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Abstract

We address the issue of parameter dimensionality reduction in Vector Autoregressive

models (VARs) for many variables by imposing specific reduced rank restrictions on

the coeffi cient matrices that simplify the VARs into Multivariate Autoregressive Index

(MAI) models. We derive the Wold representation implied by the MAIs and show that

it is closely related to that associated with dynamic factor models. Next, we describe

classical and Bayesian estimation of large MAIs, and discuss methods for the rank

determination. Then, the theoretical analysis is extended to the case of general rank

restrictions on the VAR coeffi cients. Finally, the performance of the MAIs is compared

with that of large Bayesian VARs in the context of Monte Carlo simulations and two

empirical applications, on on the transmission mechanism of monetary policy and the

propagation of demand, supply and financial shocks..
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1 Introduction

The recent theoretical and applied econometric literature has paid substantial attention to

modelling in the presence of datasets with a large cross-sectional and temporal dimensions.

The two main approaches are factor models and Vector Autoregressive models (VARs). Both

approaches started in a small dataset context, and typically relied on Bayesian methods

to overcome the curse of dimensionality problem (Geweke (1977), Doan et al. (1984)).

However, classical methods quickly replaced the Bayesian ones, see e.g. Stock and Watson

(1989) in the factor context and the large literature on VARs, see e.g. Lutkepohl (2007).

Classical methods were also used in the early large datasets developments of factor

techniques, often combined with non-parametric procedures for factor estimation, see e.g.

Stock and Watson (2002a, 2002b), Forni et al. (2000). Parametric and sometimes Bayesian

approaches emerged later, in the structural factor augmented VAR (FAVAR) literature, e.g.

Bernanke et al. (2005), Kose et al. (2005), Del Negro and Otrok (2008), Baumeister and

Mumtaz (2010), Eickmeier, Lemke, Marcellino (2014).

More recently, large Bayesian VARs (BVARs) were proposed as an alternative modelling

device to factor models, e.g. De Mol, Giannone and Reichlin (2006) and Banbura, Giannone,

Reichlin (2010). Large classical VARs are not feasible, unless constraints are imposed in

order to substantially reduce the number of free parameters, see e.g., Carriero, Kapetanios

and Marcellino (2011)).

Both FAVARs and BVARs have pros and cons. The FAVARs nicely capture the idea of

few key shocks or variables as drivers of the entire economy. However, they often rely on

a two-step approach (estimate factors, then treat them as known in subsequent analyses),

though full Kalman filter based estimation has been also developed, see e.g. Doz, Giannone

and Reichlin (2011)). In both cases, the number of variables, N , must diverge in order to

get consistent factor estimators, and the speed of divergence must be faster than that of

the temporal dimension, T , in order to avoid generated regressors problems in subsequent

analyses, see e.g. Bai and Ng (2006a).

Moreover, it is unclear why the factors are modelled as a VAR in FAVARs, in particular

when they are estimated as the static or dynamic principal components of the variables,

e.g., Dufour and Stevanovic (2010) demonstrate that a VARMA representation is more

appropriate, though more complex (see also Lutkepohl (1984)). Furthermore, structural

identification in factor models is in principle rather easy but in practice often complex,

so that few empirical applications have been produced (e.g., Forni and Gambetti (2010)).

In addition, testing hypotheses on the factors, e.g. whether they are equal to specific

macroeconomic or financial variables, is quite complex, see Bai and Ng (2006b).

The BVARs are overall easier to handle than FAVARs in terms of (Bayesian) estimation
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and inference. However, estimation remains computationally demanding due to the curse

of dimensionality, and the fact of having one shock for each variable, each of them equally

important, is not so attractive from an economic point of view.

In this paper, we suggest to use a model that bridges BVARs and FAVARs. Specifically,

we propose to impose reduced rank restrictions on the parameter matrices of a BVAR that,

as we will see, makes it similar to a factor model in terms of having a smaller set of key

shocks or variables, but preserves the attractive features of a BVAR, substantially reducing

its parameter dimensionality. The resulting specification is a Multivariate Autoregressive

Index (MAI) model, originally introduced by Reinsel (1983) within a classical context.

