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1 Introduction

One of the key challenges of modern macroeconomics rests on the identification of the sources

of aggregate fluctuations. By specifying a coherent probabilistic structure of economically

interpretable endogenous and exogenous processes, DSGE models represent ideal candidates

to pin down the shocks driving business cycle fluctuations.1 A tacit but widespread assump-

tion in the empirical literature on DSGE model estimation is that exogenous disturbances

do exist in the sense that they capture aggregate economic uncertainty (up to a vector of

idiosyncratic measurement errors). Common estimation practice implicitly “imposes” these

fundamental shocks by restricting their standard deviation to be non-zero. In a Bayesian

context, this assumption is reflected on the prior distributions imposed on the standard devi-

ations of DSGE model shocks (e.g. typically an inverse gamma prior). In classical statistics,

standard deviations are re-parameterized by taking logarithmic transformations. In doing so,

we rule out boundary solutions and, by construction, structural disturbances always exist.

From an empirical point of view, there is mounting evidence that some of the structural

DSGE shocks are unlikely to capture aggregate uncertainty and rather absorb misspecified

propagation mechanisms of endogenous variables (see Schorfheide (2013) for an overview).

Moreover, it is not infrequent that shocks with dubious structural interpretation are used

with the sole purpose of avoiding stochastic singularity and this complicates inference when

they turn out to matter, say, for output or inflation fluctuations (see Chari, Kehoe and

McGrattan (2008) and Sala, Soderstrom and Trigari (2010)). This is an important question

in modern stochastic models of economic fluctuations. Empirically, these models face two

challenges. First, unveiling the fundamental innovations that set off fluctuations. Second,

identifying the key transmission mechanisms that transform these innovations into business

cycles. There is a large literature on the latter. However, because we impose the existence

of a set of fundamental shocks, we do not yet understand what are the consequences for

inference when estimating a vector of time series with an ‘excessive’ number of structural

disturbances, i.e. what are the consequences for inference when estimating non-fundamental

DSGE shocks? This is the first question we tackle in this paper. We then propose a set

of easily implementable tools for selecting fundamental shocks entering DSGE models and

assess their performance against standard practice.

Non-fundmentalness might arise because some shocks have zero variance or because of

the existence of linear combinations among structural innovations. Bar few exceptions (e.g.

Cúrdia and Reis (2010)) the vast majority of empirical studies typically postulate orthogo-

nality among innovations and therefore assume a diagonal covariance matrix. Regardless of

the shock correlation structure, when taking the model to the data, we want to be able to

test, rather then merely postulate, the fundamentalness of structural shocks. I.e., we want

to be able to select which innovations are important drivers of aggregate uncertainty. To

1See Smets and Wouters (2007) and Justiniano, Primiceri and Tambalotti (2010) amongst many others.
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be able to estimate the possibly rank deficient covariance matrix of structural shocks, we

need to 1) add idiosyncratic measurement errors and 2) abandon standard inverse gamma

priors and use distributions (univariate or multivariate) that allow for zero variances (or null

eigenvalues).

Using a simple univariate setup, we show analytically that imposing a non-existent ex-

ogenous process has deep consequences for inference. E.g. it generates a downward bias in

the estimate of the internal persistence of the model. In fully fledged DSGE models, the

persistence of model dynamics are controlled not only by the autoregressive parameters, but

also by deep parameters capturing real and nominal frictions in the economy. As a result,

behavioral parameter estimates can be corrupted as well. With a simulation experiment

using a medium-scale model, we quantify the distortions on deep parameter estimates due

to incorrect assumptions about the rank of the covariance matrix of structural shock, Σ. In

particular, when the econometrician assumes that the rank of Σ is larger than the one of

the true DGP, autoregressive parameters and parameters driving price and wage stickiness

and indexation are grossly underestimated. The result is that the inclusion of innovations

that are not fundamental drivers of macroeconomic uncertainty affects the estimates of the

transmission mechanisms. We thus unveil a potential trade-off between the inclusion of a

wide set of potential sources of impulses and the correct identification of model parameters

that drive propagation.

We then show how these distortions are reduced by considering priors on the structural

shocks covariance matrix that allow for rank deficiency. In the context of uncorrelated dis-

turbances, truncated or un-truncated priors can be implemented as long as they attribute

non-zero probability to zero standard deviations. We show that proper priors such as nor-

mal or exponential distributions have appealing properties since they allow us to recover

fundamental and non-fundamental shocks in situations where the true number and combi-

nation of fundamental shocks is unknown. In the context of a more general structural shocks

covariance matrix, we propose considering the conjugate Metropolis-within-Gibbs sampler

proposed in Cúrdia and Reis (2010) adapted for rank deficient covariance matrices 2.

We explore the consequences of our approach in an empirical application and revisit

the evidence of a industry standard DSGE model. We estimate the Smets and Wouters

(2007) model on seven key quarterly macroeconomic time series, namely, the growth of real

output, consumption, investment, and real wages, and hours, inflation, and interest rates.

For comparability proposes, we consider the original data span, 1968-2004, with revised

data, and only depart from the baseline specification of the model by assuming normal

priors on standard deviations and by adding measurement errors.3 Our findings show that,

first, government spending and price markup shocks are non-fundamental for the 1968-

2004 sample period and larger samples, and the wage markup shock is non-fundamental for

2In a rank deficient environment, we consider the singular Inverse Wishart distribution (see Uhlig (1994) and
Dı́az-Garćıa and Gutiérrez-Jáimez (1997)) and the conjugacy results in Dı́az-Garćıa and Gutiérrez-Jáimez (2006).

3We also run estimates with the vintage data and with a sample including more recent years (i.e. up to 2014).
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larger estimation spans, i.e. 1968-2009 or onwards. Technology, investment, preference and

monetary policy shocks are fundamental. Interestingly, such clustering is very similar to

the Chari et al. (2008) classification of structural and non-structural shocks4. Second, we

show that, when allowing for zero standard deviations, the uncertainty previously coming

from these non-fundamental shocks is pushed towards measurement error. This is consistent

with Justiniano, Primiceri and Tambalotti (2013), who find that the variability arising from

wage markup shocks typically estimated in New Keynesian models is explained mostly by

measurement error in wages. Third, the estimated posterior distributions of deep parameters

are different when we allow for the possibility of a rank deficient structural shocks matrix.

As a consequence, the transmission mechanism of the fundamental shocks is also altered.

In particular, those of monetary policy and government spending shocks. Fourth, by means

of marginal likelihood comparisons, data prefer versions of the model with a rank deficient

shocks structure.

Our methodology is related to the literature on stochastic model specification search in

state space models. We draw from Fruhwirth-Schnatter and Wagner (2010) for the selection

of structures in unobserved components models or in time varying parameter VAR models as

in Belmonte, Koop and Korobilis (2014) or Eisenstat, Chan and Strachan (2014). We build

on that literature by proposing to estimate jointly the structural parameters and the stochas-

tic specification of the DSGE shock structure. Our paper is also, albeit indirectly, related to

the vast literature studying misspecification problems in DSGE model estimation. Invalid

cross-equation restrictions (e.g. Ireland (2004), Del Negro and Schorfheide (2009), Inoue,

Kuo and Rossi (2014)), parameter instability of various forms (e.g. Fernández-Villaverde

and Rubio-Ramı́rez (2008), Galvao, Giraitis, Kapetanios and Petrova (2015), Canova, Fer-

roni and Matthes (2015)), incorrect assumptions about shock dynamics (Cúrdia and Reis

(2010)), low frequency movements mismatches (e.g. Gorodnichenko and Ng (2010), Fer-

roni (2011), Canova (2014)), etc., may all plague inference in DSGE models. However, the

literature so far is silent on the issue of interest of this paper. We are concerned with re-

dundant model-based shocks which can generate distorted estimates and corrupt inference

when forced to be fundamental.

The remainder paper is organized as follows. Section 2 presents the econometric setup

and estimation procedures. Section 3 presents the inference distortions caused by incorrect

assumptions about the rank of Σ. Two models are considered: a standard RBC model to

convey intuition, and a medium scale DSGE model to measure distortions in models typically

used for policy analysis. Section 4 presents the main results of our empirical investigation.

Section 5 draws a number of concluding remarks.

4Quoting Chari et al. (2008), ‘We divide these [shocks] into two groups. The potentially structural shocks group
includes shocks to total factor productivity, investment-specific technology, and monetary policy. The dubiously
structural shocks group includes shocks to wage markups, price markups, exogenous spending, and risk premia.’.
Bar the risk premia shock, we provide additional empirical support to their claim.
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2 Generalized Priors for fundamental DSGE shocks

Consider a DSGE model with (deep) parameters of interest θ. The (control and state)

variables of the model, denoted by {st}, are driven by structural shocks with innovations εt.

The model is characterized by a set of equations that define the steady state values s∗ and

Euler equations that describe the transition dynamics. Linearizing around the steady state

gives a system of expectational difference equations that can be solved to yield a solution

in the form of difference equations. The linearized solution of a DSGE has the following

representation

st+1 = A(θ)st +B(θ) εt+1 (1)

with εt+1 ∼ Nr(0,Σ) (2)

where A,B are nonlinear functions of the structural parameters of the model, εt is a n × 1

vector of the structural (or fundamental) innovations, and st is the ns×1 vector of endogenous

and exogenous states. Σ is a covariance matrix of dimension n × n whose rank is r =

rank(Σ) ≤ n. We denote by Nr(0,Σ) the n × 1 multivariate singular Normal distribution

with rank r.

If the eigenvalues of A(θ) are inside the unit circle, the latter structure can be mapped

into a VMA(∞) (see Komunjer and Ng (2011)) representation as follows

st = (I −A(θ)L)−1B(θ) εt = Γ(L; θ) εt (3)

where L is the lag operator. The mapping from the model based variables to a ny× 1 vector

yt of observed times series is accomplished through a measurement equation augmented with

series specific i.i.d. shocks in order to avoid the possibly stochastically singular model, i.e.

yt = Λ st + et = Φ(L; θ) εt + et et ∼ N(0,Ω) (4)

where Λ is a selection matrix , Φ(L; θ) = Λ Γ(L; θ) is full column rank and et is a ny × 1

vector of normal i.i.d. errors. The vector of observables, yt, that the econometrician uses in

estimation is unconstrained and can be of any dimension. It could be larger or equal than

the number of structural shocks, i.e. ny = ns ≥ n. Or the observable set can even be larger

and include various proxies for the same model-based quantity, i.e. ny > ns > n, e.g. as in

Boivin and Giannoni (2006) or Canova and Ferroni (2011).

