

(iii) follows by the asymptotic SE nature of the score {`′t(ψ,w, f̃m1 , d̃f
m
1 )} which is

implied by the SE nature of {xmτ } and {yt}, and the asymptotic SE nature of the filtered
sequence {f̃τ (ψ, f̃m1 )} and its derivative {d̃f τ (ψ, d̃fm1 )}. Since the limit score sequence
{`′t(ψ,w)} is SE we can apply the CLT for SE martingales in Billingsley (1961) to obtain

√
TL′T

(
ψ0, w) d→ N(0,J (ψ0, w)

)
as T →∞, (26)

where J (ψ0, w) = E(`′t
(
ψ0, w)`′t

(
ψ0, w)>) < ∞. By Theorem 18.10[iv] in van der Vaart

(2000) it thus follows that

√
TL′T

(
ψ0, w, f̃

m
1 , d̃f

m
1 ) d→ N(0,J (ψ0, w)

)
as T →∞,

as long as
‖L′T

(
ψ0, w, f̃

m
1 , d̃f

m
1 )− L′T

(
ψ0, w)‖ e.a.s.→ 0 as T →∞ (27)

since (27) ensures
√
T‖L′T

(
ψ0, w, f̃

m
1 , d̃f

m
1 )− L′T

(
ψ0, w)‖ a.s.→ 0 as T →∞. The e.a.s. con-

vergence in (27) follows from

|fmt (ψ0, w, f̃
m
1 )− fmt (ψ0, w)| e.a.s.→ 0

and
‖d̃fmτ (ψ0, d̃f

m
1 )− d̃fmτ (ψ0)‖ e.a.s.→ 0.

Furthermore, since the score of the weighted likelihood is differentiable, we can use the
mean-value theorem to obtain

‖L′T
(
ψ0, w, f̃

m
1 , d̃f

m
1 )− L′T

(
ψ0, w)‖ ≤

∑
j

∣∣dL′T ∣∣∣∣d̃fmj,τ (ψ0, d̃f
m
1 )− d̃fmj,τ (ψ0)

∣∣, (28)

where d̃f
m
j,τ (ψ0, d̃f

m
1 ) denotes the j-th element of d̃fmτ (ψ0, d̃f

m
1 ), and dL′T denotes the

derivative ∂L′T
(
ψ0, w, f̃

m
1 , d̃f

m
1 )/∂d̃f j evaluated at some appropriate point between d̃fmj,τ (ψ0, d̃f

m
1 )

and d̃f
m
j,τ (ψ0). The bounded moments of the weighted likelihood derivatives and the

e.a.s. convergence of the filtered process and its derivatives yield

‖L′T
(
ψ0, w, f̃

m
1 , d̃f

m
1 )− L′T

(
ψ0, w)‖ =

∑
j

Op(1)oe.a.s(1) = oe.a.s.(1). (29)
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(iii) follows by noting that

sup
ψ∈Ψ
‖L′′T

(
ψ,w, f̃m1 , d̃f

m
1 ,

˜ddfm1 )− L′′∞
(
ψ,w) ≤ sup

ψ∈Ψ
‖L′′T

(
ψ,w, f̃m1 , d̃f

m
1 ,

˜ddfm1 )− L′′T
(
ψ,w)‖

+ sup
ψ∈Ψ
‖L′′T

(
ψ,w)− L′′∞

(
ψ,w)‖.

(30)

Clearly, supψ∈Ψ ‖L′′T
(
ψ,w, f̃m1 , d̃f

m
1 ,

˜ddfm1 )−L′′T
(
ψ,w)‖0 as t→∞ by the continuous map-

ping theorem and the e.a.s. convergence of the filtered process and its derivatives, and
supψ∈Ψ ‖L′′T

(
ψ,w) − L′′∞

(
ψ,w)‖ vanishes by a ULLN under the uniform moment bound

on the weighted likelihood E supψ∈Ψ ‖L′′t (ψ,w)‖ <∞.
(v) the uniqueness of ψ0 as a maximum of `′′∞(ψ,w) ensures the non-singularity of the

limit weighted likelihood L′′∞(ψ,w) = EL′′t (ψ,w) = I(ψ,w).