From a theoretical point of view, we build on Reinsel (1983) and extend his work in

four directions. First, we derive asymptotic results for classical estimation of MAI models

for large N . Second, we provide conditional posterior distributions and an effi cient MCMC

algorithm for Bayesian estimation of large MAI models. Third, we introduce a moving

average representation of the MAI model that is particularly useful for identifying structural

shocks and their dynamic propagation. Finally, we extend the theoretical analysis to general

reduced rank VAR models, finding however a substantial increase in computational costs,

which makes them less attactive than MAI for economic applications based on large datasets.

From an applied perspective, we assess the relative perfomance of large MAI and BVAR

models both in extensive simulation experiments and in two empirical applications.

The paper is structured as follows. In Section 2 we introduce the MAI model, where each

variable is driven by a limited number of specific linear combinations of the other variables,

say r, with r much smaller than N . Since these combinations are the counterpart of the

factors in the factor literature, we also refer to them as "factors". We also show that these

factors admit an exact VAR representation, whose coeffi cients can be analytically derived

from those of the MAI. We then derive alternative moving average representations of the

MAI, where each variable is driven either by the N original MAI errors, or by the r errors in

the VAR for the factors (common to all variables) plus N −r other errors, orthogonal to the
factor errors. The former representation is similar to the one used in the BVAR literature,

the latter to the one used in the FAVAR literature. We do not prefer either representation,

we suggest to use the one that is more suited to address the specific empirical problem under

analysis.

In Section 3 we introduce classical and Bayesian estimation methods for the MAI. Re-

duced rank regressions have been introduced by Anderson (1951), and the specific case of

reduced rank autoregressions and MAI models has been studied in detail by Reinsel (1983)

(see also Velu, Reinsel and Wichern (1986) and Reinsel and Velu (1998)). As mentioned,

we show that this technique can be also implemented when N diverges, under some reg-

ularity conditions. In the Bayesian context, we derive the conditional distributions of the
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parameters under standard assumptions on the priors, and provide a new MCMC algorithm

to handle the model non-linearity in the coeffi cients.

In Section 4 we discuss classical and Bayesian methods for the determination of the

rank, r, of the MAI. In a classical context, rank determination can be determined either by

information criteria or by sequential testing methods. We briefly review them and discuss

their applicability in a large N context. In a Bayesian framework, we propose to select the

rank associated with the highest data density, which also corresponds to the maximum of

the posterior density of r, assuming a flat prior. We suggest to approximate the marginal

data density numerically by using Rao-Backwellisation combined with the harmonic mean

estimator proposed by Gelfand and Dey (1994) and Geweke’s (1999).

In Section 5 we discuss a more general reduced rank VAR model, which nests the MAI

as a special case, as well as the relationship of the MAI model with the reduced rank

multivariate regression studied in a Bayesian setting by Geweke (1996).

In Section 6 we perform a set of Monte Carlo exercises, which show that the MAI

estimated with Bayesian methods systematically outperforms the classical MAI, as well as

an unrestricted BVAR when the data generating process contains rank reduction in the

conditional mean parameters.

In Section 7 we illustrate the theoretical proposals by means of two empirical applica-

tions. First, we replicate in the MAI context the BVAR analysis of the transmission of

US monetary policy shocks conducted by Banbura, Giannone and Reichlin (2010), using an

updated dataset. We use the N -shock MA representation of the MAI and obtain responses

that are economic sensible and sometimes different from those resulting from the full rank

BVAR approach of Banbura et al. (2010). We also show that the Bayesian procedure pro-

duces more reasonable impulse responses than the classical ones, and reduces estimation

uncertainty. Second, we assess the effects of demand, supply, and financial / monetary

shocks. In this case we use the FAVAR-style MA representation of the MAI and assume

that the factors reflect movements in real, financial, and price variables, where the shocks

associated with these factors are interpreted as, respectively, demand, financial / monetary

and supply shocks. Again, the resulting responses are very sensible from an economic point

of view. In addition, the responses to the monetary shock resulting from the two exercises

are similar.

Finally, in Section 8 we summarize the main results of the paper and propose directions

for additional research in this area.
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2 MAI Model Specification and Moving Average Represen-

tations

2.1 The MAI-model

We assume that the N -dimensional zero mean weakly stationary process Yt = (y1,t, ..., yN,t)
′

admits the representation:

Yt = Φ(L)Yt + εt, (1)

where t = 1, ..., T , Φ(L) = Φ1L + .... + ΦpL
p is a polynomial of order p, and εt are i.i.d.