To gain more intuition we can rewrite the system as follows, for j = 1, ..., ny

yj,t = Φj(L; θ) εt + ej,t (5)

where Φj correspond to the jth raw of Φ(L; θ). The fundamental shocks and the measure-

ment shocks are separately identifiable since the former are common and the latter are series

specific. Moreover and more importantly, the measurement errors being i.i.d., they cannot

explain the cross- and auto-correlation structure of the data, which is entirely determined

by the common component, i.e. the DSGE model shocks and its MA structure.
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Equation (5) can be seen as an approximate dynamic factor model where the row vector

Φj(L; θ) represents the factor loadings and εt the common factors (orthogonal to each other).

There is, however, an important difference. While in the factor model we are interested in

the number of factors, in this setup we are interested also in the combination of underlying

common shocks since they have economic interpretations. This can be accomplished by

studying the null space of Σ. If we assume Σ diagonal, it is sufficient to check that standard

deviations are not zero. If Σ is a symmetric positive definite matrix, the non-zero eigenvalues

correspond to the fundamental shocks.

An alternative way to select the number and combination of fundamental DSGE shocks

is to compute the marginal likelihood of model specifications with different combinations of

structural shocks. However, this can be time consuming because it requires estimating each

of the possible models. In models with typically 7 or 8 postulated fundamental shocks, the

combinations of models to compare is very large and marginal likelihood comparisons will

not be a very useful tool for selection.5 Our argument is even more persuasive for non-linear

models for which the computation of the marginal likelihood is very burdensome. In our

approach, the selection of fundamental shocks is done in one step and considering all the

observables simultaneously.

Finally, it is important to highlight that, if we have strong priors that a subset of struc-

tural shocks do indeed exist, we can postulate inverse gamma priors on the standard de-

viations of that subset and be more agnostic on others. The shape of priors used are not

neutral, in the sense that they are imposing an a priori structure on the sources of business

cycle fluctuations. This may be convenient in cases in which we have a strong view about

what the sources of uncertainty are. However, the point that we would like to stress is that

assuming inverse gamma priors for the standard deviations of shocks that are not funda-

mental may create severe distortions for inference. The quantitative implications of this are

explored in the next subsections. Before that, we need to outline the estimation procedures,

priors, and posterior simulators to tackle the estimation of covariance matrices of structural

shocks that are rank deficient.

3 Estimation framework

In this section we discuss the prior distributions and posterior samplers used to estimate

rank deficient covariance matrices. Since they are different when disturbances are correlated

or uncorrelated, we analyze them separately. As mentioned above, our methodology is

related to the literature on Bayesian stochastic variable selection in state space models as in

Fruhwirth-Schnatter and Wagner (2010). Appendix A.2 briefly summarizes the key ideas of

this method and its correspondence with DSGE shock selection.

5Suppose we have a model with 7 shocks and we sequentially choose between models with 6, 5, 4, 3, and 2
shocks, this would imply estimating 122 models.
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3.1 Uncorrelated disturbances, Normal and Exponential priors

Equations (1) and (2) can be rewritten as

st+1 = A(θ)st +B(θ) Σ1/2ηt+1

with ηt+1 ∼ N(0, In)

where In is the identity matrix and N(0, In) is the multivariate normal distribution. While

the standard deviation of ηt+1 is fixed and normalized to one in estimation, the diagonal

elements of Σ1/2 are estimated. We consider classes of prior distributions for the diagonal

elements of Σ1/2 such that the probability of zero is positive, i.e. for j = 1, ..., nε we assume

that p(σj = 0) > 0. It is important to notice that structural standard deviations are not

identified up to sign switch, e.g. εi ∼ (0, σ2
i ) = ±σiη ∼ (0, 1). In other words, the model

in the equation with (−Σ1/2)(−ηt+1) is observationally equivalent to the same model with

Σ1/2ηt+1. As a consequence, the likelihood function is symmetric around zero along the σj

dimension and bimodal if the true σj is larger than zero. This fact can be exploited to

quantify how far the posterior of σj is from zero and, in turn, assess fundamentalness. One

could also, as it is standard practice, normalize the sign to a positive value and estimate the

standard deviations over a non-negative support.

We propose to use the following priors:

1. Exponential priors

σj ∼ Exp(λj)

With exponential priors, we fix the sign to be non-negative (but allowing for zero) prior

to estimation. In order to assess the fundamentalness of specific shocks, we rely on the

confidence sets of the posterior distribution and the statistical distance from zero.

Standard Bayesian simulators such as the RW Metropolis-Hastings can be employed

to recover the posterior distribution of the parameters.

2. Normal priors

σj ∼ N(µj , τ
2
j )

This implies estimating the non-identified standard deviations and fixing the sign after

estimation. Accordingly, the prior for structural standard deviations covers the entire

real line support. In such a case, the bi-modality of the posterior distribution of the

standard deviation implies existence of the structural shock in question. Uni-modality

(centered on zero) would then imply non-existence. In other words, with normal pri-

ors, we exploit the information contained in the non-identifiability of the sign. If a shock

exists, then the sign should not be identifiable. Standard Bayesian simulators such as

the RW Metropolis-Hastings can be employed to recover the posterior distribution with

an additional random sign switch of the shocks’ standard deviations. Appendix A.3

describes the procedure to introduce the sign switch in an otherwise standard MCMC.
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Although this step is not essential, it helps prevent the MCMC chain from getting

stuck in one of the two modes.

3.2 Correlated disturbances

Our approach can be extended to situations where some structural disturbances are corre-

lated. In such circumstances, we might be interested in estimating a non-diagonal covariance

matrix, Σ, with rank r = rank(Σ) < n. Such practice might be motivated by the findings

in the empirical factor model literature for which aggregate macroeconomic fluctuations are

typically explained by an handful of correlated factors. Moreover, Cúrdia and Reis (2010)

offer reasons for why arbitrary restrictions on the correlation structure of DSGE model dis-

turbances may be incorrect. It is possible to design an estimation procedure that accounts

for both a non-diagonal covariance structure of the data and a rank-deficient covariance

matrix.

The estimation procedure combines the ideas of the conjugate-conditional algorithm of

Cúrdia and Reis (2010) and the singular generalized inverse Wishart (see Uhlig (1994) and

Dı́az-Garćıa and Gutiérrez-Jáimez (1997)). In this section, we briefly outline the estimation

procedure and leave the detailed description of the posterior sampler in Appendix A.4.

In particular, the sampling of the parameters needs to be partitioned in two blocks: the

covariance matrix of the structural shocks (Σ) and all other parameters (θ). Conditional on

a value of θ and on a sequence of states {st}Tt=1, we can derive a sequence of i.i.d. structural

shocks from (1) as follows,

B(θ)+ (st+1 −A(θ)st) = εt+1 ∼ Nr(0,Σ) (6)

where B(θ)+ is the left Moore-Penrose generalized inverse of B(θ). The likelihood of the

multivariate normal singular distribution is similar to the non singular one with two main

differences. First, the determinant of the covariance matrix is replaced by the product of

non-zero eigenvalues. Second, we rescale the sum of the square deviations of the structural

shocks by the Moore-Penrose generalized inverse of Σ. Therefore, the likelihood of (6) is

given by

L(Σ|Z) ∝

(
r∏

k=1

λk

)−T
2

exp
(
−1/2 trace(Σ+Z ′Z)

)
where λk are the non-null eigenvalues of Σ and Z = (ε1, ..., εT )′. The latter, combined with

a (uninformative or informative) prior gives rise to an expression that is proportional to the

kernel of an n-dimension Singular Generalized Inverse Wishart of rank r.6. We denote this

with W+(r, ν,G), where ν = T − n + 1 are the degrees of freedom and G = Z ′Z the scale

matrix. Sampling from this distribution can be accomplished by a sequence of simple steps

outlined in Algorithm 3 in Appendix A.4.

6See the conjugacy results in Dı́az-Garćıa and Gutiérrez-Jáimez (2006)
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With this block structure, we can sequentially sample from Σ given θ and, vice versa,

sample θ given Σ. More formally, given r, Σ(0), θ(0)

Algorithm 1

1. Given Σ(j−1), θ(j−1), we draw a sequence of states, s
(j)
1:T . This distribution is derived

from the state space setup and, given linearity and Gaussianity assumptions, it is a normal

distribution.

2. Given θ(j−1) and s
(j)
1:T , draw Σ(j) from the n-dimension Singular Generalized Inverse

Wishart, W+(r, ν,G(j)).

3. Given Σ(j), draw θ∗ form a normal centered in θ(j−1) and accept the draw with a

Metropolis-Hastings probability, i.e. min
{

L(y1:T |θ∗,Σ(j))p(θ
∗)

L(y1:T |θ(j),Σ(j))p(θ(j−1))
, 1
}

.

In steps 1 and 3 the likelihood and the distribution of the states are computed using the

Kalman filter recursions. Since the state space is augmented with ny measurement errors, the

covariance matrix of the observables is full rank, hence invertible. Therefore, the Kalman

gain, defined as the product of the covariance between states and observables times the

inverse of the variance of the observables, can be computed and all the remaining recursions

are unaffected.

This algorithm relies on the assumption that the rank of the covariance matrix of struc-

tural shocks is known. In applied work, of course, this is not the case. Two approaches can

be used to tackle this problem. The first is to run a preliminary test on the data to select

the number of common factors that explain a pre-specified portion of the volatility of the ob-

served data. The second is to estimate different specifications with increasing rank dimension

from 1 to the number of shocks and select the one that maximizes the marginal likelihood.

Once the rank of the covariance matrix is established, redundant or non-fundamental shocks

can be obtained by looking a the null space of the posterior distribution of the covariance

matrix.

4 Non fundamental DSGE shocks and inference distortions

We now tackle the question of whether the introduction of non-fundamental shocks affects

the estimation of parameters governing transmission in the model. We first convey the

intuition using a simple model and we then move to an industry-standard New Keynesian

DSGE model to quantitatively assess the distortions induced in behavioral parameters and

their policy implications.