Proof of Theorem 5. Follows the same steps as the proof of Theorem 4 ith the exception
that the required properties of {xmτ } and {yt} are directly assumed rather than derived
through Proposition 1.
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Technical Appendix
Weighted Maximum Likelihood Estimator for

Mixed Frequency Dynamic Factor Models
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C Derivations for Univariate Autoregressive Processes

C.1 AR(1) process with stacked observations

Consider the AR(1) process of the monthly (m) observed variable xmτ with monthly time
index τ

xmτ = φxmτ−1 + ετ , ετ ∼ NID
(
0, σ2

ε

)
(31)

When the monthly observations of xmτ are stacked into the quarterly (q) 3× 1 vectors
xqt with quarterly time index t, then the equations of the AR(1) process for the stacked
observations can be written as

xqt,1 = φxqt−1,3 + εt,1, xqt,2 = φxqt,1 + εt,2, xqt,3 = φxqt,2 + εt,3 (32)

To develop a low frequency recursion for xqt , we substitute the first equation for the
value of xqt,1 and the second equation for xqt,2 gives the following set of equations

xqt,1 = φxqt−1,3 + εt,1

xqt,2 = φ(φxqt−1,3 + εt,1) + εt,2

= φ2xqt−1,3 + φεt,1 + εt,2

xqt,3 = φ(φ2xqt−1,3 + φεt,1 + εt,2) + εt,3

= φ3xqt−1,3 + φ2εt,1 + φεt,2 + εt,3

, (33)

which can be written as the autoregressive process

xqt = Txqt−1 +Rεt (34)

with matrices

T =


0 0 φ

0 0 φ2

0 0 φ3

 , R =


1 0 0
φ 1 0
φ2 φ 1

 (35)
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where the variance matrix of the vector xqt , conditional on x
q
t−1, is equal to σ2

εRR
′. This

autoregressive process is equal to the linear Gaussian state space model

xt = Zαt + εt, εt ∼ N (0, H)
αt+1 = Tαt +Rεt, εt ∼ N (0, Q)

(36)

with Z = I3, with αt = xqt and H = 0.
The unconditional variance and covariances (used for initialization of the Kalman

Filter) can be obtained from the Yule-Walker equations and are equal to

γ0 = σ2
ε

(1−φ2)
γ1 = φγ0

γ2 = φγ1

(37)

C.2 AR(2) process with stacked observations

For an AR(2) process with monthly observed variable xmτ the transformations are similar.
Consider the model

xmτ = φ1x
m
τ−1 + φ2x

m
τ−2 + ετ , ετ ∼ NID

(
0, σ2

ε

)
(38)

The equations of the AR(2) process for the stacked quarterly observations become

xqt,1 = φ1x
q
t−1,3 + φ2x

q
t−1,2 + εt,1

xqt,2 = φ1x
q
t,1 + φ2x

q
t−1,3 + εt,2

xqt,3 = φ1x
q
t,2 + φ2x

q
t,1 + εt,3

(39)

Substitution of the first equation for the value of xqt,1 and the second equation for xqt,2
gives the following set of equations

xqt,1 = φ1x
q
t−1,3 + φ2x

q
t−1,2 + εt,1

xqt,2 = φ1(φ1x
q
t−1,3 + φ2x

q
t−1,3 + εt,1) + φ2x

q
t−1,2 + εt,2

= (φ2
1 + φ2)xqt−1,3 + φ1φ2x

q
t−1,2 + φεt,1 + εt,2

xqt,3 = φ1((φ2
1 + φ2)xqt−1,3 + φ1φ2x

q
t−1,2 + φεt,1 + εt,2) + φ2(φ1x

q
t−1,3 + φ2x

q
t−1,2 + εt,1) + εt,3

= (φ3
1 + 2φ1φ2)xqt−1,3 + (φ2

1φ2 + φ2
2)xqt−1,2 + (φ2

1 + φ2)εt,1 + φ1εt,2 + εt,3

,

(40)
which can be written as the linear Gaussian state space model(36) with matrices

T =


0 φ2 φ1

0 φ1φ2 φ2
1 + φ2

0 φ2
1φ2 + φ2

2 φ3
1 + 2φ1φ2

 , R =


1 0 0
φ1 1 0

φ2
1 + φ2 φ1 1

 (41)

where the variance matrix of the vector xqt , conditional on x
q
t−1, is equal to σ2

