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Abstract

This paper develops a method for modeling high-frequency asset prices. It does so
by showing how asset prices might be transformed into Lévy processes. Once in the
class of Lévy processes this paper develops a novel estimation procedure and a novel
test of a model’s specification by performing the estimation and testing over a suitably
chosen family of weighting functions. An empirical study fits a selection of asset returns
to two classes of Lévy processes; and, finally, a detailed empirical exercise develops a
flexible method to calculate intraday values at risk up to any within day horizon. A
backtest of the intraday values at risk show their coverage to be right in line with the
theoretical correct values.
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1 Introduction

The literatures on asset pricing, financial econometrics, and financial engineering have all

devoted considerable attention to modeling asset returns. Examples include the tempered

stable or CGMY models of Rosinski (2007) or Carr et al. (2002) or the many commonly

used jump-diffusion models. This paper builds and expands upon these and other works by

looking at how one might think of modeling the high-frequency returns of an asset and how

to go about testing the fit of such models. In doing so it develops both a novel estimation

procedure for asset returns and a novel method of model specification testing.

The paper starts by assuming assets follow a fairly general class of Itô semi-martingales

and looks at what assumptions might be needed to simplify such models. In particular it

will be shown that if a particular time invariant transformation of the jump measure of the

process exists then Itô semi-martingales might be transformed into Lévy processes – which

have been extensively studied in the literature. The motivation for doing so, in addition to

the fact that Lévy processes have been widely studied, is that Lévy processes have many

particularly convenient features that aid in their estimation. One particular useful property

of Lévy processes is given by the Lévy-Khintchine theorem which derives a closed-form

expression for the characteristic function of any Lévy-process.

Having a method to derive the characteristic functions of asset returns leads the paper

immediately into thinking about how to estimate the characteristic function of a process and

how the characteristic function of a process might be used to develop a test of model spec-

ification fit. It is here that the main theoretical results of the paper are developed. A new

method of characteristic function estimation is developed which, while not guaranteeing full

maximum-likelihood efficiency, should considerable improve the efficiency of the estimation

in practice. Importantly, this method relies on far fewer assumptions than estimation strate-

gies like those in Carrasco and Florens (2002) which do aim for full maximum-likelihood

efficiency and it does not require knowledge of the density of the process like the method in

Feuerverger and McDunnough (1981).

Having developed a method of characteristic function estimation, this paper proceeds
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by examining how the insights from thinking about how to estimation the characteristic

function might be used to develop a model specification test. Building on the work of

Halbert White and Herman Bierens among others this paper develops a new test of model

specification. A proof of the consistency of this test is given along with a detailed Monte

Carlo study to show its finite sample performance. Following this, a brief empirical study

is presented in which the methods in this paper are used to estimate and test the fit of two

Lévy processes for the high-frequency returns on the E-mini S&P 500 futures and a selection

of five large market capitalization stocks. The first model being the CGMY or tempered

stable distribution from Carr et al. (2002) or Rosinski (2007) and the second being a jump-

diffusion model with double-exponentially distributed jump sizes. The jump-diffusion model

is strongly rejected for all but one asset at one sampling frequency, but the tempered stable

model appears to be a good fit for many of these assets. To the author’s knowledge this

is the first paper to fit the tempered stable distribution or any pure jump model to the

high-frequency returns of a security.

Finally, this paper looks at how the results developed here might be used in practice

by developing and testing a method for calculating intra- or within-day values at risk.

Since the financial crisis intraday risks have gain a significant amount of attention. Basel

III, for example, includes several guidelines on how banks and other financial firms should

monitor intraday liquidity risks. Given the growth in day trading it makes sense for firms

to monitor the intraday market risks they are taking on as well. This is especially true

given that there is evidence that many firms do not fully monitor their day trading activity.

(For example, a 2003 SEC report, “Special Study: Report of Examinations of Day-Trading

Broker-Dealers”, found that “most” firms did not monitor the capital compliance of their

day trading activities.) A flexible method for calculating intraday values at risk would be a

highly useful tool for firms wishing to monitor the within day market risks they are taking

on.
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2 Modeling Asset Price Dynamics

We begin our modeling of high-frequency assets by assuming they belong in the class of Itô

semi-martingales. Itô semi-martingales are a set of benchmark models for building time-

varying stochastic processes and can be expressed as processes of the form

Xt =

∫ t

0

atdt+

∫ t

0

σsdWs + Jt (1)

where at is the drift of the process, σt is a time-varying volatility process, and Jt is a

jump process.

Given that high-frequency asset returns are often sufficiently close to being mean zero,

this paper will drop any drift component in the formulation of these processes. Doing so

we can connect drift-less Itô semi-martingales to the class of what Sato defines as additive

processes in Sato (2013). (Drift-less Itô semi-martingales form a subset of additive processes.

See Sato (2013) for details.) Doing so gives us an expression for the characteristic function

of such processes.

Theorem 1 (Sato, 2013). Any additive process (or drift-less Itô semi-martingale) Xt has

characteristic function

φXt(u) = exp

{
−1

2
σ2
t u

2 +

∫
R

[eiuy − 1− iuy1(|y| ≤ 1)]mt(dy)

}
. (2)

Readers familiar with Lévy processes will hopefully see an immediately resemblance

in the above theorem with the Lévy-Khintchine theorem for Lévy processes – with the

noticeable difference that the characteristic function of drift-less Itô semi-martingales is

time varying. This time variation creates problems for modeling and therefore any usable

model needs to remove or model the time-dependencies. A standard approach in modeling

asset price returns is to scale processes by their variation. Let us observe what happens to

the characteristic function in Theorem 1 when we scale the process by its variation σt.
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The characteristic function of Xt/σt is

φXt/σt
(u) = φXt

(u/σt)

= exp

{
−1

2
σ2
t (u/σt)

2 +

∫
R

[ei(u/σt)y − 1− i(u/σt)y1(|y| ≤ 1)]mt(dy)

}
= exp

{
−1

2
u2 +

∫
R
[eiuz − 1− iuz1(|z| ≤ 1)]mt(σtdz)

} (3)

where we used the change of variables z = σty. Notice that the diffusive component became

time-invariant and we were able to express the time dependency of the jump-component

through the time-varying Lévy measure mt(·) above.

In order to remove the time dependence above a researcher needs to make the crucial

assumption that there exists some Lévy measure m̃(·) such that mt(σtdz) = m̃(dz). If this

is the case, then scaling high-frequency returns by their variation would result in a time

homogeneous process with characteristic function

φXt/σt
(u) = exp

{
−1

2
u2 +

∫
R

[eiuz − 1− iuz1(|z| ≤ 1)]m̃(dz)

}
(4)

which by the Lévy-Khintchine theorem is exactly the characteristic function of a Lévy

process. Given the characteristic function completely defines a statistical process if Xt/σt

has a characteristic function defined above in (4) then Xt/σt is a Lévy process.

While verifying the assumption of time homogeneity analytically might be possible in

some applications, it is not too hard to imagine a researcher lending support to such an

assumption empirically by plotting the scaled returns (and possible scaled squared returns)

of the process and calculating a sufficiently large number of autocorrelations and partial

autocorrelations for the process. If plots of the scaled returns appeared homogeneous and

the scaled returns showed little evidence of any autocorrelation then perhaps the assumption

of time invariance might be supported.

The next subsection briefly reviews Lévy processes for the interested reader.
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2.1 Lévy Processes

Lévy processes are at the core of many models within empirical finance and financial econo-

metrics. Cont and Tankov (2004) provides an excellent review of Lévy processes. A Lévy

process is any stochastically continuous càdlàg process with independent and stationary in-

crements. Brownian motion, any time-homogeneous jump diffusion process, the tempered

stable processes of Rosinski (2007) or the CGMY processes of Carr et al. (2002) among

many others are all Lévy processes. These models have been used extensively to model

asset returns, especially high-frequency asset price returns.