4.1 Example and experiments with a toy RBC model

We start first by studying the likelihood of the simplest DSGE model, a plain vanilla Real

Business Cycle (RBC) model with inelastic labor supply, full capital depreciation, and an
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autoregressive process of order one for total factor productivity (TFP) shocks. In this setting,

an analytical solution can easily be derived.7 We obtain the following recursive representation

zt+1 = ρzt + σεt+1

kt+1 = αkt + zt

yt = zt + αkt + et

where εt+1 ∼ N(0, 1) and small case variables indicate the log deviation of the variables from

the non stochastic steady state. In particular, kt is capital per capita, zt is TFP, yt is output

per capita, and α is the capital share in production. We assume that we observe neither

the technology process nor capital. We observe output up to a normal (0, ω2) measurement

disturbance et.

We run a controlled experiment to measure the impact of different priors on the DSGE

model shock standard deviations. We simulate artificial data from the RBC model by cal-

ibrating structural parameters values to standard values in the literature, i.e. α = 0.33,

ρ = 0.70. We generate data assuming that the technology shock is non fundamental (i.e.

standard deviation 0) and fundamental (i.e. standard deviation equal to .05, 0.1, 0.2). We

fix the variance of ω to 0.08, i.e. the mean of the range of values of the structural standard

deviation. The results obtained in this section are largely invariant to the values of struc-

tural and non-structural parameters used to generate data, to the the sample size, and to

the location of priors and scale parameters.8

We generate 500 data points from the RBC model for each value of σ, and retain the last

100 for inference. We compute and estimate the posterior kernel of σ assuming

• Inverse Gamma Prior with m = 0.2 and SD = 5,

• Normal Prior with m = 0.2 and SD = 5,

• Exponential Prior with m = 5 and SD = 5,

where m stands for the mean, and SD for the standard deviation. While the measures of

dispersion are the same across priors, the prior shape and support are different. We first

study the posterior kernel of σ conditional on the simulated data and on the other parameters

being fixed at their true values. Being a unidimensional problem, we do not have to rely on

posterior simulators and we can directly plot the product of the likelihood times the prior

(i.e. the posterior kernel) against different values of σ. This allows us to study the behavior

of the kernel in the neighborhood of zero. Figure 1 displays the posterior kernel of σ for a

range of values of σ (−0.5 : 0.02 : 0.5) keeping the remaining parameters fixed at their true

values. From the top left panel to the bottom right panel, we present the four cases for the

values of the true standard deviation: 0, 0.05, 0.1, 0.2.

7See Appendix A.1 for details.
8Results with different parameterization of the data generating process, scale and location parameters and

sample size are available on request.
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Figure 1: Posterior kernel of σ with inverse gamma IG(0.2,5) (green), normal N(0.2,5) (blue) and
exponential Exp(5) (red) prior assuming different true values for σ

A couple of results are worth highlighting. First, when the technology shock has zero

variance (i.e. the case of a non-fundamental structural shock), with a normal prior with loose

precision the posterior kernel of σ is uni-modal centered on zero and with a tight standard

deviation. Similar conclusions apply to the exponential prior, for which the posterior peaks

at zero. Hence, the prior information on this parameter does not distort the information of

the data likelihood. By assuming an inverse gamma prior, instead, we are forcing the kernel

not to explore the region of the parameter space of a null variance and, as a consequence, we

are corrupting the information contained in the data. Second, when the technology shock is

fundamental the posterior kernel of σ is similar across prior assumptions. Therefore, normal

or exponential priors do not seem to create distortions when the shock truly exists.

Conclusions are similar when using posterior simulators to approximate the posterior

distributions as shown in figure 2. The posterior moments of the full set of parameters, α,

ρ, σ and ω, are computed using the Random Walk Metropolis-Hastings algorithm adapted

for the sign switch when assuming normal prior for σ. We postulate a normal prior for α

centered in 0.3 with 0.05 standard deviation, a beta distribution for ρ centered in 0.6 with

0.2 standard deviation and an inverse gamma prior for the measurement error centered in

0.2 with a loose standard deviation of 4.

Table 4.1 reports posterior statistics assuming different prior distributions for the stan-

dard deviations. While the estimates of σ are very imprecise with an inverse gamma prior,

the normal and exponential priors with a sufficiently loose standard deviation allow the

MCMC to explore more extensively the parameter space and hence to verify ex-post if the
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Figure 2: Posterior distribution of σ with inverse inverse gamma IG(0.2,5) (green), normal N(0.2,5)
(blue) and exponential Exp(5) (red) prior assuming different true values for σ. RW Metropolis-
Hastings simulator is used to approximate the posterior distribution.

structural disturbance exists. It is important to notice that, in this simple example, the

structural parameters other than the autoregressive coefficient are unaffected. The extent

to which deep structural parameters are influenced by the wrong combination of shocks is

explored in the next subsection. However, before that, we wish to explore more in detail

the implications of mistaken assumptions about shock existence for the persistence of the

observable variable.

In the case of a null standard deviation, the posterior kernel displays a clear trade off

between setting the standard deviation close to zero or reducing the persistence of the model

dynamics. Since with inverse gamma priors we rule out null standard deviations, the poste-

rior kernel of standard deviations does not include zero and, as a consequence, the structural

shock has a dynamic impact on yt. The only way to tune down the dynamic impact of this

shock is to force the autoregressive parameters close to zero. To see this, assume that α = 0

and ω = 1. Then, the law of motion for output is given by

zt+1 = ρzt + σεt+1 εt ∼ N(0, 1)

yt = zt + et et ∼ N(0, 1)

Assume that the true DGP is the one with a null standard deviation, i.e. σ = 0, we have
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σ = 0 σ = 0.05 σ = 0.1 σ = 0.2
θ Median [Lower,Upper] Median [Lower,Upper] Median [Lower,Upper] Median [Lower,Upper]

Inverse Gamma Prior

α 0.302 [ 0.218 , 0.382 ] 0.325 [ 0.245 , 0.407 ] 0.328 [ 0.247 , 0.409 ] 0.335 [ 0.256 , 0.416 ]
ρ 0.219 [ 0.076 , 0.447 ] 0.774 [ 0.584 , 0.905 ] 0.760 [ 0.580 , 0.889 ] 0.889 [ 0.794 , 0.958 ]
σ 0.053 [ 0.039 , 0.071 ] 0.072 [ 0.053 , 0.098 ] 0.085 [ 0.063 , 0.112 ] 0.129 [ 0.097 , 0.172 ]
ω 0.079 [ 0.064 , 0.093 ] 0.087 [ 0.070 , 0.105 ] 0.081 [ 0.061 , 0.101 ] 0.145 [ 0.118 , 0.176 ]

Normal Prior

α 0.322 [ 0.240 , 0.404 ] 0.327 [ 0.238 , 0.407 ] 0.332 [ 0.243 , 0.408 ] 0.329 [ 0.241 , 0.414 ]
ρ 0.715 [ 0.319 , 0.966 ] 0.841 [ 0.684 , 0.954 ] 0.735 [ 0.539 , 0.894 ] 0.902 [ 0.811 , 0.966 ]
σ 0.001 [ -0.051 , 0.054 ] 0.060 [ 0.040 , 0.088 ] 0.083 [ 0.059 , 0.110 ] 0.134 [ 0.100 , 0.176 ]
ω 0.085 [ 0.061 , 0.101 ] 0.093 [ 0.076 , 0.112 ] 0.082 [ 0.063 , 0.106 ] 0.145 [ 0.117 , 0.178 ]

Exponential Prior

α 0.330 [ 0.245 , 0.408 ] 0.330 [ 0.248 , 0.412 ] 0.331 [ 0.247 , 0.412 ] 0.332 [ 0.249 , 0.412 ]
ρ 0.600 [ 0.238 , 0.913 ] 0.815 [ 0.637 , 0.928 ] 0.765 [ 0.579 , 0.900 ] 0.882 [ 0.780 , 0.955 ]
σ 0.006 [ 0.001 , 0.025 ] 0.062 [ 0.041 , 0.091 ] 0.083 [ 0.058 , 0.111 ] 0.136 [ 0.101 , 0.181 ]
ω 0.091 [ 0.081 , 0.102 ] 0.091 [ 0.074 , 0.110 ] 0.082 [ 0.062 , 0.102 ] 0.143 [ 0.114 , 0.174 ]

Table 1: Estimated parameters with normal and inverse gamma priors on standard deviations of
structural shocks

that yt = et and the likelihood collapses to

logL(yT |yT−1; ρ, σ = 0) ∝ −1/2
T∑
t=1

y2
t

While ρ is not identifiable in the true model, the persistence parameter becomes informative

in the misspecified model. Suppose we work with a misspecified model in which σ is fixed

to a positive value, say δ > 0, which measures the degree of misspecification, i.e. the larger

this value the more severe is the misspecification. The likelihood is given by

logL(yT |yT−1; ρ, σ = δ) ∝ −1/2
T∑
t=1

ln(st + 1)− 1/2
T∑
t=1

(yt − zt|t−1)2

1 + st

zt+1|t = (1− kt)zt|t−1 + ktyt

st+1 = kt + δ2

kt = ρ
st

1 + st

where the recursions are derived from the Kalman filter with s1 = δ2/(1− ρ2) and z1|0 = 0.

In order to minimize the information discrepancy between the misspecified model likelihood,

i.e. L(yT |yT−1; ρ, σ = δ), and the true DGP model likelihood, i.e. L(yT |yT−1; ρ, σ = 0), the

autoregressive parameter has to go to zero. When ρ = 0, we have kt = 0, zt|t−1 = 0, st = δ2,

and the likelihood becomes

logL(yT |yT−1; ρ = 0, σ = δ) ∝ −T/2 ln(δ2 + 1)−
T∑
t=1

1/2
y2
t

1 + δ2
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The fact that the information discrepancy is minimized when ρ = 0 can be shown numerically.

Figure 3 reports the information discrepancy between the misspecified and the true model

likelihood, i.e. logL(yT |yT−1; ρ, σ = δ)− logL(yT |yT−1;σ = 0), for various values of ρ. The

closer this value is to zero, the lower is the discrepancy between the misspecified and the

true model likelihood. One can see that the larger the persistence of the shock, the larger

is the information discrepancy with the true model. Moreover, the larger the degree of

misspecification, δ, the steeper the information discrepancy as a function of the persistence

becomes.
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(a) Small Mispecification δ = 0.01
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Figure 3: Information discrepancy, logL(yT |yT−1; ρ, σ = δ) − logL(yT |yT−1;σ = 0) for different
values of ρ. Left panel δ = 0.01, right panel δ = 0.05.

Hence, postulating the existence of a non-fundamental shock has two consequences. First,

it makes the autoregressive parameter informative when it is not in the true DGP. Second,

it generates a downward bias in the estimate of the internal persistence. In fully fledged

DSGE models, the persistence of model dynamics is controlled not only by the autoregressive

parameters, but also by the deep parameters capturing real and nominal frictions in the

economy. Therefore, it is likely that those parameters will be affected as well by the incorrect

specification of the number and combination of structural shocks. The extent to which

deep structural parameters are influenced by the wrong combination of shocks is explored

quantitatively in the next subsection.

4.2 Example and Experiments with a medium-scale DSGE model

We now apply the same analysis to the baseline version of the Smets and Wouters (2007)

model (henceforth SW). This model is selected because of its widespread use for policy analy-

sis among academics and policymakers, and because it is frequently adopted to study cyclical

dynamics and their sources of fluctuations in developed economies. We retain the nominal

and real frictions originally present in the model, but we make a number of simplifications,

which reduce the computational burden of the experiment, but bear no consequences on the
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conclusions we reach. First, we assume that all exogenous processes are stationary. Since

we are working with the decision rules of the model, such a simplification involves no loss of

generality. Second, we assume that all the shocks are uncorrelated and follow autoregressive

processes of order one. Third, since we do not want to have our results driven by identifica-

tion issues (see Komunjer and Ng (2011) or Iskrev (2010)), we fix a number of parameters

and estimate only a subset of them. We then estimate the standard errors, autoregressive

parameters, and the parameters driving price and wage indexation and stickiness, habit in

consumption, intertemporal elasticity of substitution and the inverse of the elasticity of in-

vestment (relative to an increase in the price of installed capital). Table 2 reports the full

set of parameter estimates, prior assumptions, and the true values used to generate artificial

data, which are taken from the posterior mean estimated in SW.9

To study the effect of estimating the model including non-fundamental shocks, we switch

off the price markup, the wage markup, and the investment specific shocks and add seven

measurement i.i.d. errors (one on each observable) with standard deviation equal 0.08.10

With this calibration, measurement errors explain on average less then 3% of the volatility

of observables. We simulate 1,000 data points and use the last 200 for inference.

We consider seven observable variables: output yt, consumption ct, investment it, wages

wt, inflation πt, interest rates rt, and hours worked ht. We estimate the model assuming

inverse gamma, exponential, and normal priors for the standard deviations and the same

priors as in SW for the remaining parameters. We run a 300,000 draws MCMC routine

starting from the posterior kernel mode and burn-in the first 200,000 of the chain and keep

randomly 1000 for inference. A subset of posterior moments are collected in table 2.

The posterior estimates of structural parameters with inverse gamma priors on standard

deviations are inferior to the normal and exponential priors along a number of dimensions.

First, and most obvious, with inverse gamma priors we are unable to separate the structural

shocks that exist from those that do not. On the contrary, with normal priors the posterior

support of the standard deviations of the investment specific shock, and of the wage and

price markup shocks include zero. With exponential priors we obtain that, for the non-

existing shocks, 90% of the mass of the posterior probability is located between 0 and 0.01.

This suggests that, with a sample size comparable to that used in empirical applications, we

are able to identify zero and non-zero standard deviations as long as we do not use inverse

gamma priors.

Second, the autoregressive parameters estimates of the specification with inverse gamma

priors are typically downward biased. As suggested in the previous section, the likelihood

has to compensate for the incorrect assumptions about the existence of structural processes

by reducing their persistence. In particular, the estimates of ρi and ρp are heavily downward

biased with a relatively tight posterior standard deviation.

9More details on the model can be found in Appendix A.5, where we report the log-linearized equilibrium
conditions.

10 We also reduced this value to 0.05 and increased it to 0.35 and the main conclusions are unaffected.
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Normal Prior Igamma Prior Exp Prior true
Parameters Median [Lower,Upper] Median [Lower,Upper] Median [Lower,Upper]

σa 0.513 [ 0.481 , 0.553 ] 0.464 [ 0.420 , 0.510 ] 0.515 [ 0.468 , 0.553 ] 0.450
σb 0.250 [ 0.228 , 0.269 ] 0.260 [ 0.233 , 0.290 ] 0.245 [ 0.223 , 0.266 ] 0.240
σg 0.519 [ 0.487 , 0.555 ] 0.510 [ 0.466 , 0.554 ] 0.525 [ 0.484 , 0.566 ] 0.520
σi -0.000 [ -0.005 , 0.005 ] 0.068 [ 0.059 , 0.080 ] 0.004 [ 0.000 , 0.010 ] 0.000
σm 0.224 [ 0.202 , 0.254 ] 0.246 [ 0.216 , 0.281 ] 0.248 [ 0.215 , 0.269 ] 0.250
σw -0.000 [ -0.001 , 0.001 ] 0.056 [ 0.049 , 0.065 ] 0.000 [ 0.000 , 0.001 ] 0.000
σp 0.000 [ -0.004 , 0.003 ] 0.060 [ 0.054 , 0.067 ] 0.004 [ 0.000 , 0.008 ] 0.000

ρa 0.956 [ 0.952 , 0.959 ] 0.952 [ 0.940 , 0.960 ] 0.957 [ 0.955 , 0.960 ] 0.958
ρb 0.250 [ 0.213 , 0.282 ] 0.213 [ 0.155 , 0.277 ] 0.271 [ 0.211 , 0.295 ] 0.218
ρg 0.974 [ 0.971 , 0.976 ] 0.973 [ 0.969 , 0.977 ] 0.975 [ 0.974 , 0.977 ] 0.976
ρi 0.786 [ 0.764 , 0.814 ] 0.310 [ 0.285 , 0.335 ] 0.629 [ 0.550 , 0.673 ] 0.710
ρr 0.225 [ 0.189 , 0.252 ] 0.126 [ 0.041 , 0.259 ] 0.208 [ 0.068 , 0.266 ] 0.151
ρp 0.702 [ 0.676 , 0.722 ] 0.069 [ 0.023 , 0.141 ] 0.523 [ 0.491 , 0.556 ] 0.891
ρw 0.839 [ 0.807 , 0.874 ] 0.707 [ 0.679 , 0.736 ] 0.886 [ 0.829 , 0.914 ] 0.968

φ 5.688 [ 5.643 , 5.719 ] 5.136 [ 4.918 , 5.261 ] 5.589 [ 5.538 , 5.622 ] 5.744
λ 0.722 [ 0.708 , 0.734 ] 0.661 [ 0.638 , 0.679 ] 0.704 [ 0.693 , 0.712 ] 0.714
ζw 0.699 [ 0.691 , 0.707 ] 0.595 [ 0.572 , 0.617 ] 0.701 [ 0.695 , 0.706 ] 0.701
iw 0.580 [ 0.558 , 0.602 ] 0.870 [ 0.747 , 0.963 ] 0.576 [ 0.531 , 0.638 ] 0.589
ip 0.174 [ 0.126 , 0.197 ] 0.165 [ 0.075 , 0.240 ] 0.207 [ 0.164 , 0.264 ] 0.240
ζp 0.638 [ 0.627 , 0.648 ] 0.620 [ 0.599 , 0.638 ] 0.642 [ 0.632 , 0.652 ] 0.650
rp 1.929 [ 1.887 , 1.973 ] 1.558 [ 1.448 , 1.683 ] 1.856 [ 1.781 , 2.007 ] 2.045
rdy 0.207 [ 0.185 , 0.221 ] 0.194 [ 0.169 , 0.223 ] 0.225 [ 0.210 , 0.242 ] 0.224
ry 0.090 [ 0.084 , 0.101 ] 0.109 [ 0.086 , 0.131 ] 0.136 [ 0.115 , 0.156 ] 0.087
ρ 0.799 [ 0.795 , 0.805 ] 0.772 [ 0.746 , 0.801 ] 0.816 [ 0.801 , 0.825 ] 0.808
σc 1.329 [ 1.324 , 1.333 ] 1.540 [ 1.530 , 1.549 ] 1.400 [ 1.396 , 1.402 ] 1.380

Table 2: Estimated parameters with various priors on standard deviations of structural shocks

Third, the posterior distributions of deep structural parameters, such as habit in con-

sumption, and price and wage stickiness, appear to be largely influenced by the prior assump-

tions about the distribution (and hence existence) of structural shocks standard deviations.

In particular, the wage stickiness (ζw), consumption habit (λ), and price stickiness (ζp) pa-

rameters tend to be underestimated relative to their true values when using inverse gamma

priors. These parameters control the degree of internal persistence of the model. Similar

to the previous example, the posterior kernel displays a clear tradeoff between setting the

standard deviation close to zero and reducing the persistence of the model dynamics. Since

with inverse gamma priors we rule out null values, the posterior kernel of standard deviations

does not include zero and, as a consequence, all structural shocks have a dynamic impact on

endogenous variables. In order to choke-off the dynamic impact of this shock, the autoregres-

sive parameters are estimated to be close to zero. However, since the dynamic transmission

of the shocks is controlled also by deep parameters, the posterior kernel is tilting toward

reducing the overall internal persistence of the model, hence inducing a downward bias in

the parameters governing wage and price stickiness and indexation. Assuming normal or

exponential priors, parameters are estimated without noticeable distortions.
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In order to check that the results are not driven by a particular sample, we also designed

a Montecarlo experiment where we simulated various samples and estimated the posterior

distributions of the parameters using our three different prior distributions, i.e. normal,

exponential and inverse gamma. We then considered the bias, measured as the difference

between the average posterior mean of different samples and the true value, and we report

the results for deep structural parameters in table 3. A positive value means that we are

overestimating a parameter, and a negative value that we are underestimating.

Parameters Normal IGamma Exp True value

φ -0.002 -1.317 0.008 5.744
λ 0.001 -0.064 0.011 0.714
ζw -0.001 -0.067 0.009 0.701
iw 0.005 -0.188 0.018 0.589
ip 0.008 -0.167 -0.008 0.240
ζp 0.002 -0.106 0.000 0.650
rp -0.058 -0.185 0.008 2.045
rdy -0.004 -0.044 0.012 0.224
ry 0.007 0.019 0.015 0.087
ρ -0.003 -0.043 0.013 0.808
σc -0.007 0.101 0.010 1.380

Table 3: Bias on Montecarlo exercise with 100 different datasets. Bias is measured as the difference
between the average posterior mean of different samples and the true value.

Bar a few exceptions, the bias obtained using normal or exponential priors is negligible

as the order of magnitude is small. In all cases, the bias using inverse gamma priors is larger

than using normal or exponential priors. With inverse gamma priors, we obtain sizable

distortions to parameters capturing persistence and others such as the inverse elasticity of

investment relative to the price of installed capital.

4.2.1 DSGE model implications: IRFs and Variance Decompositions

Incorrect assumptions about the existence of structural shocks do not only distort parameter

estimates, but they have deep consequences for the implications of the model regarding

the sources of business cycle fluctuations or the dynamic transmission of structural shocks

which are important for policy analysis. Table 4 reports the variance decomposition of

output, inflation, wages, and the interest rate in terms of structural shocks under various

prior assumptions about the structural standard deviations. Price and wage markup shocks

should not explain fluctuations in any of these variables. This is the case for normal and

exponential priors. It is not the case, however, for inverse gamma priors where wage and

price markup together explain 16 % of the volatility of inflation and 8% of the volatility of

wages.
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Variance Decomposition
y π r w

Igamma prior on σi 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0[ 0 , 0 ] 0[ 0 , 0 ]
Igamma prior on σw 1 [ 0 , 1 ] 9 [ 6 , 14 ] 2 [ 1 , 3 ] 8[ 5 , 13 ]
Igamma prior on σp 0 [ 0 , 0 ] 7 [ 5 , 8 ] 0 [ 0 , 1 ] 0[ 0 , 0 ]

Normal prior on σi 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0[ 0 , 0 ]
Normal prior on σw 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0[ 0 , 0 ]
Normal prior on σp 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0[ 0 , 0 ]

Exp prior on σi 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0[ 0 , 0 ]
Exp prior on σw 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0 [ 0 , 0 ] 0[ 0 , 0 ]
Exp prior on σp 0 [ 0 , 0 ] 0 [ 0 , 1 ] 0 [ 0 , 0 ] 0[ 0 , 0 ]

Table 4: Fraction of the variance of output, inflation, interest rate and wages explained by the
non-existing shocks, price (σp) and wage (σw) markups and the investment specific shock (σi). In
the true DGP the explained variance should be zero.

Moreover, the transmission of shocks is altered in a substantial way. Figure 4 reports the

transmission of monetary policy shocks to output, inflation, and interest rate (top row) and

the transmission of a wage markup shock (bottom row). Gray areas (green dashed lines)

represent the 90% confidence sets of the response assuming normal (inverse gamma) priors

on structural standard deviations and the black solid line the true response.

The responses to a monetary policy shock are qualitatively different under the two set-

tings. Inverse gamma priors tend to produce less persistent dynamic responses. Moreover,

on impact, we overestimate the reaction of inflation to an interest rate hike and underesti-

mate the reaction of output. In this context, disinflation trajectories might result to be less

costly in terms of output loss relative to what they truly are.

Even more striking, as would be expected, are the responses to “non-existing” shocks. In

the normal prior setup, we obtain statistically insignificant dynamics for all the variables of

interest to an increase in the wage markup. Conversely, with inverse gamma priors, output

and inflation react strongly and their responses are statistically and economically significant.

In all, the simulation evidence shows that inference and policy conclusions differ sub-

stantially when non-existing structural shocks are forced to exist in estimation. Since we do

not know ex-ante what are key shocks driving aggregate fluctuations, inverse gamma priors

are problematic as they may induce biases in estimated parameters that can be sizeable. It

is in this sense that there appears to be a tradeoff between the a-priori inclusion of a large

set of sources of macroeconomic uncertainty and the correct identification of the parame-

ters that drive transmission. We have also shown that normal or exponential priors do not

suffer from any particular disadvantage when confronted to data that are generated by an
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Figure 4: Impulse Response Function of output, inflation and interest rate to a monetary policy
shock (top row line) and to a wage markup shock (bottom row) with inverse gamma IG(0.2,5)
(green), normal N(0.2,5) (gray shaded area) prior.

unknown number of structural disturbances. If the shock does not exist, the posterior stan-

dard deviation distribution is clustered around zero and structural parameters are unbiased.

If, instead, the shock exists, the posterior distribution is centered on the true value and the

dynamic transmission of shocks is unaffected.

A crucial assumption of our approach is that the vector of observed times series is gen-

erated by a combination of structural and non-structural (measurement) shocks. In the

absence of measurement errors, the DSGE model with a rank deficient covariance matrix is

stochastically singular and, as a consequence, impossible to estimate with likelihood based

approaches. The inclusion of measurement error allows us to avoid the stochastic singular-

ity problem. One may argue that measurement error sweeps the rest of the variability of

observables that is not explained by fundamental shocks. However, since structural shocks

are common factors and measurement errors are variable-specific shocks, when measurement

errors capture a larger proportion of the variability of a particular observable, it is precisely

indicating that some fundamental shocks may not be true common factors. We will revisit

this argument below in the empirical application.

5 Empirical Application: fundamental shocks in the SW model

We now revisit the empirical evidence on structural DSGE shocks by reconsidering a standard

DSGE model using normal and inverse gamma priors using US macroeconomic data. We

keep as the benchmark the SW model used in the previous section because it represents a

widely used medium scale New Keynesian DSGE model specification. Although there are

many more applications of interest, here we focus on the question of whether some of the
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standard impulses assumed in the existing literature are truly fundamental and what the

consequences of shock selection are for parameter estimates and the transmission of shocks.

While the structural equations of the model are the same as the ones presented in the

previous section, we add deterministic growth and measurement equations in order to bridge

the model to the observed times series. The SW model is estimated based on seven quar-

terly macroeconomic time series. The measurement equations for real output, consumption,

investment, and real wage growth, hours, inflation, and interest rates are given by:

output growth = γ̄ + ∆yt + ωyey,t

consumption growth = γ̄ + ∆ct + ωcec,t

investment growth = γ̄ + ∆it + ωiei,t

real wage growth = γ̄ + ∆wt + ωwew,t

hours = l̄ + lt + ωlel,t

inflation = π̄ + πt + ωpep,t

ffr = β̄ +Rt + ωrer,t

ex,t ∼ N(0, 1) with x = y, c, i, w, l, p, r

where all variables are measured in percent, π̄ and β̄ measure the steady state level of net

inflation and short term nominal interest rates, respectively, γ̄ captures the deterministic

long-run growth rate of real variables, and l̄ captures the mean of hours. Output growth is

measured as the percentage growth rate of Real GDP, consumption growth as the percentage

growth rate of personal consumption expenditure deflated by the GDP deflator, and invest-

ment growth as the percentage growth rate of Fixed Private Domestic Investment deflated by

the GDP deflator. Hourly compensation is divided by the GDP price deflator in order to get

the real wage variable. The aggregate real variables are expressed per capita by normalizing

by population over 16. Inflation is the first difference of the log of the Implicit Price Deflator

of GDP, and the interest rate is the Federal Funds Rate divided by four. For comparability of

estimates, we consider the same data span as in SW, 1968-2004, with revised data. However,

we also run estimates with the vintage data and with samples including more recent years

(i.e. up to 2014). The results differ only marginally and we mention any difference in the

text below.

We estimate and fix the same parameters as in SW with one exception. Relative to the

original SW specification, we assume that the impact of technology on government spending,

ρga in their model, is zero so that the government spending process is independent from the

technology process. The first specification coincides with the original SW setup, which we

call SW IGamma. In this specification, we assume that measurement error shocks are zero,

i.e. ωx = 0 for x = y, c, i, w, l, p, r, and structural shock standard deviations have an inverse

gamma prior. In the second specification, SW Normal, we postulate that the structural

shock standard deviations are normally distributed with mean zero and standard deviation
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0.4, and that the measurement error shock standard deviations have an inverse gamma prior

with mean 0.1 and standard deviation 2. Given that the results using exponential and

normal priors in the previous section were very similar, we report here the results using

normal priors only.11

5.1 Estimation Results

Table 5 reports the posterior moments of a subset of parameters for specifications SW

IGamma and SW Normal together with prior assumptions.

Posterior Statistics Prior Distribution
SW IGamma SW Normal

Parameters Median [Lower,Upper] Median [Lower,Upper]

ιp 0.30 [ 0.14 , 0.48 ] 0.49 [ 0.25 , 0.72 ] B(0.5,0.15)
φ 6.09 [ 4.39 , 7.84 ] 2.84 [ 2.00 , 4.21 ] N(4,1.5)
ξw 0.69 [ 0.57 , 0.80 ] 0.79 [ 0.70 , 0.87 ] B(0.5,0.1)
ry 0.08 [ 0.05 , 0.12 ] 0.15 [ 0.10 , 0.20 ] N(0.12,0.05)

ρa 0.95 [ 0.92 , 0.97 ] 0.95 [ 0.91 , 0.99 ] B(0.5,0.2)
ρb 0.23 [ 0.08 , 0.38 ] 0.70 [ 0.51 , 0.85 ] B(0.5,0.2)
ρg 0.97 [ 0.96 , 0.99 ] 0.46 [ 0.13 , 0.80 ] B(0.5,0.2)
ρi 0.72 [ 0.62 , 0.82 ] 0.74 [ 0.57 , 0.93 ] B(0.5,0.2)
ρr 0.16 [ 0.05 , 0.27 ] 0.46 [ 0.18 , 0.85 ] B(0.5,0.2)
ρp 0.87 [ 0.80 , 0.95 ] 0.39 [ 0.11 , 0.68 ] B(0.5,0.2)
ρw 0.96 [ 0.93 , 0.98 ] 0.98 [ 0.95 , 1.00 ] B(0.5,0.2)
µp 0.69 [ 0.52 , 0.84 ] 0.58 [ 0.27 , 0.87 ] B(0.5,0.2)
µw 0.82 [ 0.71 , 0.93 ] 0.61 [ 0.28 , 0.89 ] B(0.5,0.2)

σa 0.44 [ 0.40 , 0.49 ] 0.34 [ 0.29 , 0.40 ] N(0,0.4)/IG(0.1,2)
σb 0.24 [ 0.20 , 0.28 ] 0.11 [ 0.07 , 0.15 ] N(0,0.4)/IG(0.1,2)
σg 0.57 [ 0.52 , 0.63 ] 0.10 [ -0.21 , 0.26 ] N(0,0.4)/IG(0.1,2)
σi 0.41 [ 0.34 , 0.49 ] 0.24 [ 0.09 , 0.40 ] N(0,0.4)/IG(0.1,2)
σr 0.24 [ 0.22 , 0.27 ] 0.15 [ 0.09 , 0.20 ] N(0,0.4)/IG(0.1,2)
σp 0.13 [ 0.10 , 0.15 ] -0.06 [ -0.14 , 0.13 ] N(0,0.4)/IG(0.1,2)
σw 0.26 [ 0.22 , 0.30 ] 0.03 [ 0.01 , 0.08 ] N(0,0.4)/IG(0.1,2)

Table 5: Subset of estimated parameters with normal and inverse gamma priors on standard
deviations of structural shocks. Sample span 1968q1 2003q4

11While in the previous section the estimates were performed using our own codes, the estimates in this section
are performed using the Dynare platform, see Adjemian, Bastani, Karamé, Juillard, Maih, Mihoubi, Perendia,
Ratto and Villemot (2011), as the original version of the SW model was estimated in that environment. Since
Dynare does not allow for exponential priors, it is more natural to report the results with normal priors for
comparability.
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There are a number of very relevant results to highlight. First, government shocks and

price markup shocks standard deviations are estimated to be ‘non-existent’, since the pos-

terior support for their standard deviations includes zero. Hence, these two shocks are not

fundamental for the observation set used by SW. Technology, investment, preference, wage

markup, and monetary policy shocks are instead estimated to be fundamental. The wage

markup shock, however, is only marginally so. Moreover, the estimated standard deviations

of the fundamental shocks are of the same magnitude in the two specifications, bar for the

wage markup shock which is smaller. The wage markup shock actually turns out not to be

significant in samples including more recent years. Interestingly, such clustering echoes the

classification of structural and non structural shocks proposed by Chari et al. (2008).

Second, except for the parameters of the non fundamental shocks, which are not iden-

tifiable, the autoregressive parameters are estimated to be smaller in the SW IGamma

specification relative to the SW Normal specification. This confirms the point made earlier

about the tendency for model estimates to reduce internal persistence when assumptions

about the fundamentalness of the structural shocks are incorrect.

Third, the posterior distributions of deep parameters appear to be estimated differently

in the two setups. For the estimates of φ, the second derivative of the investment adjustment

cost function, our median estimate is significantly smaller than the 5.58 value found in SW

and closer to the value (2.48) available in Christiano, Eichenbaum and Evans (2005).12

Christiano et al. (2005) estimate a model similar to SW with staggered wage and price

contracts, habit formation in preferences for consumption, adjustment costs in investment,

and variable capital utilization. The two papers differ in terms of estimation techniques.

While SW use full information methods, Christiano et al. (2005) use limited information

methods, i.e. by minimizing a measure of the distance between the model and empirical

impulse response functions to a monetary policy shock. In a sense, they do not need to impose

the existence of (possibly) non-fundamental shocks. Moreover, the SW mode for the price

indexation parameter, ιp, is 0.22 and our estimated parameter is more than twice that value

in accordance with the results obtained in the previous sections. Similar conclusions apply

for the estimate of ξw, the wage stickiness parameter. Overall, estimates of deep parameters

change when we allow for the possibility of a rank deficient matrix for the structural shocks.

Fourth, as a consequence of the different structural parameters estimates, the dynamic

transmission of structural shocks changes between the two specifications. The effects of policy

shocks such as fiscal and monetary policy are different. Figure 5 reports the transmission

mechanism of a fiscal (top part) and a monetary (bottom) policy shock for consumption

and output growth, inflation, and the interest rate. In the original SW model, fiscal shocks

generate an increase in output (not shown here), in inflation and, through the Taylor rule,

an interest rate hike. Consumption decreases for the Ricardian motives of the representative

12Quoting Christiano et al. (2005), “[1/φ] is the elasticity of investment with respect to a 1 percent temporary
increase in the current price of installed capital. Our point estimate implies that this elasticity is equal to 0.40”,
which roughly coincides with our point estimate.
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agent model. While responses are significant in the original SW model, the same model

estimated with normal priors on structural standard deviations cannot generate statistically

significant dynamics. Similarly, monetary policy shocks seem to generate different dynamics.

In the original SW specification, to generate a similar dis-inflationary pattern (panel (e)) we

need a much larger hike in the interest rates of 15-20 basis points (panel (f)) as opposed to

0-10 basis points in our specification with normal priors.
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Figure 5: Posterior IRF to selected shocks. Gray area the band with normal priors, green dashed
lines with inverse gamma. Top panel, responses to a fiscal shock and bottom to a monetary policy
shock.

Priors standard deviations structural/measurement

ML SW IG/no meas SW N/IG SW N/N

Geweke -904 -854 -856
Laplace -904 -854 -857

Table 6: Marginal Log likelihood of different priors specifications on standard deviation of struc-
tural and measurement shocks

We might wonder how likely these two polar cases are, i.e. of a full rank covariance matrix

of structural shocks (SW IGamma) and of a possibly rank deficient covariance matrix of

structural shocks (SW Normal). As a robustness check of these two cases, we estimated and

contrasted the marginal likelihood of three different models: SW with inverse gamma priors

on structural shocks and no measurement errors (SW IG/no meas), SW with normal priors
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for structural shocks and inverse gamma priors for measurement errors (SW N/IG), and

SW with normal priors for both structural shocks and measurement errors (SW N/N). To

approximate the data marginal likelihood we used both the Laplace approximation around

the posterior mode and the Geweke (1999) estimator and results are reported in table 6. The

SW specifications with normal priors on structural shocks standard deviations are strictly

preferred. Between SW N/IG and SW N/N the differences are very small but the marginal

likelihood favors SW N/IG. The results, thus, support the idea that the shock structure

specified in the SW model is not fundamental.
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Figure 6: Rolling estimates of posterior bands around structural shocks. The gray area the band
with normal priors, and the green dashed lines with inverse gamma.

We also extended the SW sample up to recent years in order to verify whether our results

were driven by the specific sample in SW. We re-estimated the SW IGamma and SW Normal

models adding one year of data from 2000 up to 2014. Figure 6 reports the estimated bands

around the structural standard deviation over rolling subsamples. The results, in terms of
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the fundamentalness of structural shocks, also hold if we include more recent data points

for estimation. With the exception of wage markup shocks, most of the posterior bands

appear to be relatively stable. However, for larger samples, the wage markup shock appears

to be non-fundamental. In this case, it is also interesting to observe that, with inverse

gamma priors, wage markup shocks appear to be more important if we add recent years.

However, using normal priors, we can see that these shocks do not appear to be structural

with the addition of more recent data. This finding is consistent with Justiniano et al. (2013).

They find that, when using two alternative measures of wages to match the model’s wage

variable, most of the variability of wages can be explained by measurement error rather than

implausibly large fluctuations in the monopoly power of workers.

Finally, we explored further the role of measurement errors in capturing the variability of

observables when structural shocks’ standard deviations are estimated with normal priors.

We compared the variance decomposition of observables in the original SW model and in

models where we allow for measurement error and normal priors for structural standard

deviations. We also estimated models where we restricted the MCMC algorithm to search

the posterior distribution of the standard deviation of the measurement errors in a narrower

space, thus forcing the proportion of the variance explained by measurement error to be

smaller. The results, available on request, confirm that when forcing on the model potentially

non-fundamental shocks, the variance decomposition is heavily distorted. For instance, in

the original SW model, 67% of the variance of wage growth is explained by wage markup

shocks. When using normal priors, almost 90% of this variability is attributed to the wage

measurement error. As we narrow the posterior space for the measurement error, the wage

markup shock explains an increasing proportion of the variability of wages. Qualitatively

similar conclusions are reached for inflation. For output and hours worked, the fiscal policy

shock explains 36% and 14% respectively in the original SW model. In the model with

normal priors it explains a negligible proportion. Again, as we narrow the search space for

the posterior, the fiscal policy shock resurfaces as an important driver of output and hours

fluctuations. In all, as we allow priors for structural (common) shocks to include the zero

region, price and wage markup shocks and government spending shocks become insignificant

and the variability of observables is pushed towards (variable-specific) measurement errors.13

6 Conclusions

One of the key questions in macroeconomics concerns the identification of the main impulses

that set off macroeconomic fluctuations, the other key question being the identification of

the propagation mechanisms that transform shocks into business cycles. Estimated DSGE

models have become the standard methodology to address this question as they provide

a coherent and economically interpretable structure. However, the widespread assumption

when estimating DSGE models with likelihood methods is that certain exogenous shocks

13See equation (5) in section 2.
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do exist in the sense that they capture macroeconomic uncertainty. In a Bayesian context,

this is reflected in the standard practice of using priors for the standard deviation of shocks

(typically inverse gamma) whose support does not include zero thus imposing the existence

of these shocks and their interpretation as structural or fundamental. Some of these shocks,

however, have dubious structural interpretation. We first analyze the consequences of im-

posing non-fundamental shocks for the estimation of DSGE model parameters and then

propose a method that allows us to select the truly fundamental shocks driving macroeco-

nomic uncertainty. The method requires specifying priors that include zero and studying

the likelihood of the observable variables in the neighborhood of a null standard deviation.

We show that incorrect assumptions about the rank of the covariance matrix of shocks, Σ,

have a non-trivial impact on the remaining estimated parameters and might severely distort

structural inference. In particular, postulating the existence of a non-existing exogenous

processes generates a substantial downward bias in the estimates of the parameters driving

internal persistence of the model. We show this bias analytically for the simplest RBC model

with exogenous labor supply and full capital depreciation. Using simulation evidence with

a medium scale DSGE model, we also show important biases in the estimated persistence of

shocks, and parameters such as wage and price stickiness and indexation. Thus, we unveil

a tradeoff between the inclusion of a potentially large number of structural innovations and

estimates of the parameters driving propagation.

To prevent this problem, we propose an easily implementable strategy of using normal

or exponential priors together with measurement error to avoid stochastic singularity. We

also propose a method for cases where the covariance matrix of shocks is not diagonal. Our

simulation evidence shows that these priors allow us to select the true fundamental shocks

entering the DSGE model and that the remaining parameters are estimated with precision.

We then revisited the evidence on the fundamentalness of structural shocks in the medium-

scale New Keynesian model of Smets and Wouters (2007). Our key findings are threefold.

First, government spending and price markup shocks are non-fundamental for the 1968-2004

sample and larger samples. The wage markup shock is not fundamental for larger estima-

tion spans, i.e. 1968-2009 or onwards. Technology, investment, preference and monetary

policy shocks are found to be fundamental for all samples. Such clustering is very similar

to the Chari et al. (2008) classification of structural and non structural shocks. Second, the

estimated posterior distributions of deep parameters are different when we allow for the pos-

sibility of a rank-deficient matrix of structural shocks. Substantial differences appear in the

estimated persistence of shocks, investment adjustment costs parameter, and price and wage

indexation and stickiness parameters. And as a consequence, the transmission mechanism

of the fundamental shocks, in particular monetary and fiscal shocks, is altered. By means

of marginal likelihood comparisons, data prefer versions of the model with a rank deficient

structural shocks structure. Third, when estimated using normal priors, most of the vari-

ability of observables such as wages is explained by measurement error, i.e. variable-specific
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rather than common fundamental shocks.
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A Appendix

A.1 A basic RBC with analytical solution

The representative agent maximizes the following stream of future utility

maxEt

∞∑
t=1

βt ln ct

subject to the following constraints

yt = ct + kt

yt = ztk
α
t−1

where yt is output, ct consumption, kt the stock of capital. β is the time discount factor and

α is the capital share in production. The system is perturbed by one exogenous disturbance,

technology zt, which follows an AR process

ln zt = ρz ln zt−1 + et et ∼ N(0, σ2)

The lagrangian is

L = E0

∞∑
t=0

βt
[
ln ct − λt

(
ct + kt − ztkαt−1

)]
The First Order Conditions are

1/ct = λt

1/ct = βEt
(
1/ct+1αzt+1k

α−1
t

)
Permanent income model. Guess a solution of the form ct = γyt, constant saving rate and

substitute into the Euler equation.

1 = βEt
(
γyt/γyt+1αzt+1k

α−1
t

)
= βEt (yt/yt+1αyt+1/kt)

= βEt (αyt/(yt − ct))

= βEt (αyt/(yt − γyt))

1 =
αβ

1− γ
Hence, γ = 1− αβ. This implies that

kt = (1− γ)yt = αβztk
α
t−1

In logs, we can specify a linear state space model in three equations, a law of motion for

the exogenous state (z), a law of motion for the endogenous state (k), and the measurement

equation (y) as follows

ln kt = lnαβ + α ln kt−1 + ln zt

ln zt+1 = ρz ln zt + et+1 et ∼ N(0, σ2)

ln yt = ln zt + α ln kt−1 + ut ut ∼ N(0, σ2
m)
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At the non stochastic steady state, we have ln k = 1/(1− α) lnαβ and ln y = α ln k

kt = αkt−1 + zt

zt+1 = ρzzt + et+1

yt = zt + αkt−1 + ut

where small case variables indicate now the log deviation from steady state.

A.2 Stochastic variable selection in state space models

Bayesian stochastic variable selection has a long tradition in Bayesian analysis (see, among

others, George and McCulloch (1993, 1997) and the references therein). Recently, this

methodology has been extended to state space models and, in particular, to the selection of

the unobserved components (level, slope and seasonal cycles) that are the key ingredients

in state space modeling (see Frühwirth-Schnatter (2004), Fruhwirth-Schnatter and Wagner

(2010), Grassi and Proietti (2014) and Proietti and Grassi (2014)). This approached, called

stochastic model selection search (SMSS), hinges on two basic ingredients: the non-centered

representation of the unobserved components model and the consequent reparameterization

of the variance hyperparameters as regression parameters with unrestricted support.

Consider, for example, modeling a time series y = {y1, . . . , yt} using a local level model,

see Harvey (1989) for an introduction:

yt = zt + ut ut ∼ N(0, σ2
u)

zt = zt−1 + et et ∼ N(0, σ2
e)

(7)

where the latent process zt follows a random walk starting from unknown initial value µ0.

A typical specification problem arising for this model is to decide if the random walk zt is

time-varying rather than a simple constant. It is well know that testing σ2
e = 0 versus σ2

e > 0

results in a non-regular testing problem, because the null hypothesis lies on the boundary of

the parameter space, see Harvey (1989) and Harvey (2001).

A similar specification problem is deciding which components are present in this time series

model. For instance, is it necessary to include zt, that follows a random walk, or should it

be removed because zt is simply a constant? This is another non-regular problem because,

again, the null hypothesis can be rephrased as testing σ2
e = 0 versus σ2

e > 0.

The stochastic model specification search methodology proposed by Fruhwirth-Schnatter

and Wagner (2010) (FS-W) is based on a reparameterisation of (A.2) with respect to location

and scale, known as the non-centred representation. See also Gelfand, Sahu and Carlin 1995,

Frühwirth-Schnatter 2004). To give a simple example, the model in equation (A.2) has the
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following non-centered representation:

yt = µ0 +
√
θ1z̃t + ut, ut ∼ N(0, σ2

u),

z̃t = z̃t−1 + ẽt, ẽt ∼ N(0, 1),

z̃0 = 0, θ1 = σ2
e ,

(8)

where the latent states has been rewritten as follows:

zt = µ0 +
√
θ1z̃t, t = 1, . . . , T,

z̃t = z̃t−1 + ẽt, ẽt ∼ N(0, 1),
(9)

where z̃0 is the starting value of the random walk and z̃t ∼ N(0, t).

Between the non-centered and centered representation, there exists a one to one relation

that can be easily shown using (8) and (9):

yt = µ0 +
√
θ1z̃t + ut, ut ∼ N(0, σ2

u),

z̃t = z̃t−1 + ẽt, ẽt ∼ N(0, 1),
(10)

and rewriting:

zt − zt−1 =
√
θ1(z̃t − z̃t−1),

=
√
θ1ẽt = et, et ∼ N(0, σ2

e).
(11)

FS-W’s key idea is that the non-centered representation is not identified since the model

in equation (8) with (−
√
θ1)(−z̃t) is observationally equivalent to the same model with

(
√
θ1)(z̃t). As a consequence, the likelihood function is symmetric around zero along the

√
θ1 dimension and bimodal if the true

√
θ1 is larger than zero. This fact can be exploited

to quantify how far the posterior of
√
θ1 is removed from zero and, in turn, the value of

the variance. We stress that the posterior density can also be 0 allowing for boundary

conditions. To estimate the model in equation (8) that is equivalent to the model in (A.2)

a standard RW-MH algorithm can be used, see Gamerman and Lopes (2006) and Geweke

(2005). Finally, we have to underline that this methodology can easily be extended to more

complex state space models as shown in FS-W and in Grassi and Proietti (2014) and Proietti

and Grassi (2014).

We extend this methodology to linear DSGE models. To show the workings of this

extension, consider the basic RBC model in section 4.1 and A.1. In logs, we can specify a

linear state space model in three equations, a law of motion for the exogenous state (z), a

law of motion for the endogenous state (k), and the measurement equation (y) as follows

ln kt = lnαβ + α ln kt−1 + ln zt

ln zt+1 = ρz ln zt + et+1 et+1 ∼ N(0, σ2
e)

ln yt = ln zt + α ln kt−1 + ut ut ∼ N(0, σ2
u)

(12)

At the non stochastic steady state, we have ln k = 1/(1 − α) lnαβ and ln y = α ln k and

dropping the ln and lagging the latent state we get:

kt−1 = αkt−2 + zt−1

zt = ρzzt−1 + et

yt = zt + αkt−1 + ut

(13)
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where, abusing notation, lower case variables now indicate the log deviation from steady

state. Given this, the non-centred state space representation of the model is:

yt = µ0 +
√
θ1z̃t + αk̃t−1 + ut ut ∼ N(0, σ2

u)

z̃t = ρz z̃t−1 + ẽt ẽt ∼ N(0, 1)

k̃t−1 = αk̃t−2 +
√
θ1z̃t−1.

(14)

This formulation is identified as the following steps show. Define the process

zt = µ0 +
√
θ1z̃t.

Then we have the following formulation:

zt − zt−1 =
√
θ1(z̃t − z̃t−1)

=
√
θ1ẽt,

k̃t−1 − k̃t−2 = αk̃t−2 +
√
θ1z̃t−2 − αk̃t−3 +

√
θ1z̃t−3

= α(k̃t−2 − k̃t−3) +
√
θ1(z̃t−1 − z̃t−2)

= α(k̃t−2 − k̃t−3) +
√
θ1ẽt−1.

It is clear that k̃t−1 is related to the error term
√
θẽt−1 as can also be shown in equation

(12). The state space formulation of the model then becomes:

yt = µ0 +
(√
θ1 α

)( z̃t
k̃t−1

)
+ ut,(

z̃t
k̃t−1

)
=

(
ρ 0√
θ1 α

)(
z̃t−1

k̃t−2

)
+

(
1
0

)
ẽt.

A.3 Metropolis Hastings MCMC adjusted for the sign switch

Here, we explain the steps to adjust the RW Metropolis-Hastings MCMC for a random sign

switch. Partition the vector of parameters θ as composed of a column vector of structural

standard deviation parameters (σ) and a column vector of the remaining parameters (ϑ), i.e.

θ = [σ′, ϑ′]′. Given an initial value, θ0, and the information matrix, Ω, from the maximization

step, given the size of the jump c, and given a positive sign for the standard deviation, i.e.

W = 1, for ` = 1, .., L

1. Draw a candidate draw from θ∗ ∼ N(θ`−1, cΩ).

2. Plug it in the DSGE model, EtF (xt+1, xt, xt−1, εt; θ
∗) = 0.

3. Solve the DSGE, and obtain the state space representation

st+1 = A(ϑ∗)st +B(ϑ∗) Σ(σ∗) W εt+1

yt = Λ st + et.

4. Compute the likelihood using the Kalman filter, i.e. L(y|θ∗).

33



5. Contrast the kernels of the candidate draw and previous accepted draws.

R =
p(θ∗)L(θ∗|y)

p(θ`−1)L(θ`−1|y)

6. Keep the draw with certain probability. Draw u ∼ U(0, 1)

if R > u, θ` = θ∗

if R ≤ u, θ` = θ`−1

7. Switch the sign of the standard deviation with 0.5 probability. Draw form a binomial

distribution, X ∼ b(1/2), and set the sign of the standard deviation with W = −1+2X.

Multiply the standard deviation of the structural shocks times W ,

σ` = Wσ`

.

8. Go back to 1.

A.4 Gibbs -Metropolis Hastings MCMC for non-diagonal and
rank-deficient matrix

We follow Cúrdia and Reis (2010) and implement a Gibbs-Metropolis algorithm by combining

the conjugacy of the singular generalized inverse Wishart of the shock covariance matrix

with the RW Metropolis for the structural parameters. In particular, the sampling of the

parameters needs to be partitioned in two blocks: the covariance matrix of the structural

shocks (Σ) and all other parameters (θ). Conditional on a value of θ and on a sequence of

states {st}Tt=1, we can derive a sequence of i.i.d. structural shocks as follows,

B(θ)+ (st+1 −A(θ)st) = zt+1 = εt+1 ∼ Nr(0,Σ)

where B(θ)+ is the left Moore-Penrose generalized inverse of B(θ). Conditional on a sequence

of states {st}Tt=1, this model can be cast in matrix form as

Z = E

where Z = (z1, ..., zT )′ and p(E|Σ) ≡ NT,r(0,Σ ⊗ IT ). As in Dı́az-Garćıa and Gutiérrez-

Jáimez (2006), we denote by NT,r(0,Σ ⊗ IT ) the T × n multivariate singular Normal dis-

tribution with rank r. The likelihood of the normal singular population can be written

as

L(Σ|Z) ∝

(
r∏

k=1

λk

)−T
2

exp
(
−1/2 trace(Σ+Z ′Z)

)
where λk are the non-null eigenvalues of Σ. We consider the following non informative prior

density for Σ

p(Σ) ∝

(
r∏

k=1

λk

)− 2n−r+1
2
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where λk are the non null eigenvalues of Σ. Combining prior and posterior, we obtain the

posterior distribution of Σ

p(Σ|Z) ∝

(
r∏

k=1

λk

)−T+2n−r+1
2

exp
(
−1/2 trace(Σ+Z ′Z)

)
. (15)

This is an n-dimension Singular Generalized Inverse Wishart of rank r with ν = T − n+ 1

degrees of freedom and scale matrix G = Z ′Z, denoted by W+(r, ν,G).

We are now in a position to propose the following algorithms. Given r, Σ(0), θ(0)

Algorithm 2

1. Draw s
(j)
1:T from p(s

(j)
1:T | y1:T , θ(j−1), Σ(j−1)).

This distribution is derived from the state space and, given linearity assumptions, it is a

gaussian normal distribution.

2. Draw Σ(j) from p(Σ(j) | y1:T , θ(j−1), s
(j)
1:T ).

This distribution is an n-dimension Singular Generalized Inverse Wishart, W+(r, ν,G(j)),

where G(j) = Z(j)′Z(j), Z(j) = (z
(j)
1 , ..., z

(j)
T )′ and z(j) = B(θ(j−1))

+ (s
(j)
t+1 − A(θ(j−1))s

(j)
t ),

and degrees of freedom ν = T − n+ 1

3. Draw θ∗ form a normal centered in θ(j−1) and accept the draw with a Metropolis-Hastings

probability, i.e. min
{

L(y1:T |θ∗,Σ(j))p(θ
∗)

L(y1:T |θ(j),Σ(j))p(θ(j−1))
, 1
}

In step 3 the likelihood is computed using the Kalman filter recursions. Since the state space

is augmented with ny measurement errors, the covariance matrix of the observables is full

rank, hence invertible. Therefore, the Kalman gain, defined as the product of the covariance

between states and observables times the inverse of the variance of the observables, can be

computed and all the remaining recursions are unaffected.

In order to obtain draws at step 2 use the following algorithm:

Algorithm 3 Singular Inverse Wishart.

If any U is an n-dimensional Wishart Singular with degrees of freedom ν and scale matrix

C, where both U and C are n×n symmetric positive semi-definite singular matrices of rank

r, then we can draw U as follows:

1. For C = PLP ′, where PLP ′ is the non-singular part of the spectral decomposition of

C, calculate PL1/2.

2. Generate x1, .., xν independently from N(0, Ir).

3. U =
∑ν

i=1WiW
′
i , where Wi = Bxi

Then U is drawn from the n-dimensional Wishart Singular with ν degrees of freedom, scale

matrix C, and rank r, and U+ is drawn from the n-dimensional Singular Generalized Inverse

Wishart with ν degrees of freedom, scale matrix C, and rank r.
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For step 1, we know that st|T is normally distributed as a singular multivariate normal

distribution, i.e. st|T ∼ Nr(st−1|T , Qt−1|T ) where Qt−1|T is the covariance of the states.

Drawing from this distribution is easy: take the non singular part of the spectral decompo-

sition of Qt−1|T , i.e. Qt−1|T = PLP ′, draw x from a normal N(0, Ir) and s
(j)
t|T = PL1/2x.

A.5 Smets and Wouters (2007) model

The log linearized equilibrium conditions are summarized as follows

yt = c/yct + i/yit + rkk/yzt + egt

ct = c1ct−1 + (1− c1)Ect+1 + c2(ht − Eht+1)− c3(rt − Eπt+1 + ebt)

it = i1it−1 + (1− i1)Etit+1 + i2qt + εit

qt = q1Eqt+1 + (1− q1)Erkt+1 − (rt − Eπt+1 + ebt)

yt = αφpkt + (1− α)φpht + φpε
a
t

kst = kt−1 + zt

zt = ψ/(1− ψ)rkt

kt = k1kt−1 + (1− k1)it + k2ε
i
t

mpt = α(kst − ht) + eat − wt

πt = π1πt−1 + π2Eπt+1 − π3mpt + ept

rkt = −(kt − ht) + wt

mwt = wt −
(
σnht +

1

1 + λ/γ
(ct − λ/γct−1)

)
wt = w1wt−1 + (1− w1)E(πt+1 + wt+1)− w2πt + w3πt−1 +mwt + ewt

Rt = ρRRt−1 + (1− ρR)(ρππt + ρy(yt − yft ) + ρ∆y∆(yt − yft )) + ert

+ flexible economy equations

where variables with time subscript are variables from the original non linear model expressed

in log deviation from the steady state. Flexible output is defined as the level of output that

would prevail under flexible prices and wages in the absence of the two mark-up shocks. Seven

structural shocks. The model has five AR(1), government, technology, preference, investment

specific, monetary policy, and two ARMA(1,1) processes, price and wage markup.
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c1 = λ/γ(1 + λ/γ)

c2 = [(σc − 1)(W hh/C)]/[σc(1 + λ/γ)]

c3 = (1− λ/γ)/(1 + λ/γ)σc

k1 = (1− δ)/γ

k2 = (1− (1− δ)/γ)(1 + βγ1−σc)γ2φ

i1 = 1/(1 + βγ1−σc)

i2 = (1/(1 + βγ1−σc)γ2φ

q1 = βγ−σc(1− δ)

π1 = ip/(1 + βγ1−σcip)

π2 = βγ1−σc/(1 + βγ1−σcip)

π3 = 1/(1 + βγ1−σcip)[(1− βγ1−σcξp)(1− ξp)/ξp(1 + (φp − 1)εp)))]

w1 = 1/(1 + βγ1−σc)

w2 = (1 + βγ1−σciw)/(1 + βγ1−σc)

w3 = iw/(1 + βγ1−σc)

w4 = 1/(1 + βγ1−σc)[(1− βγ1−σcξw)(1− ξw)/ξw(1 + (φw − 1)εw)]

γ = 100(γ − 1)

π = 100(π∗ − 1)

β = ((π∗/(β ∗ γ−σc))− 1) ∗ 100

The coefficients are function of the deep parameters of the model which are summarized and

described in table 7.
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θ Description SW mean or fixed values
γ slope of the deterministic trend in technology 1.004
δ depreciation rate 0.025
εp good markets kimball aggregator 10
εw labor markets kimball aggregator 10
λw elasticity of substitution labor 1.5
cg gov’t consumption output share 0.18
β time discount factor 0.998
φp 1 plus the share of fixed cost in production 1.61
φ inverse of the elasticity of investment relative to installed capital 5.74
α capital share 0.19
λ habit in consumption 0.71
ξw wage stickiness 0.73
ξp price stickiness 0.65
iw wage indexation 0.59
ip price indexation 0.47
σn elasticity of labor supply 1.92
σc intertemporal elasticity of substitution 1.39
ψ st. st. elasticity of capital adjustment costs 0.54
ρπ monetary policy response to π 2.04
ρR monetary policy autoregressive coeff. 0.81
ρy monetary policy response to y 0.08
ρ∆y monetary policy response to y growth 0.22

ρa technology autoregressive coeff. 0.95
ρg gov spending autoregressive coeff. 0.97
ρga cross coefficient tech-gov 0
ρb technology autoregressive coeff. 0.21
ρq technology autoregressive coeff. 0.71
ρm monetary policy autoregressive coeff. 0.15
ρp price markup autoregressive coeff. 0.89
ρw wage markup autoregressive coeff. 0.96
µw wage markup ma coeff. 0
µw wage markup ma coeff. 0
σa sd technology 0.45
σg sd government spending 0.52
σb sd preference 0.25
σr sd monetary policy 0.24
σq sd investment 0
σw sd wage markup 0
σp sd price markup 0

Table 7: Parameters description and numerical values eitehr fixed or obtained from the posterior
mean estimated or fixed
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