N(0,Σ).

Following Reinsel (1983), we further assume that Φ(L) can be factorized as Φ(L) =

A(L)B0, where A(L) = A1L+ ....+ApL
p, each matrix Au is of dimension N×r, u = 1, ..., p,

and B0 is of dimension r ×N and full row rank. The resulting model, labeled Multivariate

Autoregressive Index (MAI) model by Reinsel (1983), is:1

Yt =

p∑
u=1

AuB0Yt−u + εt. (2)

If r is much smaller than N there are much fewer parameters in the MAI model in (2) than

in the corresponding unrestricted VAR in (1). For example, in our empirical application,

we have T = 360, N = 20, p = 13 and r = 3, so that there are N(Np − r(p + 1)) = 4360

parameters less in the MAI in (2) than in the corresponding unrestricted VAR in (1). The

total number of parameters in (1) and (2) is, respectively, N2p = 5200 and Nr(p + 1) =

20 · 3 · 14 = 840.

From an economic point of view, the MAI model in (2) implies that all the variables are

driven by a (possibly much) smaller number of indicators, the r variables B0Yt−u, which

can be labeled as "indexes" (as in Reinsel, 1983) or as "factors", as in the factor literature.

We prefer the latter denomination and therefore define the factors Ft as:

Ft = B0Yt. (3)

Using (3), it is straightforward to rewrite the MAI in (2) as:

Yt =

p∑
u=1

AuFt−u + εt = A(L)Ft + εt. (4)

1More general reduced rank models are considered in Section 5. Error correction models for cointegrated
variables are also a special class of reduced rank models, see e.g. Johansen (1995 and Koop et al. (2006) in,
respectively, classical and Bayesian contexts. See also George et al. (2005) for a Bayesian stochastic search
approach to selecting restrictions for VAR models.
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As in the case of the factor model, the "loadings" Au and the factor weights B0 are not

uniquely identified in a MAI model. Without any loss of generality, we assume that B0 =

(Ir, B̃0). We will come back to the relationship between MAI and factor models in the last

subsection.

An important characteristic of the MAI model is that the linear combinations B0Yt in (3)

have a closed form V AR(p) representation, while in general when Yt follows an unrestricted

V AR linear combinations of Yt are complicated V ARMA processes, see e.g. Lutkepohl

(2007). To see this, it is suffi cient to pre-multiply by B0 both sides of equation (2) and use

(3) to get:

Ft = B0

p∑
u=1

AuFt−u +B0εt = C(L)Ft + ut, (5)

with C(L) = B0A(L) = B0A1L+B0A2L
2 + ....+B0ApL

p and with ut = B0εt being an i.i.d.

Gaussian process with mean zero and variance Ω = B0ΣB′0.

2.2 Moving average representations

In order to use the MAI model for structural impulse response analysis, we need to derive

its moving average (MA) representation. We consider three alternative representations.

Inverting equation (2), under the weak stationarity assumption, provides a first moving

average representation:

Yt = (I −A(L)B0)−1εt. (6)

From this expression it is easy to derive optimal forecasts and impulse response functions

by using standard techniques, see e.g. Lutkepohl (1990, 2007).

A second moving average representation is:

Yt = (A(L)(I −B0A(L))−1B0 + I)εt. (7)

This expression is obtained by first deriving the moving average representation for Ft from

equation (5):

Ft = (I − C(L))−1ut = (I −B0A(L))−1B0εt, (8)

and then inserting it into equation (4). The two alternative moving average representations
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for Yt in (6) and (7) are of course equivalent:2

(I −A(L)B0)−1 = A(L)(I −B0A(L))−1B0 + I. (9)

A third moving average representation is particularly convenient for structural analysis.

Let us introduce the (N − r) × N full row rank matrix B0⊥ that is orthogonal to B0, i.e.