εRR
′. The
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unconditional variance and covariances are equal to

γ0 = 1−φ2
1+φ2

(
σ2
ε

(φ1+φ2−1)(φ2−φ1−1)

)
γ1 = φ1

(1−φ2)γ0

γ2 = φ1γ1 + φ2γ0

(42)

C.3 AR(3) process with stacked observations

For an AR(3) process with monthly observed variable xmτ the transformations are again
similar. Consider the model

xmτ = φ1x
m
τ−1 + φ2x

m
τ−2 + φ3x

m
τ−3 + ετ , ετ ∼ NID

(
0, σ2

ε

)
(43)

The equations of the AR(3) process for the stacked quarterly observations xqt become

xqt,1 = φ1x
q
t−1,3 + φ2x

q
t−1,2 + φ3x

q
t−1,1 + εt,1

xqt,2 = φ1x
q
t,1 + φ2x

q
t−1,3 + φ3x

q
t−1,2 + +εt,2

xqt,3 = φ1x
q
t,2 + φ2x

q
t,1 + φ3x

q
t−1,3 + +εt,3

(44)

Substitutions similar to those described in the previous subsections can again be ap-
plied. We have

xqt,1 = φ1x
q
t−1,3 + φ2x

q
t−1,2 + φ3x

q
t−1,1 + εt,1

xqt,2 = φ1x
q
t,1 + φ2x

q
t−1,3 + φ3x

q
t−1,2 + εt,1

= φ1(φ1x
q
t−1,3 + φ2x

q
t−1,2 + φ3x

q
t−1,1 + εt,1) + φ2x

q
t−1,3 + φ3x

q
t−1,2 + εt,2

= (φ2
1 + φ2)xqt−1,3 + (φ1φ2 + φ3)xqt−1,2 + φ1φ3x

q
t−1,1 + φεt,1 + εt,2

xqt,3 = φ1x
q
t,2 + φ2x

q
t,1 + φ3x

q
t−1,3 + εt,1

= φ1(φ1x
q
t−1,3 + φ2x

q
t−1,2 + φ3x

q
t−1,1 + εt,1)

+ φ2((φ2
1 + φ2)xqt−1,3 + (φ1φ2 + φ3)xqt−1,2 + φ1φ3x

q
t−1,1 + φεt,1 + εt,2)

+ φ3x
q
t−1,3 + εt,2

= (φ3
1 + 2φ1φ2 + φ3)xqt−1,3 + (φ2

1φ2 + φ1φ3 + φ2
2)xqt−1,2

+ (φ2
1φ3 + φ2φ3)xqt−1,1 + φεt,1 + εt,2

, (45)

which can be written as the linear Gaussian state space model (36) for the quarterly
observed xqt with

T =


φ3 φ2 φ1

φ1φ3 φ1φ2 + φ3 φ2
1 + φ2

φ2
1φ3 + φ2φ3 φ2

1φ2 + φ1φ3 + φ2
2 φ3

1 + 2φ1φ2 + φ3

 (46)

For the AR(3) process, R is the same matrix as for the AR(2) process and the variance
matrix of the vector xqt , conditional on x

q
t−1, is again equal to σ2

εRR
′. The three values
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of xqt now depend on all three observation of xqt−1 and on the 3× 1 vector of disturbances
εt. The unconditional variance and covariances are equal to

γ0 = σ2
ε(1−φ2−φ1φ3−φ2

3)
(1−φ2−φ3−φ1)(1+φ2+φ3φ1−φ2

3)(1+φ3+φ1−φ2)

γ1 = (φ1+φ2φ3)γ0
(1−φ2−φ3φ1−φ2

3)
γ2 = φ1γ1 + φ2γ0 + φ3γ1

(47)

C.4 AR(p) process with stacked observations

For AR(p) processes of order p > 3 the state vector in (36) has to be extended with more
lags of xqt . For example, for the AR(4) process we would have αt =

(
xqt−1,3, x

q
t,1, x

q
t,3, x

q
t,3

)′
and the transition matrix becomes

T =


0 0 0 1
φ4 φ3 φ2 φ1

φ1φ4 φ1φ3 + φ4 φ1φ2 + φ3 φ2
1 + φ2

φ2
1φ4 + φ2φ4 φ2

1φ3 + φ2φ3 + φ1φ4 φ2
1φ2 + φ1φ3 + φ2

2 + φ4 φ3
1 + 2φ1φ2 + φ3

 ,
(48)

where the variance matrix of the process is defined as σ2
εRR

′ with

R =


0 0 0 0
0 1 0 0
0 φ1 1 0
0 φ2

1 + φ2 φ1 1

 , (49)

The unconditional variances and covariances can be obtained analytically using the
Yule-Walker equations, or by numerically solving the Algebraic Riccati Equation.

D Interpolation and Aggregation Approaches

Below we discuss the original solution by Mariano and Murasawa (2003) in treating mixed
frequency data; they analyze all series at the highest frequency. In this approach, artificial
missing values are introduced for the series that is observed at the lower frequency and
interpolation techniques are used to describe the dynamics of the unobserved ’latent’
monthly GDP growth. Furthermore, we explore a second approach where all series are
modeled at the lowest frequency by aggregating the high frequency series to quarterly
totals. In this approach, no artificial missing values are needed, but information about
the high frequency series is lost and the model does not allow the econometrician to
address high frequency dynamics.
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D.1 Interpolation Approach

In the mixed frequency interpolation (MFI) approach, all series are treated at the highest
frequency, say as monthly time series. All variables are driven by one unobserved monthly
common factor fτ and by the idiosyncratic factors uτ and vτ . The variable quarterly yt
is observed every third month and has missing values for the first two months of every
quarter. Therefore, the data matrix has the following structure

[
· · y3 · · y6 · . . . y3n

x1 x2 x3 x4 x5 x6 x7 . . . x3n

]
, (50)

where xτ is the k×1 vector
(
x

(1)
τ , . . . , x

(k)
τ

)′
and n is the number of quarters in the sample

period. Since in this approach all series are treated as monthly series, we choose to drop
the superscript m, in order to avoid cumbersome notation. The contemporaneous and
dynamic interactions between yτ and the vector of monthly observed variables xτ are
specified via the model

(
ỹmτ
xτ

)
=
(
βyg (fτ )
βxfτ

)
+
(
g(uτ )
vτ

)
+
(
ξτ

ετ

)
(51)

where ỹmτ is the latent monthly variable for y and for which we only have observations
available in the last month of each quarter, βy is a scalar coefficient, βx is a k × 1 vector
of coefficients, and

g(aτ ) = 1
3aτ + 2

3aτ−1 + aτ−2 + 2
3aτ−3 + 1

3aτ−4 (52)

for τ = 1, . . . , 3n. The vector uτ is the stationary sequence of the idiosyncratic factor
for yτ and vτ is the stationary sequence of the vector of idiosyncratic factors for xτ and
consists of one value per month for each monthly observed variable x(i)

τ .
The factors fτ , uτ and vτ are modeled as AR processes

fτ ∼ AR(pf ), uτ ∼ AR(pu), vτ ∼ AR(pv), (53)

where AR(p) refers to the process in (22) with order p that can be different, that is
p = pf , pu, pv respectively. There are no interactions between the series of fτ , uτ and vτ
nor between the series of v(i)

τ and v(j)
τ for any i 6= j.

We have established the model by Mariano and Murasawa (2003) and implicitly their
model-based solution to the mixed frequency problem. They advocate to use the Kalman
filter for likelihood evaluation and general analysis. Specifically, they take advantage of
the fact that the Kalman filter can treat missing observations without a problem.

D.2 Aggregation Approach

An alternative approach, where the introduction of artificial missing values is not required,
is the aggregation of the monthly series xmτ into quarterly totals x̄qt and the treatment of
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all series as quarterly series. This model then only describes quarterly dynamics. The
unobserved common factor must also become quarterly. To avoid cumbersome notation
we drop the superscript q and we write the model in the form

(
yt

x̄t

)
=
[
βy 1 0
βx 0 Ik

]
ft

ut

v̄t

+
(
ξt

ε̄t

)
, (54)

for t = 1, . . . , n, where x̄t and βx are both k × 1 vectors. The common factor ft and the
idiosyncratic factors ut and v̄t can still be modeled by AR processes as in (53). However,
we must take care when interpreting the values of the parameters of these processes, as
they now describe the dynamics from quarter to quarter. We will hereafter refer to this
approach as the mixed frequency aggregation (MFA) approach.
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