Any Lévy process can be defined by three parameters, often termed the Lévy triplet

(a, σ,m). While a full treatment of Lévy processes is beyond the scope of this paper,

in general, one can think of a as affecting the drift of the process and σ as scaling the

diffusive component of the process. The parameter m is a measure that determines the

size and intensity of any jumps in the process and is known as the Lévy measure. The

Lévy-Khintchine theorem provides an incredibly useful way to analyze Lévy processes as it

gives the characteristic function of any Lévy process.

φ(u) = exp

{
aiu− 1

2
σu2 +

∫
R

[eiuz − 1− iuz1(|z| ≤ 1)]m(dz)

}
. (5)

Knowing the Lévy triplet (a, σ,m) of any process then immediately gives one the charac-

teristic function of that process. In the literature one can easily find closed-form expressions

for the characteristic functions of many popular Lévy processes. Many of which were derived

using the Lévy-Khintchine theorem.

3 Characteristic Function Estimation

The previous section showed how, under the right assumptions, asset prices might be mod-

eled as Lévy processes and how the characteristic function of any Lévy process could be

expressed in closed-form. Since the characteristic function of a process completely describes

that process, knowledge of the characteristic function gives us the full dynamics of the
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underlying process. What this means from an estimation standpoint is that estimating a

model of the characteristic function of a process is equivalent to estimating the process itself.

Given this insight the paper proceeds by building a framework for estimating characteristic

functions.

Any characteristic function estimation procedure tries to match the theoretical charac-

teristic function φ0(u, θ) under the null of a model to the empirical characteristic function

φn(u) of the data – where φ0(.) is the class of characteristic functions under the null and

θ is the set of parameters to match. For readers unfamiliar with thinking about the char-

acteristic function of a process note that the characteristic function of some process X is

simply the Fourier transform of the density of that process. It is defined as φX(u) ≡ E[eiuX ]

for any u ∈ R where i is the imaginary unit and u indexes the frequency. As such the

characteristic function translates the density of the process from the space domain to the

frequency domain.

One can generalize most any characteristic function estimation technique as solving the

following problem.

θ̂ = argmin
θ∈Θ

∫
R
|φn(u)− φ0(u, θ)|2g(u)du. (6)

Which one can cast as a GMM procedure using a continuum of moment conditions. (In

addition, a procedure that only attempted to match the characteristic function at discrete

frequencies, as is sometimes done, could be placed within the framework of equation (6) by

choosing g(u) as a set of Dirac mass functions – which might themselves be weighted.)

In general, unlike maximum likelihood estimation (MLE), characteristic function estima-

tion will not achieve the Cramer-Rao efficiency lower bound. However by properly selecting

the weighting function, g(u), one can improve the efficiency of the estimation and, given

the right assumptions, even achieve full maximum-likelihood efficiency. (See Carrasco and

Florens (2000) for a detailed discussion.) The next subsection discusses how to think about

choosing the weighting function g(u).
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3.1 Weighting Functions

The choice of a weighting function, g(u), in the estimation procedure of equation (6) involves

the choice of how to weight the frequencies u ∈ R in the characteristic function φ(u) under

consideration. Weighting different frequencies differently involves a trade off between which

aspects of a process to weight most heavily. The large and small moves of a process,

for example, influence the characteristic function differently at different frequencies. An

example of this is the α-stable, tempered-stable, or CGMY processes. Following Todorov

and Tauchen (2012) one can show that the activity parameter of these processes (often

denoted α) governs the small moves of these processes most heavily and inturn will influence

the characteristic function of these processes most heavily at smaller frequencies (i.e., smaller

values of u in φ(u)). A researcher interested in estimating this parameter then would do

best to give sufficient weight to the smaller frequencies of the characteristic function.

To see this idea more generally, recall that the characteristic function is defined as

φX(u) = E[eiuX ]. From this definition, it is easy to see that small frequencies (small values

of u) will be most influenced by large values of X (large moves of the process), whereas

larger frequencies (larger values of u) will be influenced by both large and small moves

(large and small values of X). A weighting function then should be tailored to the model

and parameters under consideration and the parameters the researcher finds of most interest.

A researcher that was most interested in a model governed by smaller frequencies would do

best to choose a weighting function that gave more weight to smaller frequencies, whereas a

researcher that was most interested in models governed by larger frequencies would do best

to choose a weighting function that gave more weight to larger frequencies.

This discussion begs the question of how exactly then to select a weighting function or

at the least from which set or class of weighting functions should a particular weighting

function be selected. One commonly used class of weighting functions are the Gaussian

densities. These functions are centered at zero and decline exponentially in the tails. Such

weighting functions are limiting because, while it possible to increase the weight on the

tails, the majority of the mass of any Gaussian function will always be centered on the

origin. This could potentially be a problem, because, as was discussed, it might be desirable
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to weight frequencies away from the origin more heavily than those at the origin which is

something the Gaussian weighting functions cannot do.

Another idea in selecting a class of weighting functions comes from a discussion in Heath-

cote (1977) in which the estimation of the characteristic function of stable processes is dis-

cussed. Heathcote (1977) notes that the informational content of the characteristic function

of stable processes declines near the origin and in the tails. He suggests using a weighting

function that down-weights frequencies near the origin and in the tails, rather than the com-

monly used Gaussian weighting functions, but goes no further in developing or suggesting

such weighting functions. This paper builds on his insights.

I define weighting functions that down-weight frequencies near the origin and in the tails

‘bimodal’ weighting functions since they are dual peaked when plotted on the real line. These

weighting functions are incredibly flexible in that such weighting functions can be tuned to

place weight near the origin, at moderate frequencies, and even at very high frequencies by

changing the scale and location of the bimodal peaks of the weighting function. To illustrate

such an idea Figure 1 plots a specific example of a such a weighting function and the class

of weighting functions used here.

Having decided on a class of weighting functions or at the very least the characteristics

of a weighting function that might be desirable the next question is how exactly to choose

a particular weighting function from that class. It is here that this paper introduces a

particularly novel idea to the characteristic function estimation literature. Rather than

choose one particular weighting function g(u) and perform the estimation once, the idea

here is to choose a family of weighting functions, in particular one with bimodal properties,

and estimate the model once for each weighting function in the family. Denoting the family

by K we might express the idea as estimating the model over each gk(u) for k ∈ K. For

each k ∈ K this will give an estimate θ̂k of the parameters. A sufficiently broad family

of weighting functions would allow the researcher to estimate the model weighting smaller

frequencies, then moderate frequencies, and finally large frequencies most heavily.

Doing so would give the researcher a set of estimators, θ̂k, corresponding to the weighting

functions in the family. An immediate idea on selecting which estimator to prefer is to select
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Figure 1: Family of Weighting Functions
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the one that results in the ‘smallest’ estimated asymptotic covariance matrix.1 Doing so

would improve the efficiency of the estimation procedure against a procedure that selected

a weighting function in an ad hoc manner. Further if a particular gk(u) was the optimal

weighting function in Feuerverger and McDunnough (1981) or Carrasco and Florens (2002)

then we would have achieved full maximum likelihood efficiency without knowledge of the

density as required in Feuerverger and McDunnough (1981) or the assumptions necessary

in Carrasco and Florens (2002).

Needing a parametric class of weighting functions for the family I chose

gk(u) = (uk)2 exp{−(uk)2} for k > 0. (7)

The function in (7) has several beneficial features. As can be seen in Figure 1 the weighting

function consists of two bi-modal Gaussian-type curves reflected across the origin. The

1Here I take ‘smallest’ to mean the estimated asymptotic covariance with the smallest trace though other
partial orderings could be used.
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function gives zero weight at the origin2 and in the limit of the tails. The parameter k

controls the thickness and location of the curves. As k → 0 the curves become fatter and

further from the origin, whereas when k → ∞ the curves become steeper and closer to

the origin. Not knowing the exact location of the maximal informational content of the

characteristic function under consideration the researcher can vary k to place more or less

weight on different locations of the characteristic function.

The next section uses the parametric class of weighting functions just introduced and

the discussion on characteristic functions to build a test of model specification.

4 Specification Testing

The family of weighting functions in (7) that were considered in the estimation procedure

also have several features that lend themselves to a framework for model specification testing.

Before delving into the usefulness of the family of functions in (7) we need to consider the

null of the test and examine the testing procedure.

4.1 Null Hypothesis

Let φn(u) be the empirical characteristic function of the observed data, let φ(u) be the true

unobserved characteristic function of the process under consideration, and let φ0(u, θ0) be

the characteristic function under the null of the model. (We need to match not just the

class of characteristic functions φ0(.) but also the parameter values θ0.)

Since the characteristic function is complex valued we can decompose it into its real and

imaginary parts such that φ(u) = c(u) + is(u). Letting m(θ0, u) = c(u)− c0(u, θ0) + s(u)−

s0(u, θ0) we can state the null as

Ω0 ≡ {φ(u, x) = φ0(u, θ0),∀u ∈ R}

= {m(θ0, u) = 0,∀u ∈ R}.
(8)

2This is not a problem or limitation because while the characteristic function of a process might be
informative in the neighborhood around the origin, any characteristic function is always 1 at the origin.
Therefore the origin itself cannot provide any information on the process under consideration.
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Which we test using

Ω0,n = {mn(θ0, u) = 0,∀u ∈ R} (9)

where mn(θ0, u) = cn(u)− c0(u, θ0) + sn(u)− s0(u, θ0).

The following brief lemma shows that when the process under consideration is contin-

uously distributed that we have P[m(θ0, u) = 0] = 0 whenever φ(u) 6= φ0(θ0, u), thereby

justifying the statement of the null in equation (8). (Stating the null as in (8) greatly

simplifies the computations in the theorems to follow.)

Lemma 1. Let X be a continuously distributed random variable and let φ(u) be the charac-

teristic function of X. Define m(θ0, u) = c(u)− c0(u, θ0) + s(u)− s0(u, θ0) as above. When

φ(u) 6= φ0(θ0, u) we have P[m(θ0, u) = 0] = 0.

4.2 Testing Procedure

In order to test the null in equation (9) the following test statistics are used. Recall the

weighting function gk(u) in equation (7) is indexed by k ∈ K. For each k ∈ K then we can

define the statistic

Qn,k(θ) =

∫
R
mn(θ, u)gk(u)du (10)

and test across k’s using

Tn(θ) = sup
k
|
√
nQn,k(θ)|. (11)

The next subsection will show that having Qn,k(θ) = 0 for all k ∈ K is sufficient to conclude

φ(u) = φ0(u) and derive the distribution of test statistic Tn(θ) in equation (11).

4.3 Consistency and Distribution of the Test

The following theorem shows that for the test statistic above

Qn,k(θ) =

∫
R
mn(θ, u)gk(u)du = 0
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for all k ∈ K is sufficient to conclude φ(u) = φ0(u). It is here that the usefulness of the

weighting functions in equation (7) becomes apparent. The weighting functions in equation

(7) is analogous to the class of consistent weighting functions in the integrated conditional

moment tests of Bierens and Ploberger (1997) or the revealing sets of Stinchcombe and

White (1998). (It should be noted however that the weighting function I chose in equation

(7) does not fit directly into either class and therefore the consistency of my testing procedure

does not follow directly from an application of Bierens and Ploberger (1997) or Stinchcombe

and White (1998). In fact, I was unable to come up with a bimodal weighting function that

fit within the framework of either paper.)

The class of possible weighting functions is quite large and many alternate choices could

have been employed. Recall however that the weighting functions in equation (7) were

chosen because they would place weight on the characteristic function in correspondence

with its informational content. For the same reason this aided in the estimation procedure

it now aids us here in model specification testing. Bierens and Ploberger (1997) require, as

does the theorem here, that the set of weighting functions have positive Lebesgue measure.

Stinchcombe and White (1998) require that the set be dense. Given that neither is possible

in practice, a set of weighting functions chosen based on the informational content of the

process in consideration will aid the accuracy of the testing procedure in practice where a

dense set of weighting functions or a set with positive Lebesgue measure is unfeasible.

Theorem 2. Consider the weight functions gk(u) given in equation (7). Let K be a com-

pact subset of R+ with strictly positive Lebesgue measure. Then, if for all k ∈ K we have∫
Rm(θ, u)gk(u)du = 0, we can conclude m(θ, u) = 0 for every u ∈ R and therefore that

φ(u) = φ0(u).

Given the consistency of the testing procedure above we need a distributional theory

to use the test in practice. The theorem below gives this distribution and a method for

going about the test. First, however, define θ̂n,k∗ be the chosen estimate of θ0 where k∗ is

the particular k ∈ K of the chosen estimate.3 The following theorem requires one set of

3Recall we are choosing θ̂n,k∗ as the estimator that leads to the smallest trace of the estimated asymptotic
covariance matrix though other choice procedures could be considered.
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assumptions.

Assumption A. (i) θ̂n,k converges uniformly in k ∈ K to θ0. (ii) The first and second

derivatives of c0(u) and s0(u) are uniformly bounded by functions integrable with respect

to gk(u). (iii) The data {xj} for j = 1, . . . , n are independent and identically distributed

random variables.

Assumption A(i) is easy to verify by a uniform law of large numbers since the charac-

teristic function of any process is a bounded function. Assumption A(ii) is easy to verify

for most Lévy processes since φ(u) = c(u) + is(u) is known in closed form. Assumption

A(iii) needs to be assumed. However a researcher can check plots of the returns as well as

autocorrelograms of the returns and the absolute returns to support such an assumption.

Theorem 3. Under Ω0 and Assumption A we have
√
nQn,k(θ̂n,k∗) converges to Z(k).

Where Z(k) is a Gaussian process defined on C(K) where C is the space of continuous

functions and the covariance function of Z(k) is the function Γ(k1, k2) (given in the proof).

Moreover, the function

Tn(θ̂n,k∗) = sup
k∈K
|
√
nQn,k(θ̂n,k∗)|

converges in distribution to supk∈K |Z(k)|.

Theorem 3 gives us a method to perform the testing procedure. First, choose a set K

from which to draw weighting functions gk(u) for k ∈ K. Next, perform the estimation as in

Section 3 and select a chosen parameter estimate θ̂n,k∗ . For each k ∈ K calculate Qn,k(θ̂n,k∗)

and then Tn(θ̂n,k∗) = supk∈K |
√
nQn,k(θ̂n,k∗)|. Next, estimate the covariance function Γ of

the Gaussian process Z(k) for the set of k ∈ K. Finally, using this estimate Γ̂ stimulate

the process Z(k) and estimate the p-value of the statistic Tn(θ̂n,k∗) under the null based on

where Tn(θ̂n,k∗) falls in the simulated distribution of supk∈K |Z(k)|.

5 Monte Carlo Study

To analyze the performance of the estimation and testing procedures I performed a one

thousand replication Monte Carlo study. To do so I simulated data from two common Lévy
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processes often used in the literature, a jump-diffusion model and a tempered stable (or

CGMY) model. The processes were simulated over T = 2257 days with N = 78 returns

in each day, giving TN = 176, 046 simulated returns per replication. The number of days

corresponds to nine calendar years and the number of returns in each day corresponds to

the number of five minute returns in a typical trading day.

5.1 Tempered Stable / CGMY Process

The tempered stable process is a pure-jump Lévy process. A review of the tempered stable

process can be found in Cont and Tankov (2004) or a full treatment can be found in Rosinski

(2007). The CGMY model in Carr et al. (2002) is also a specialized form of the tempered

stable model.

Every tempered stable process has a Lévy jump measure of the form

m(x) = c
1

|x|1+α
e−ρ|x| (12)

with parameters α < 2, c > 0, and ρ > 0. The parameter α controls the activity of the

process.4 When 1 ≤ α < 2 the process is of infinite activity and infinite variation, when

0 ≤ α < 1 the process is of infinite activity, but finite variation, and when α < 0 the process

is of both finite activity and finite variation and corresponds to a sub-class of compound

Poisson processes. When α = 0 the tempered stable process coincides with the variance

gamma process. The parameter c is essentially a scale parameter although it has an effect

on the intensity of the jumps. Finally, the parameter ρ controls the tempering of the tails of

the Lévy measure and thereby the large jumps of the process. Larger values of ρ correspond

to greater tempering and therefore fewer larger jumps.

I chose α = 1.2, c = 43, and ρ = 1.15 for the model I replicated. These parameters are

in line with the estimates from several high-frequency stock price returns.

4When α > 0 it corresponds to the Blumenthal-Getoor index.
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5.2 Simulating the Tempered Stable Process

Since the tempered stable and CGMY processes do not have a closed-form density, I needed

a method to simulate the tempered stable process I had chosen. To do so I used a method of

Fourier inversion to go from the characteristic function of the process to an estimate of the

cumulative distribution function (CDF). With the CDF of the process, I could then use the

probability integral transform to replicate my tempered stable process as detailed below.

The Fourier inversion of the characteristic function was done using the Gil-Pelaez for-

mula.

F (x) =
1

2
+

i

2π

∫ ∞
0

φ(u)e−iux − φ(−u)eiux

u
du (13)

While the CDF of any process is necessarily a monotonically increasing function, esti-

mating the CDF in such a manner will not necessarily lead to a monotonic function. To

address this issue I followed Li et al. (2013) and Chernozhukov et al. (2010) and performed

a monotonization of the estimated CDF via a rearrangement process as follows.

Let F̂ (.) be the estimated CDF of the tempered stable process based on equation (13).

For any τ ∈ (0, 1) define the estimated τ -quantile of the process as

Q̂(τ) = inf{x ∈ R : F̂ (x) ≥ τ}. (14)

From this estimated quantile function we can define a CDF based on inverting the estimated

quantile function that is guaranteed to be monotonic. Such a function takes the form

F̂ ∗(x) = inf{τ ∈ (0, 1) : Q̂(τ) > x}. (15)

In implementing this procedure I used a grid of x ∈ [−10, 10] with an interval of 10−3 and

a grid of τ ∈ (0, 1) with an interval of 10−5.

Given an estimate of the CDF I then numerically simulated uniformly distributed random

variables on the unit interval [0, 1] and used the integral probability transform to achieve

approximations of realizations of the estimated tempered stable process. That is, if F (.) is

the CDF of some tempered stable distribution and if u ∼ U [0, 1] then x = F−1(u) will be
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distributed according to that tempered stable process.

5.3 Double-Exponential Jump-Diffusion Process

Jump-diffusion models are quite common in the financial econometrics literature. The jump-

diffusion model I used here has jump sizes governed by a double-exponential (or Laplace)

distribution. (Along with the normal distribution, the double-exponential distribution is a

common distribution in the literature used to model the jump sizes.) The model takes the

form

dXt = σdWt + dJt

where Wt is a Brownian motion component and Jt is a compound Poisson jump process

with intensity parameter λ and with jump sizes that follow a double-exponential (or Laplace)

distribution with parameter β.

In performing the Monte Carlo study I found the parameter estimates for the jump-

diffusion model were estimated with a much smaller bias and and a smaller mean absolute

deviation from their true values if the parameter β for the double-exponential distribution

and the jump intensity λ were pre-estimated and these pre-estimated parameters were used

to create bounds on the parameter estimates in the later characteristic function estimation

procedure. The pre-estimation was done by isolating the jumps using a jump detection

procedure and then estimating the intensity λ and jump size parameter β of these isolated

jumps. The jump detection was done by removing returns that were smaller in absolute

value than α∆0.49
√
BVt where BVt was a local estimator of the bipower variance of the

process. (I found setting α = 3.75 worked best in the Monte Carlo study.)

The parameters for the jump-diffusion model were chosen so that 80% of the quadratic

variation would come from the diffusive component and 20% from the jump component and

that there should be eight expected jumps each calendar year. These led to the following

parameters choices σ = 0.8944, λ = 0.0317, and β = 2.51.
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Table 1: Monte Carlo Results (Rejection Rates)

Null: Tempered Stable
Rejection Rates

True Model 10% 5% 1%

Tempered Stable 8.7% 5.7% 1.9%
Jump-Diffusion 100.0% 99.3% 97.3%

Null: Jump-Diffusion
Rejection Rates

True Model 10% 5% 1%

Tempered Stable 82.9% 82.1% 81.9%
Jump-Diffusion 10.0% 5.9% 1.2%

NOTE: Study based on 1000 replications. See Section 5 for the details of the study and the models used.

5.4 Results

Based on 1000 Monte Carlo replications Table 2 reports the quantiles of the parameter

estimates and Table 1 reports the rejection rates of the testing procedure.

When the true model and null of the test are the same, the rejection rates for both

models are very close to the theoretical values they should be, lending support to the testing

procedure in this paper. When the true model and the null of the test differ the rejection

rate are quite high showing the power of the test. When the true model is the simulated

jump-diffusion process and the null of the test is a tempered stable model, the rejection

rates vary from 100% at the 10% level to 97.3% at the 1% level. When the true model is the

simulated tempered stable process and the null of the test is a jump-diffusion model, the

rejection rates range from 82.9% at the 10% level to 81.9% at the 1% level. These results

lend significant support to the power of the testing procedure in this paper.

In addition, the parameter estimates of the Monte Carlo study in Table 2 are all very

close to their true values lending support to the accuracy of the estimation procedure.
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Table 2: Monte Carlo Results (Parameter Estimates)

Tempered Stable
True Estimated Quantiles
Value 1st 5th 10th Median 90th 95th 99th MAD

α 1.2 0.98 1.09 1.12 1.26 1.50 1.56 1.63 0.13
c 43 14.20 19.09 22.85 38.17 49.99 53.21 64.75 9.40
ρ 1.15 0.57 0.71 0.80 1.08 1.25 1.30 1.41 0.16

Jump-Diffusion
True Estimated Quantiles
Value 1st 5th 10th Median 90th 95th 99th MAD

σ 0.8944 0.891 0.892 0.892 0.895 0.897 0.898 1.000 0.004
λ 0.0317 0.010 0.023 0.025 0.031 0.037 0.039 0.041 0.004
β 2.5100 1.888 2.062 2.116 2.537 2.998 3.056 3.433 0.261

NOTE: Study based on 1000 replications. MAD is the mean absolute deviation of the parameter estimates from
their true values.

6 Empirical Results

As an empirical exercise I estimated and performed a specification test on the high-frequency

returns of the E-mini S&P 500 futures (ES) and a selection of five large market capitalization

stocks (AAPL, GE, JNJ, WMT, and CVX) under the null of a CGMY or tempered stable

distribution and the null of a jump-diffusion distribution. With both distributions taking

the functional forms described in the Monte Carlo study of Sections 5.1 and 5.3.

I used one minute pricing data on the E-mini S&P futures (ES) from the years 2007

to 2014 and, for the stocks, I used one minute pricing data from the trades and quotes

(TAQ) database spanning the years 2005 to 2013. While ES contracts are traded 23 hours

a day, to match the asset market of the stocks I only used data from 9:30am till 4:00pm.

All pricing data are transaction prices and when no trades occurred prices are back-fitted

from the most recent trade. In addition, I excluded any NYSE holidays and partial trading

days. I performed the estimation and testing procedures over sampling frequencies of five,

ten, fifteen, and twenty minutes.

Before performing the estimation and testing procedures I first scaled the returns by a

estimate of their diurnal and stochastic variations. This was motivated by Section 2 in which
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it was discussed how certain time varying stochastic processes might be transformed into

Lévy processes by scaling these processes by their variation. It is also a standard practice

in estimating high-frequency asset price returns. The diurnal variation has been explored

extensively in the literature, see Andersen and Bollerslev (1997) for an initial treatment.

For each recurring daily high frequency interval I estimated the variation at this interval

and then used the mean across days as my estimate of the diurnal variation.

To estimate the stochastic variation I followed Todorov and Tauchen (2014) and used

a local block estimator of the bipower variation. Let rt,i = pt,i − pt,i−1 be the within day

return where t indexes the day and i indexes the within day interval and pt,i is the log-

price of the asset. With this notation the estimator of the block bipower variation can be

expressed as

BVt,j =
π

2

n

kn − 1

jkn∑
i=(j−1)kn+2

|rt,i||rt,i−1| (16)

where n is the number of daily intervals, kn is the block size, and j indexes the blocks.5

Both the diurnal variation and the stochastic variation were estimated separately for

each sampling interval. So, for example, the one minute returns were scaled by estimates of

the variations based on one minute return data and the twenty minute returns were scaled

by estimates of the variations based on twenty minute return data. The rational for doing so

was to keep the entire estimation and testing process separate across sampling frequencies.

In practice, most researchers first select a sampling frequency and then attempt to estimate

and test their model. I wanted to keep the procedure as closely in line with common research

practices as possible.

The results of the estimation and testing procedures are given in Table 3. This table

lists the p-values for the null of a CGMY or tempered stable process and the null of a

double-exponential jump-diffusion process. The p-values were calculated based on 10,000

replications of the estimated covariances of the test statistics following Section 4. Parameter

estimates and their standard errors are available upon request. Based on the p-values of the

specification test, the jump-diffusion model is strongly rejected at all sampling frequencies

5To match the block sizes in Todorov and Tauchen (2014) I set kn = b3.1n0.49c.
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Table 3: Empirical Results (p-values)

Null: Tempered Stable
Sampling Frequency

5min 10min 15min 20min

ES 0.52 0.33 1.00 0.62
AAPL 1.00 1.00 1.00 1.00
GE 0.00 0.44 0.45 0.53
JNJ 0.00 0.27 0.94 1.00
WMT 0.00 0.18 0.99 0.99
CVX 1.00 1.00 1.00 1.00

Null: Jump-Diffusion
Sampling Frequency

5min 10min 15min 20min

ES 0.00 0.00 0.00 0.00
AAPL 0.00 0.00 0.00 0.00
GE 0.00 0.00 0.00 0.00
JNJ 0.00 0.00 0.00 0.55
WMT 0.00 0.00 0.00 0.00
CVX 0.00 0.00 0.00 0.00

NOTE: The p-values are for the specification test outlined in Section 4. They are based on 10,000 replications of
the estimated covariances. The ES data are data from the E-mini S&P 500 futures and span the years 2007 to
2014. The data on the stocks AAPL, GE, JNJ, WMT, and CVX come from the TAQ database and span the years
2005 to 2013. See Section 6 for a more details on the data.

and for all assets (with the sole exception of the twenty-minute returns of JNJ). However,

with the exception of the five-minute returns of GE, JNJ, and WMT, I was unable to reject

the null of a tempered stable model at the 1%, 5%, or even 10% level for all of the assets

and for all the sampling frequencies considered. As far as the author is aware, this is the

first time the high-frequency returns of a security have been successfully fitted to a pure

jump model.

7 Empirical Application: Intraday Values at Risk

As mentioned in the introduction intraday risks are becoming an increasingly important

topic of concern following the recent financial crisis. The Basel III guidelines for example

give a great deal of concern to the intraday liquidity risks financial firms take on. Given the

growth in day trading activities, it makes sense to monitor intraday market risks as well,
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especially given that there exists evidence that firms do not fully monitor their intraday

trading activities. (See, for example, the 2003 SEC report, “Special Study: Report of

Examinations of Day-Trading Broker-Dealers”, in which it was found that most firms did

not monitor the capital compliance of their day trading activities.) A flexible intraday value

at risk would be an appropriate tool for monitoring intraday market risks and its derivation

using the methods developed in this paper is the subject of this empirical exercise.

For readers unfamiliar with the value at risk, the value at risk is defined as the smallest

number l such that the losses L will be no larger than l with probability 1 − α, where

α ∈ (0, 1) is a given confidence level. One may define such a concept as

V aRα(L) ≡ inf{l ∈ R : P(L > l) ≤ 1− α}. (17)

Since I estimate and simulate asset price returns on a high frequency scale the methods

here can easily be used to calculate the value at risk at any high frequency interval during the

day. One simply needs to look at the accumulated high frequency returns up to whatever

horizon is of interest. With this idea in mind I forecasted intraday values at risk for a

position in the E-mini S&P futures (ES) using five minute simulated return intervals and

then calculated the 1%, 5%, and 10% values at risk for positions throughout the day. (The

next subsection provides the details on how these calculations were performed.) Figure 2

shows an example of one set of such forecasted intraday values at risk. The figure plots the

5% values at risk for a position in ES that opened at 9:35am on the morning of November

11th, 2014 and would be held until the times listed on the vertical axis. The values at risk

on the horizonal axis are in terms of the percentage of the position that could be lost. So,

for example, a trader that opened a position in ES at 9:35am and held it until 2pm that

day would, with 95% confidence, face potential losses of no more than 0.76% of his or her

investment.
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Figure 2: Intraday Values at Risk
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Intraday 5% Values at Risk (ES)

NOTE: The value at risk is in percentage terms for a position that opened at 9:35am on November 11, 2014 up
until the point on the vertical axis. See Section 7 for details on the calculation.

7.1 Estimation

Recall that in the estimation of the high-frequency returns I first scaled the returns by an

estimate of their diurnal and stochastic variations. Given the strong support for using the

tempered stable distribution to model the high-frequency returns of ES in Section 6, I used

that model here to simulate the scaled high-frequency returns. Because the model estimates

and simulates returns that have been scaled by their variation to use the model in practice

I needed to simulate not just the increments of the estimated tempered stable process that

was estimated, but also replace the variation that had been scaled out. To do so I needed

to forecast and simulate an estimate of the block bipower volatility as discussed in Section

6 and replace the diurnal variation.

To simulate the tempered stable process I used the same methods as in the Monte Carlo

study of Section 5.2. This involved a Fourier inversion of the tempered stable characteristic

function to estimate the cumulative distribution function (CDF). While Fourier inversion
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can often perform poorly in estimation procedures, my simulation only required one Fourier

inversion rather than the multitudes often required in most estimation procedures. The

results of the estimation in Section 6 gave me an estimate of the diurnal variation. Given

the coarseness of these estimates I smoothed the diurnal variation using a two sided moving

average model with two leads and lags. To forecast the stochastic variation required more

care and is detailed below.

7.2 An HAR Model for the Block Bipower Volatility

To simulate and forecast the block bipower volatility I used a modification of Corsi’s HAR

model in Corsi (2009). To avoid confusion define the block bipower variation as in equation

(16) and the bipower volatility as its square-root, i.e., BV olt,j =
√
BVt,j .

Letting B equal the number of daily blocks of the block bipower variation in equa-

tion (16) of Section 6. I modeled the log bipower volatility as following the heterogeneous

autoregressive model.

logBV olt,j+1 = β0 + β1 logBV olt,j + · · ·+ βB logBV olt−1,j+1

+ βB+1 logBV ol
(w)
t,j + βB+2 logBV ol

(m)
t,j + εt,j+1

(18)

where

logBV ol
(w)
t,j =

1

5B

t,j∑
τ,b=t−5,j

logBV olτ,b (19)

and

logBV ol
(m)
t,j =

1

22B

t,j∑
τ,b=t−22,j

logBV olτ,b. (20)

The motivation for the model in equation (18) follows Corsi (2009). Short-term traders

should influence the bipower volatility over the day and therefore there should be information

in the preceding blocks of the bipower volatility over the previous day, whereas medium-

term and long-term traders might only affect the bipower volatility in levels over the weekly

and monthly horizon. Using one full trading day’s worth of preceding blocks of the bipower

volatility helps to capture possible diurnal patterns in the bipower volatility as well.
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In addition, I estimated the model in logs to avoid negativity issues in forecasting,

however due to the convexity of the log-transform this creates a bias in the forecasts of the

bipower volatility because

Et,j [BV olt,j+1] 6= exp{Et,j [logBV olt,j+1]}. (21)

Bollerslev et al. (2009) provides evidence that the log bipower volatility of the S&P 500

might be approximately normal. If this is the case then the bipower volatility should be

approximately log-normally distributed and we can correct for the bias by subtracting an

estimate of σ2/2 from the log bipower volatility, where σ2 is the variation of εt,j+1 in equation

(18). That is, if the bipower volatility is log-normally distributed then,

Et,j [BV olt,j+1] = exp{Et,j [logBV olt,j+1 − σ̂2/2]}. (22)

Given this insight I needed to estimate the conditional variance of log bipower volatility

as well. The estimate I used is simply the mean of the squared residuals from the estimation

in equation (18). A more thorough analysis of the block bipower volatility might look at

ways to account for heterogeneity or autocorrelation in the residuals, but given the scope of

this paper I did not. (Parameter estimates for the HAR model estimated here are available

upon request.)

7.3 Backtesting

I performed an extensive backtest to test the performance of my calculated values at risk.

To do so I calculated intraday values at risk for a position in ES over a seven year period

making sure that no future information would ever be used in the forecasts.

An important difference here was that I estimated the tempered stable distribution on

returns that had been scaled by forecasted estimates of the diurnal and stochastic variations

rather than realized estimates of these variations. Doing so is important because the dis-

tribution of the high-frequency returns scaled by the forecasts of the variations might not
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Table 4: Coverage (Intraday Values at Risk)

Value at Risk
period 1% 5% 10% N

all-periods 98.12% 94.64% 90.87% 4458
morning 99.06% 95.83% 92.19% 1486
midday 97.24% 93.27% 89.43% 1486
afternoon 98.05% 94.82% 90.98% 1486

NOTE: This table lists the percentage of time the actual realized losses were smaller than the forecasted value at
risk. See Section 7.3 for the starting and closing times of the holding periods. The calculations are for a position
in the E-mini S&P futures (ES). N is the number of forecasted intraday values at risk. The calculations span the
years 2009 till 2014.

follow the same distribution as the high-frequency returns scaled by the realized variations.

The reason for doing so is that in calculating the value at risk I would need to use forecasts

of the variations and not their realized estimates as these would be unavailable in practice.

The dataset for the E-mini S&P futures (ES) spanned the years 2007 to 2014. I used a

one year rolling window on all the estimates and updated the parameters for the tempered

stable model, the HAR model of block bipower variation, and the estimate of the diurnal

variation every month. To give an example of how this would work consider calculating an

intraday value at risk on January 11th, 2014. The parameters for all the models would have

been estimated on data from January 1, 2013 till December 31, 2013. The block bipower

variation though would be updated in real time so that in forecasting the block bipower the

forecast would be based on data up until January 11th, but the parameters would not be

updated again until February 1st.

Within each day I calculated three intraday values at risk: a morning period lasting from

9:35am till 11:45am, a midday period lasting from 11:45am till 1:55pm, and an afternoon

period lasting from 1:55pm till 4:00pm. For each period I calculated a 1%, 5%, and 10%

value at risk. Finally, I compared each value at risk with the actual realized losses or gains

over that period to check the coverage of my estimates. With the rolling window I was

able to calculate values at risk starting in 2009 until 2014. This gave 1486 days worth of

calculations and 4458 total value at risk calculations. Table 4 lists the coverage results of

this study. The coverage is remarkably close to the theoretical values. Taking all the within

day periods together, the 1% value at risk has a coverage of 98.12%, the 5% value at risk
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has a coverage of 94.64%, and the 10% value at risk has a coverage of 90.87%. The coverage

results are similar looking at the within day periods separately.

8 Conclusion

This paper outlined a method for modeling high-frequencies asset price dynamics. It did

so by assuming asset prices followed a class of Itô semi-martingales and showed how if the

existence of a certain transformation of the jump measure of these Itô semi-martingales

existed that by scaling asset returns by their variation that asset returns could be modeled

as Lévy processes. Once in the class of Lévy processes this paper showed how the charac-

teristic function of these assets could be derived in closed form and, given knowledge of the

characteristic function, this paper developed a novel estimation technique and a novel test

of a model’s specification. It did so by estimating and testing the characteristic function of

the model over a family of weighting functions where the weighting functions were chosen to

provide flexibility in terms of the informational content of the characteristic functions of the

models under consideration. A Monte Carlo study lent strong support to the consistency of

the estimation strategy and the size and power of the specification test.

Having developed a novel estimation and testing procedure this paper turned to the

estimation and model specification testing of six assets in an empirical study. One particular

class of models, the CGMY model of Carr et al. (2002) or equivalently the tempered stable

models in Rosinski (2007), was found to fit these assets quite strongly. As far as the author

is aware, this is the first time the high-frequency returns of an asset have been successfully

fitted to a pure jump model (as the tempered stable or CGMY models are). Finally, an

empirical exercise was performed on the high-frequency returns from the E-mini S&P futures

(ES) to calculate intraday values at risk. The exercise developed a method to forecast the

intraday value at risk of an asset at any within day horizon and a backtest of the estimated

values at risk showed their coverage to be right in line with the theoretically expected values.
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A Proofs

Proof of Lemma 1. Let X be a continuously distributed random variable and assume φ(u) 6=

φ0(θ0, u) as in the statement of the lemma. Notice m(θ0, u) = c(u) − c0(u, θ0) + s(u) −

s0(u, θ0) = cos(uX)− c0(u, θ0) + sin(uX)− s0(u, θ0).

We need to show that the set of events in which cos(uX)−c0(u, θ0)+sin(uX)−s0(u, θ0) =

0 has measure zero. Since c0(u, θ0) and s0(u, θ0) are given by the model, they are non-random

real numbers. When φ(u) = φ0(u, θ0) we have E[cos(uX)] = c0(u, θ0) and E[sin(uX)] =

s0(u, θ0), however since X is continuously distributed when φ(u) 6= φ0(u, θ0) we will have

cos(uX) = c0(u, θ0) and sin(uX) = s0(u, θ0) only on a set of measure zero.

We will next show that P[cos(uX) = − sin(uX)] = 0 so that even if c0(u, θ0) = −s0(u, θ0)

we would have m(θ0, u) = 0 only with probability zero. Since cos(x) = −sin(x) only on a

countable set of x ∈ R and X is a continuously distributed random variable, we see that

for any given u ∈ R that cos(uX) = − sin(uX) only on a countable set, and therefore

P[cos(uX) = − sin(uX)] = 0.

Using a similar line of reasoning, one can easily show that m(θ0, u) = 0 only with

probability zero for any other possible combination.

Proof of Theorem 2. Let m(θ, u) be given as in the theorem for some fixed θ. We will show

that if
∫
Rm(θ, u)gk(u)du = 0 for all k ∈ K , then m(θ, u) = 0 for a.e. u ∈ R.

Let S be a given random variable on R such that S 6= 0 and define U ≡ m(θ, S). The

proof will follow Bierens (1990) by showing that P(E[U |S] = 0) < 1 implies that the set

S = {k ∈ K : E[Ugk(S)] = 0} has Lebesgue measure zero. Assume P(E[U |S] = 0) < 1.

Theorem 2 in Bierens (1982) states that P(E[U |S] = 0) < 1 if and only if there exists some

non-negative integer m such that E[USm] 6= 0. Applying this theorem, let m be such that

E[USm] 6= 0. We will use this to show first that if E[Ugk(S)] = 0, in a neighborhood of

E[Ugk(S)] = 0, we will have E[Ugk(S)] 6= 0.
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For any given p ∈ N it can be shown

(
d

dk

)p
E[Ugk(S)] =

(
d

dS

)p
E[U(Sk)2 exp{−(Sk)2}]

=

∞∑
j=N

(−1)j

j!

(
p−1∏
i=0

2j + 2− i

)
E[Uk2j+2−pS2j+2]

(23)

where N = 0 if p = 0, 1, 2 and N = dp/2e − 1 otherwise. Notice that when p is odd that

2N + 2− p = 0 so that k2N+2−p = 1. This implies for an odd p

(
d

dk

)p
E[Ugk(S)]→ (−1)N

N !

(
N−1∏
i=0

2N + 2− i

)
E[US2N+2] as k → 0. (24)

If we chose p such that m = 2N + 2 we will have E[Ugk(S)] 6= 0 in a neighborhood of

E[Ugk(S)] = 0 since the limit above shows that the p-th derivative of E[Ugk(S)] will be

nonzero.

Now let k0 6= 0 be such that E[Ug(k0S)] = 0. We want to show that in a neighborhood of

k = k0 that E[Ug(kS)] 6= 0. Let k ≡ k0 + ε for some small ε 6= 0. Notice we can decompose

g(kS) as

g(kS) = g[(k0 + ε)S] = [(k0 + ε)S]2 exp{−[(k0 + ε)S]2}

= g(k0S) exp{−2k0εS
2 − (εS)2}+ (2k0εS

2) exp{−[(k0 + ε)S]2}

+ g(εS) exp{−(k0S)2} exp{−2k0εS
2}.

(25)

Consider the above decomposition as it relates to E[Ug(kS)]. First, since E[Ug(k0S)] = 0, we

will have E[Ug(k0S) exp{−2k0εS
2−(εS)2}] = 0. Second, consider E[U(2k0εS

2) exp{−[(k0 +

ε)S]2}]. In a neighborhood of ε = 0 we will have (2k0εS
2) exp{−[(k0+ε)S]2} 6= 0 since k0 6= 0

and S 6= 0. Because of this, the behavior of this second component around zero then will

depend on value of U . Third, and finally, since

P(E[U exp{−(k0S)2} exp{−2k0εS
2}|S] = 0) = P(E[U |S] = 0) < 1
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if we replace U by U exp{−(k0S)2} exp{−2k0εS
2} in (24) we see as → 0 that

E[U exp{−(k0S)2} exp{−2k0εS
2}g(εS)] 6= 0 (26)

in a neighborhood of ε = 0. Therefore while the first part of the decomposition of E[Ug(kS)]

is zero and the second is undetermined, by the third part we know E[Ug(kS)] 6= 0 in a

neighborhood k = k0.

Recall S = {k ∈ K : E[Ugk(S)] = 0}. The above result implies infk∈S,k 6=k0 |k − k0| > 0

if k0 ∈ S and hence that S is countable. Since a countable set has Lebesgue measure zero

the result follows.

Proof of Theorem 3. The proof of Theorem 3 follows by a series of lemmas. First define

Zn(k) =
√
n[Qn,k(θ0)− (θ̂n,k∗ − θ0)>∇θQn,k(θ0)]. (27)

Lemma 2. Under Ω0 and Assumption A we have that for any k1, k2 ∈ K, (Zn(k1), Zn(k2))

converges to a multivariate normal with covariance Γ where the elements of Γ have the form

Γ(k1, k2) given in the proof below.

Proof. Since

Zn(k) =
√
n[Qn,k(θ0)− (θ̂n,k∗ − θ0)>∇θQn,k(θ0)]

we have

Γ(k1, k2) = cov[Qn,k1 , Qn,k2 ]

+ cov[(θ̂n,k∗ − θ0)>∇θQn,k1 , (θ̂n,k∗ − θ0)>∇θQn,k2 ]

− cov[(θ̂n,k∗ − θ0)>∇θQn,k1 , Qn,k2 ]

− cov[Qn,k1 , (θ̂n,k∗ − θ0)>∇θQn,k2 ].

(28)

(Where the dependence on θ0 has been suppressed above.)
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Consider first cov[Qn,k1 , Qn,k2 ]. Notice for any k ∈ K we have

Qn,k =

∫
[{cn(u)− c0(u, θ)}+ {sn(u)− s0(u, θ)}]gk(u)du

=
1

n

n∑
j=1

∫
[cos(xju)− c0(u, θ) + sin(xju)− s0(u, θ)]gk(u)du.

(29)

From (29) we can see

cov[Qn,k1 , Qn,k2 ] =

∫ ∫
{cov[cos(xu), cos(xv)]

+ 2cov[cos(xu), sin(xv)] + cov[sin(xu), sin(xv)]}gk1(u)gk2(v)dudv.

(30)

Next, consider cov[(θ̂n,k∗ − θ0)>∇θQn,k1 , (θ̂n,k∗ − θ0)>∇θQn,k2 ]. Define

In,k(θ) ≡
∫
|φ̂n(u)− φ0(u, θ)|2gk(u)du (31)

and let d = dim(θ). Then for any k ∈ K we have

(θ̂n,k∗ − θ0)>∇θQn,k =

d∑
i=1

(θ̂in,k∗ − θi0)∇θiQn,k (32)

where θi is the i-th element of θ. Since θ̂in,k∗ − θi0 = −[∇θiθ′iIn,k∗ ]−1[∇θiIn,k∗ ] we see

cov[θ̂in,k∗ − θi0, θ̂in,k∗ − θi0] = (Λiik∗)
−1Σijk∗(Λ

jj
k∗)
−1 where E[∇θθ′In,k] ≡ Λk,

Σk =

∫ ∫
{cov[cos(xu), cos(xv)]∇θc0(u)∇θc0(v)

+ 2cov[cos(xu), sin(xv)]∇θc0(u)∇θs0(v)

+ cov[sin(xu), sin(xv)]∇θs0(u)∇θs0(v)}gk(u)gk(v)dudv,

(33)

and Λiik∗ is the ii-th element of Λ and Σjjk∗ is the ij-th element of Σk∗ .

This implies

cov[(θ̂n,k∗ − θ0)>∇θQn,k1 , (θ̂n,k∗ − θ0)>∇θQn,k2 ]

=

d∑
i=1

d∑
j=1

aik1a
j
k2

(Λiik∗)
−1Σijk∗(Λ

jj
k∗)
−1

(34)
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where ak ≡ E[∇θQn,k] and aik is the i-th element of ak.

Now consider cov[(θ̂n,k∗ − θ0)>∇θQn,k1 , Qn,k2 ]. Notice,

cov[(θ̂n,k∗ − θ0)>∇θQn,k1 , Qn,k2 ] =

d∑
i=1

cov[(θ̂i∗n,k∗ − θi0)∇θiQn,k1 , Qn,k2 ]

=

d∑
i=1

aik1cov[θ̂in,k∗ − θi0, Qn,k2 ]

=

d∑
i=1

−aik1(Λiik∗)
−1cov[∇θiIn,k∗ , Qn,k2 ].

Since,

∇θiIn,k∗ = −2
1

n

n∑
j=1

∫
[{cos(xju)− c0(u)}∇θic0(u)

+ {sin(xju)− s0(u)}∇θis0(u)]gk∗(u)du

we see

cov[∇θiIn,k∗ , Qn,k2 ] = −2

∫ ∫
[cov{cos(xu), cos(xv)}∇θic0(u)

+ cov{cos(xu), sin(xv)}∇θic0(u)

+ cov{sin(xu), cos(xv)}∇θis0(u)

+ cov{sin(xu), sin(xv)}∇θis0(u)]gk∗(u)gk2(v)dudv.

By a similar argument we see

cov[Qn,k1 , (θ̂n,k∗ − θ0)>∇θQn,k2 ] =

d∑
i=1

−cov[Qn,k1 ,∇θi∗In,k∗ ]aik2(Λiik∗)
−1

and

cov[Qn,k1 ,∇θiIn,k∗ ] = −2

∫ ∫
[cov{cos(xu), cos(xv)}∇θic0(v)

+ cov{cos(xu), sin(xv)}∇θic0(v)

+ cov{sin(xu), cos(xv)}∇θis0(v)

+ cov{sin(xu), sin(xv)}∇θis0(v)]gk1(u)gk∗(v)dudv.
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Lemma 3. Given Assumption (A) and under Ω0 we have

sup
k∈K
|
√
nQn,k(θ̂n,k∗)− Zn(k)| p→ 0.

Proof. By the mean value theorem we can write

√
nQn,k(θ̂n,k∗) =

√
nQn,k(θ0) +

√
n(θ̂n,k∗ − θ0)>∇θQn,k(θ̄). (35)

Where

∇θQn,k(θ) = −
∫

[∇θc0(u, θ) +∇θs0(u, θ)]gk(u)du ≡ ak(θ) (36)

and θ̄ ∈ Nδ(θ0) where δ = |θ̂n,k∗ − θ0|. Notice ak(θ) does not depend on n, so that

∇θQn,k(θ̄)
p→ ak(θ0) ≡ ak. Further, the uniform convergence of θ̂n,k∗ to θ0 implies

sup
k∈K
|∇θQn,k(θ̄)− ak|

p→ 0. (37)

By a central limit theorem we see that
√
n(θ̂n,k∗ − θ0) converges uniformly to a mean zero

random variable with variance-covariance matrix Λ−1
k∗ (θ0)>Σk∗(θ0)Λ−1

k∗ (θ0). (The definitions

of Λk(θ) and Σ(θ) can be found in Lemma 1) Also notice,

√
nQn,k(θ0) =

1√
n

n∑
j=1

∫
[cos(xju)− c0(θ0, u)

+ sin(xju)− s0(θ0, u)]gk(u)du.

(38)

Since the sine and cosine functions are bounded and the characteristic function of any

random variable is bounded we know by a central limit theorem that
√
nQn,k(θ0) converges

uniformly to a mean zero normal random variable with variance equal to

Vk ≡
∫ ∫

(cov[cos(xu), cos(xv)] + 2cov[cos(xu), sin(xv)

+ cov[sin(xu), sin(xv)])gk(u)gk(v)dudv.

(39)
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Combining the above results the lemma follows.

The next lemma shows that the process Zn(k) is tight in C(K)

Lemma 4. Given Assumption (A) and under Ω0, Zn is tight.

Proof. Following Theorem 8.1 in Billingsley (1968) it suffices to prove two conditions:

(C.1) for each δ > 0 and an arbitrary k0 ∈ K, there exists an ε > 0 such that

supn P(|Zn(k0)| > ε) ≤ δ; and,

(C.2) for each δ > 0 and ε > 0, there exists an ξ > 0 such that

sup
n

P

(
sup

|k1−k2|<ξ
|Zn(k1)− Zn(k2)| ≥ ε

)
≤ δ.

Condition (C.1) follows from the fact that Zn(k0)
d→ N(0,Γ) (cf., Lemma 2).

To prove condition (C.2) first observe

|Zn(k1)− Zn(k2)| ≤ |
√
nQn,k1(θ0)−

√
nQn,k2(θ0)| +

|
√
n(θ̂n,k∗ − θ0)>∇θQn,k1(θ0)−

√
n(θ̂n,k∗ − θ0)>∇θQn,k2(θ0)|.

(40)

Since
√
nQn,k1(θ0)−

√
nQn,k2(θ0) =

1

n

n∑
j=1

∫
[cos(xju)− c0(θ0, u)

+ sin(xju)− s0(θ0, u)][gk1(u)− gk2(u)]du,

(41)

and the sine function, the cosine function, and any characteristic function is bounded in

[−1, 1], in order to bound |
√
nQn,k1(θ0)−

√
nQn,k2(θ0)| we need to bound |gk1(u)− gk2(u)|.

Since |gk1(u)− gk2(u)| ≤ |gk1(u)|+ |gk2(u)| it suffices to prove gk(u) is bounded for any

k ∈ K. Recall gk(u) = (ku)2 exp{−(ku)2}. A quick inspection of this function reveals it

to lie on [0, e−1] for any ku ∈ R. Given u ∈ R and k ∈ K ⊂ R we can conclude gk(u) is

bounded for any u or k.

Since
√
n(θ̂n,k − θ0) converges uniformly for any k ∈ K, we know for some η > 0 and

some Nk∗(η) that for any n > Nk∗(η) we will have |
√
n(θ̂n,k∗ − θ0)| < η. This implies for
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n > Nk∗(η) that

|
√
n(θ̂n,k∗ − θ0)>∇θQn,k1(θ0)−

√
n(θ̂n,k∗ − θ0)>∇θQn,k2(θ0)|

< |
√
n(θ̂n,k∗ − θ0)>∇θQn,k1(θ0)|+ |

√
n(θ̂n,k∗ − θ0)>∇θQn,k2(θ0)|

≤ |η| (|∇θQn,k1(θ0)|+ |∇θQn,k2(θ0)|) .

(42)

Recall for k = {k1, k2} that

∇θQn,k(θ0) = −
∫

[∇θc0(u, θ0) +∇θs0(u, θ0)]gk(u)du.

Since c0(u, θ0) and s0(u, θ0) are the real and imaginary parts of the tempered stable char-

acteristic function respectively, and the tempered stable characteristic function is uniformly

continuous, the derivatives ∇θc0(u, θ0) and ∇θs0(u, θ0) must be bounded. Given this fact,

and the result shown earlier that gk(u) is bounded, we can conclude (42) is bounded.

By bounding the terms in (42) and (41) condition (C.2) follows.

By an application of Lemma 2 and Lemma 3 it follows that for an arbitrary set {k1, . . . , kq}

in K that the vector (Zn(k1), . . . ,Zn(kq)) converges in distribution to (Z(k1), . . . , Z(kq)).

Together with Lemma 4 this implies Zn converges weakly in K to the process Z (cf., Billings-

ley, 1968, p. 47). Since |.| and supk∈K(.) are continuous mappings from C(K) to C(K) the

proof follows by Lemma 2 and Theorem 5.1 in Billingsley (1968).
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