B0B
′
0⊥ = 0, such that the rank of (B′0, B

′
0⊥) is N . Note that B0B

′
0 and B0ΣB′0 have full

rank (as we assumed B0 has full row rank) and we have the following decomposition (see

Johansen 1995, p.39, and Centoni and Cubadda 2003, p.48):3

ΣB′0(B0ΣB′0)−1B0 +B′0⊥(B0⊥Σ−1B′0⊥)−1B0⊥Σ−1 = IN . (10)

This key identity can now be inserted into the Wold representation in (7) to yield:

Yt = (ΣB′0(B0ΣB′0)−1 +A(L)(I −B0A(L))−1)B0εt +B′0⊥(B0⊥Σ−1B′0⊥)−1B0⊥Σ−1εt. (11)

Since B0εt = ut, Ω = B0ΣB′0, and defining B0⊥Σ−1εt = ξt, we have:

Yt = (ΣB′0Ω−1 +A(L)(I −B0A(L))−1)ut +B′0⊥(B0⊥Σ−1B′0⊥)−1ξt. (12)

The representation in (12) shows that each element of Yt is driven by a set of r common

errors, the ut that are the drivers of the factors Ft, and by linear combinations of ξt. Since

E(utξ
′
t) = E(B0εtε

′
tΣ
−1B

′
0⊥) = 0, (13)

E(ut−iξ
′
t) = 0, E(utξ

′
t−i) = 0, i > 0, (14)

ut and ξt are uncorrelated at all leads and lags.

The recovery of the structural shocks vt driving Ft starting from the reduced form errors

ut can be achieved using any technique adopted in the structural VAR and structural FAVAR

literatures, see e.g. Bernanke et al. (2005) or Eickmeier et al. (2014). For example, the

simplest option is the Cholesky decomposition

vt = Put, (15)

2To derive this result note that A(L)−1 = B0 + (I −B0A(L))A(L)−1, and premultiply both sides of this
equation by (I − B0A(L))−1 to obtain (I − B0A(L))−1A(L)−1 = (I − B0A(L))−1B0 + A(L)−1. The term
on the LHS (I − B0A(L))−1A(L)−1 can be rewritten as [A(L)(I −B0A(L))]−1 = [(I −A(L)B0)A(L)]−1 =
A(L)−1(I −A(L)B0)−1, therefore we have that

A(L)−1(I −A(L)B0)−1 = (I −B0A(L))−1B0 +A(L)−1,

and (9) is obtained by multiplying both sides of the equation above by A(L).
3We are grateful to an anonymous Referee for pointing out the decomposition in (10)
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where P is a lower triangular matrix such that Ω = P−1P−1′ , which implies that vt are

structural shocks with V ar(vt) = PΩP ′ = I. Hence, Combining (15) with (12) yields

Yt = (ΣB′0Ω−1 +A(L)(I −B0A(L))−1)P−1vt +B′0⊥(B0⊥Σ−1B′0⊥)−1ξt, (16)

from which impulse response functions can be easily computed.

Note that, since ut = B0εt, the structural shocks vt are also related to the εt errors in

the Wold representations in (6) or (7), via the relationship vt = PB0εt. However, from

a structural point of view, there is an important difference between the representations in

(6) or (7) and that in (12). In the former case there can be as many structural shocks

as variables, namely N , while in (12) we are explicitly assuming that there is a reduced

number of structural shocks, r, which drive all the factors Ft. In principle, there could be

other N − r structural shocks that drive the (N − r) errors ξt in (12), but in practice these
are never considered in the factor literature.4

2.3 Relationship with factor models

The MAI model is clearly similar to the generalized dynamic factor model of Stock and

Watson (2002a, 2002b) and Forni et al. (2000), and even more to the parametric versions of

these models later adopted in the structural factor augmented VAR (FAVAR) literature, e.g.

Bernanke et al. (2005) and Doz et al. (2011). The similarities increase when the unobserv-

able factors are estimated by static principal components, since in this case the estimated

factors end up being linear combinations of the variables, exactly like the elements of Ft.

Moreover, the "common component" of the MAI model, (ΣB′0Ω−1 +A(L)(I−B0A(L))−1)ut

in (12), is uncorrelated at all leads and lags with the error terms B′0⊥(B0⊥Σ−1B′0⊥)−1ξt.

However, there are also important differences between MAI and factor models. In partic-

ular, in the MAI model only lags of the "factors" Ft affect the variables while in factor models

there can be contemporaneous effects as well. Moreover, the errors B′0⊥(B0⊥Σ−1B′0⊥)−1ξt

in (12) can be in general correlated among themselves, while in factor models they must

4There is a case where shocking the factors or shocking the variables produces the same responses and
this happens when the factors are equal to a subset of the variables and we shock one of the variables in this
subset. Formally, suppose that B̃0 = 0 in B0 = (Ir, B̃0), so that B0⊥ = (0, IN−r), and split Yt into the first
r variables Y1t = Ft and the remaining N − r variables Y2t. Similarly, εt is split into ε1t and ε2t, where ε1t
and ε2t are orthogonal. Then, the model for the factors becomes

Y1t = C(L)Y1t + ut = C1Y1t−1 + C2Y1t−2 + ...+ CpY1t−p + ε1t, (17)

which also coincides with the first r equations (those for Y1t) in the model for Yt:

Yt =

(
Y1t

Y2t

)
= A(L)Y1t + εt = A1Y1t−1 +A2Y1t−2 + ...+ApY1t−p + εt, (18)

and in addition ε1t and ε2t are orthogonal. Hence, in this specific case, identifying the shocks in the model
for the factors or in the full system for the variables is equivalent.
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be assumed to be either uncorrelated (exact factor models) or at most admit some limited

dependence (approximate factor models) to make sure that the idiosyncratic component is

not confounded with the common part. This separation between common and idiosyncratic

components also requires conditions on the loadings, ensuring that the factors affect almost

all variables (see e.g. Stock and Watson (2002a, 2002b)).

Importantly, in the factor literature the factors are unobservable and can be consistently

estimated only when N diverges. As we will see in the next section, within a MAI context it

is possible to consistently estimate the factors Ft even when N is finite (and without having

to impose conditions on the loadings or the error terms). Furthermore, testing specific

hypotheses on the factors Ft, such as equality of a factor to a specific economic variable, is

much simpler in the MAI context (by imposing restrictions on B0) than in a factor context

(see Bai and Ng (2006b)). Finally, in general, factors estimated by principal components

do not admit an exact VAR representation (see Dufour and Stevanovic (2010), while as is

clear from equation (5) this is the case within the MAI model.

Overall, with respect to the factor approach, the MAI model seems to provide an easier,

less constrained and theoretically more consistent framework for parametric modelling of

large datasets.

3 Estimation

For estimation it is convenient to compactly rewrite (2) as:

Yt = AZt−1 + εt, (19)

where Z ′t−1 = (F ′t−1..., F
′
t−p) = (Y

′
t−1B

′
0, ..., Y

′
t−pB

′
0) = (Y

′
t−1,..., Y

′
t−p)(Ip ⊗ B

′
0) and is a

1 × rp vector, and where A = (A1, ..., Ap) is a N × rp matrix. As for all js, AjB0 =

AjQ
−1QB0 for any nonsingular matrixQ, we add the identification restrictionB0 = (Ir, B̃0).

Defining Y = (Y1, ..., YT )′ and Z = (Z0, Z1, ..., ZT−1)′ and E = (ε1, ..., εT )′, stacking the

equations in (19) for t = 1, ..., T we have

Y = ZA′ + E, (20)

where V ar(E) = (IT ⊗ Σ).

3.1 Estimation via Maximum Likelihood

Reinsel (1983) studied estimation of the model in (19) via Maximum Likelihood (ML). In

particular, he showed that ML estimates can be obtained by iterating over the first order
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conditions on the maximization problem. The likelihood function is:

−0.5T log |Σ| − 0.5ΣT
t=1(Yt −AZt−1)′Σ−1(Yt −AZt−1). (21)

For any A and B̃0 the maximization with respect to Σ yields:

Σ̂ = (Y − ZA′)′(Y − ZA′)/T. (22)

The partial derivatives with respect to A (given B̃0 and Σ) can be obtained by noting that:

AZt−1 = vec(Z ′t−1A
′) = (IN ⊗ Z ′t−1)vec(A′) (23)

and the corresponding first order conditions are given by:

∂l

∂vec(A′)
= ΣT

t=1(IN ⊗ Zt−1)′Σ−1(IN ⊗ Zt−1) = 0. (24)

The partial derivatives with respect to B̃0 (given A and Σ) can be obtained by noting that:

AZt−1 = Σp
t=1AjY1,t−j + Σp

t=1(Aj ⊗ Y ′2,t−1)vec(B̃0), (25)

where Y
′

2,t comes from partitioning Y
′
t in the first r and last N − r components: Y

′
t =

(Y
′

1,t, Y
′

2,t). The corresponding first order conditions are given by:

∂l

∂vec(B̃0)
= ΣT

t=1Ut−1A
′Σ−1{Yt − (IN ⊗ Z ′t−1)α} = 0, (26)

where Ut−1 = (Ir ⊗ Y2,t−1, ..., Ir ⊗ Y2,t−p).

Reinsel (1983) suggested to solve in turn equations (22), (24) and (26) until convergence

is achieved, and established consistency and asymptotic normality of this estimator for fixed

N . Of course these consistency and asymptotic normality results can be coupled with the

standard impulse response analysis for finite dimensional VAR models to produce standard

errors for such impulse responses (see, e.g., Section 3.7 of Lutkepohl (2007)). Also, specific

hypotheses on the parameters, and in particular on B0, can be tested using likelihood ratio

statistics.

Reinsel’s proof of the consistency of the MLE estimator (Reinsel (1983), pp. 148-149) is

for a finite number of variables, and we now want to extend it to the case where N possibly

diverges. This is undertaken in the Appendix A. In particular, Assumption 3, of Appendix

A, for (2) implies Lemma 6 which in turn implies Theorems 2 and 3. In turn, these imply

the following Theorem, where ‖.‖F denotes the Frobenius norm of a matrix.
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Theorem 1 Let Assumption 3 hold for (2). Define θN0 = (vec(A)′, vec(B)′)′ to be the true

value of the parameters and θ̂n its MLE estimator. Then,

∥∥∥θ̂N − θN0

∥∥∥
F

= Op

(
N5/2

T 1/2

)
(27)

Our rate derivations require bounds that may not be as sharp as possible. Therefore,

we conjecture that a faster rate may, in fact, hold. However, given our Monte Carlo and

empirical results where large values of N seem to lead to a deteriorated performance, it

may be the case that this rate is close to the best possible. It is worth noting that similar

arguments can be used to prove the properties of MLE estimators of the more general models

of Section 5.

3.2 Priors and Estimation via Markov Chain Monte Carlo

In this Subsection we elicit the priors for the parameters of the MAI model in (19), de-

rive the conditional posterior distributions, and provide an MCMC algorithm for Bayesian

estimation.

3.2.1 Priors

The model (20) has three sets of parameters, contained respectively in the matrices A′, B̃0,

and Σ. We elicit a natural conjugate Normal-Inverse Wishart prior for A′ and Σ:

A′|Σ ∼ N(A0,Σ⊗ V0), Σ ∼ IW (S0, v0). (28)

This prior features a Kronecker structure that restricts somehow the way shrinkage can be

imposed, but ensures conjugacy and dramatically improves the computational time.

In our empirical application, the prior moments are set as follows. The prior mean of

the coeffi cients is set to A0 = 0 (a rp×N matrix of zeros). The prior variance V0 is set to

a diagonal rp× rp matrix:
V0 = τ · diag(V 1

0 , V
2

0 , ..., V
p

0 ), (29)

where each V k
0 for k = 1, ..., p is a r-dimensional vector with all the entries equal to 1/k2.

This choice for the variance matrix shrinks more towards the prior means the coeffi cients

attached to lags which are more far in time (at a quadratic decay), in line with the Minnesota

prior. The hyperparameter τ provides the overall shrinkage and it is chosen optimally by

maximizing the marginal data density of the model over a grid, more details can be found

below. The prior scale matrix S0 is set to a diagonal matrix with entries given by the sum

of squared residuals resulting from least squares estimation of simple AR(1) models for each
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of the N variables, based on a pre-sample of 84 observations. The priors degrees of freedom

are set to v0 = N + 2 to ensure that the prior on the error variance is as diffuse as possible

while remaining proper.5

We now consider the elicitation of priors on the matrix B̃0. This matrix contains the

weights that each variable has in the composition of each of the factors, for example the

element in row j and column i of B̃0 measures the weight variable i has in the composition of

factor j. To set the prior on B̃0 we use an auxiliary model estimated on a pre-sample. Using

a pre-sample of 84 observations we compute r factors using principal components.6 Then we

regress each of the factors for j = 1, ..., r onto each individual variable yit, i = 1, ..., N and we

use the resulting point estimate and standard deviation of the regression coeffi cient as prior

means and standard deviation for the element in row j and column i of B̃0. Table 6 contains

the prior mean and standard deviations resulting from this prior elicitation strategy. These

are the values used in our empirical application.

3.2.2 Posteriors and MCMC algorithm

The joint posterior distribution p(A′, B̃0,Σ|Y ) has not a known form, but it can be simu-

lated by using a Gibbs sampler drawing in turn from the conditional posterior distributions

p(A′,Σ|B̃0, Y ) and p(B̃0|A′,Σ, Y ).

Drawing from the conditional posterior p(A′,Σ|B̃0, Y ) is straightforward. Given knowl-

edge of B̃0 and Y , the variable Zt−1 is known, and (19) is a simple multivariate regression

model as the one described in Zellner (1973). Then, under the natural conjugate prior

described by (28), the conditional posterior distributions are:

A′|Σ, B̃0, Y ∼ N(Ā,Σ⊗ V̄ ), Σ|B̃0, Y ∼ IW (S̄, v̄), (30)

where:

V̄ = (V −1
0 + Z ′Z)−1 (31)

Ā = V̄ (V −1
0 A0 + Z ′ZÂ) (32)

S̄ = S0 + Y ′Y +A′0V
−1

0 A0 − Ā′V̄ −1Ā (33)

v̄ = v0 + T (34)

5Given that in the empirical application the ratio of number of observations T to number variables N
is quite large (about 460 to 20) it is possible to use such a diffuse prior for the error variance. However
for completeness we have also experimented with an informative version of the prior, setting v0 = 42 and
v0 = 84. Both of these setups produced similar posterior estimates for the VAR coeffi cients but a slightly
inferior mixing.

6The principal components estimates are appropriately rescaled in order to ensure the normalization and
identification restrictions B0 = (Ir, B̃0) are satisfied.
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and where Â are the Ordinary Least Squares estimates of the matrix A′. Draws from

p(A′,Σ|B̃0, Y ) can be easily obtained by generating a sequence of M draws {Σm}Mm=1 from

Σ|Y ∼ IW (S̄, v̄) and then for eachm drawing from A′|Σ, Y ∼ N(Ā,Σm⊗V̄ ), which provides

the sequence {A′m,Σm}Mm=1 .

Drawing from p(B̃0|A′,Σ, Y ) is less straightforward, as B0 contains restrictions and

enters the model in a nonlinear way. To draw B̃0 conditional on A′ and Σ we use a Random

Walk Metropolis step. To improve the mixing in performing this step we use multiple blocks,

and specifically we draw each element in the matrix B̃0 separately. Let B̃0ji denote the

element in row j and column i in the matrix B̃0, and let B̃0ji− denote the set of all the

remaining elements of B̃0. At iteration m, a candidate B̃∗0ji is drawn, conditional on A
′,Σ,

and the remaining elements B̃0ji− , using a random walk proposal:

B̃∗0ji = B̃m−1
0ji + cηt, (35)

where ηt is a standard Gaussian i.i.d. process and c is a scaling factor calibrated in order

to have a rejection rate of about 65%-70%.7 The candidate draw is then accepted with

probability

αk = min

{
1,

p(B̃∗0ji|B̃0ji− , A
′,Σ, Y )

p(B̃m−1
0ji |B̃0ji− , A

′,Σ, Y )

}
. (36)

If the draw is accepted then B̃m
0ji is set equal to the candidate B̃

∗
0ji, otherwise it is set equal

to the previous draw B̃m−1
0ji . The procedure is repeated for all the elements of B̃0, i.e. for

j = 1, ...r and i = 1, ..., N .

Drawing in turn from p(A′,Σ|B̃0, Y ) and p(B̃0|A′,Σ, Y ) provides a sequence ofM draws{
A′j ,Σj , B̃0

}M
m=1

from the joint posterior distribution of A′,Σ, B̃0. Each draw can be then

inserted into equation (16), which can be used to derive the impulse response functions for

any horizon.

Given that the parameters in A(L) and B0 interact nonlinearly, there is a potential

concern about convergence if elements in either A(L) or B0 get close to 0. This potential

problem is dramatically mitigated by the normalization choice we make for B0 (setting r

columns and rows to an identity matrix). In Appendix B we provide a series of convergence

checks on the draws of A(L), B0 and their product A(L)B0. The analysis provided in Ap-

pendix B shows that the algorithm has good convergence properties and it is not affected by

problems related to the nonlinearity. A more detailed discussion of the role of normalization

7To choose the scaling constant c, which is the standard deviation of the proposal density, we use the
standard deviation of the prior density for each individual coeffi cient. As described in Section 3.2.1 these
prior densities are obtained using auxiliary univariate AR models on a pre-sample of 84 observations. We
then set c to 4 times the prior standard deviation, as this multiple ensures the desired rejection rates for all
the coeffi cients.
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in reduced rank models can be found in Hamilton et al. (2007) and Kleibergen and van Dijk

(1994, 1998).

4 Determining the Rank

4.1 Classical approach

The matter of determining the rank of the coeffi cient matrix in reduced rank VAR models

has been analyzed extensively in the literature. A paper by Camba-Mendez, Kapetanios,

Smith and Weale (2003) discusses this problem in detail. There are two main approaches.

The first uses information criteria. This approach simply estimates (19) for all possible

values of r and chooses the one that minimizes an information criterion (IC) that uses the

fit of the model penalized by a penalty term that depends on the number of free parameters

associated with every possible value of r. Standard information criteria can be used such

as the Akaike IC or the Bayesian IC. An attractive feature of the use of ICs is that both r

and the number of lags can be jointly determined in a single search.

The second approach is based on sequential testing. Starting with the null hypothesis of

r = 1, a sequence of tests is performed. If the null hypothesis is rejected, r is augmented by

one and the test is repeated. When the null cannot be rejected, r is adopted as the estimate

of the rank of each matrix Ai in (19). Here, A must be estimated in an unrestricted way,

i.e. without imposing a given rank. Then, standard tests of rank can be used on estimates

of A. So this approach boils down to a repeated application of a test of rank. We review

two such tests.8

The first procedure, proposed by Cragg and Donald (1996), is based on the transfor-

mation of the matrix A using Gaussian elimination with complete pivoting9. Performing

r steps of Gaussian elimination with full pivoting on matrix A amounts to the following

operations:

Qr∗Rr∗Qr∗−1Rr∗−1 . . . Q1R1AC1 . . . Cr∗−1Cr∗ =


A11(r∗) A12(r∗)

0 A22(r∗)


where Ri and Ci are pivoting matrices for step i and Qi are Gauss transformation matrices.

The pivoting matrices used to perform the first r∗ steps of Gaussian elimination are applied
8A simple alternative to tests of rank maybe the use of a sequence of LR tests for the models with different

rank orders. However, tests of rank have well established asymptotic and finite properties in many contexts,
as detailed in Camba-Mendez and Kapetanios (2009), whereas the finite sample properties of the sequence
of LR tests is not known.

9The foundations behind this strategy follow the work of Gill and Lewbel (1992). The asymptotic dis-
tribution of the test suggested by Gill and Lewbel (1992) was incorrect, nonetheless, it provided researchers
with an ingenious strategy to test for the rank.
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to A to obtain the following relation

Rr∗Rr∗−1 . . . R1AC1...Cr∗−1Cr∗ = RAC = F =


F11(r∗) F12(r∗)

F21(r∗) F22(r∗)


where F is partitioned accordingly, i.e. F11(r∗) is of dimension r∗×r∗. Note that in this case
F11(r∗) has full rank, under the null hypothesis that ρ [A] = r∗. It then follows, (see Cragg

and Donald (1996)), that F22(r∗)− F21(r∗)F−1
11 (r∗)F12(r∗) = 0. The estimated counterpart

of the above relation, i.e. F̂22− F̂21F̂
−1
11 F̂12 = Λ̂22(r∗), may be used as a test statistic of the

hypothesis that the rank of A is r∗. Under regularity conditions, including the requirement

that
√
Tvec(Â − A)

d→ N(0, V ) where V has full rank, the following result can be shown,

under H0. √
Tvec(Λ̂22(r∗))

d→ N(0,ΓV Γ′)

where Γ = Φ2 ⊗ Φ1 and Φ1 =
[
−F 21F

−1
11 Im−r∗

]
R, Φ2 =

[
−F ′12F

−1′
11 In−r∗

]
C ′ and d→

denotes convergence in distribution. