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Vector autoregression (VAR) is a core tool in macroeconomic forecasting for predicting
a multivariate time series Yt ∈ Rq for t = 1, . . . , T . Once the lag parameter J is set, a VAR
can be written

Yt =

J∑
j=1

AjYt−j + εt,

where Aj ∈ Rq×q are the parameter matrices and V[εt] = Σ. VARs are straightforward to
fit through the use of least squares. Nonlinear adaptations of VARs have been in use for
some time now, such as the single-index econometric model (SIAVAR) [6]

Yt = F (Yt−1, . . . , Yt−J) + εt =

J∑
j=1

fj(AjYt−j) + εt,

where Aj are the single-index weights. This model directly generalizes the VAR as it
allows for marginally nonlinear functions of Yt−j via fj . The single-index model is a
special case of an older, more general method in statistics known as ‘projection pur-
suit’ [5]. While the SIAVAR allows for interactions across the time series at a partic-
ular time t, it does not allow for cross-time interactions. Fully additive models, where
F (Yt−1, . . . , Yt−J) =

∑Q
q=1 fq(Yt−1, . . . , Yt−J), generalize projection pursuit and allow for

more complicated interactions across both series and time, however, they can be difficult
fit numerically due to a nonconvex objective function and identifiability concerns.

One popular method in machine learning for successfully fitting additive models is known
as (gradient) boosting [3, 4]. Boosting fits an additive model where fq is a base-learner—
commonly a simple method such as marginal regression or heavily-pruned decision trees.
The base-learner is refitted on weighted versions of the data such that observations that
have large residuals or are misclassified are emphasized in successive fits.

Our research develops tools for fitting additive time series models and examines their
utility for forecasting. Our results show that making predictions via boosting with a multi-
variate tree base-learner improves on VARs in a variety of situations, even when the order
of the VAR is chosen in an oracle fashion. Additionally, though there has been some recent
work in the area of boosting time series data [1, 2, 7, 8], there are many open avenues of
research. First, boosting readily allows for loss functions other than squared error, both
for continuous-valued Yt (such as in robust regression) and for categorical-valued Yt (such
as the multinomial logistic likelihood). Second, the implications of various choices—e.g.
the base learner and the number of boosting iterations—are poorly understood in the time
series regime, but have important consequences for predictive performance.
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Relevance to the 2015 NBER-NSF Time Series Conference

In this paper, we seek to expand the use of boosting in the time-series community by
demonstrating its superiority as a forecasting technique. Boosting is a central technique
in machine learning applications with independent and identically distributed data but is
just beginning to be developed for time-series applications and used by time-series analysts.
Therefore, this work is very relevant to the NBER-NSF conference as it is a major venue
through which statistics, machine learning, and economics communities interface and ex-
change ideas. This work is partially funded by a grant from the Institute for New Economic
Thinking.
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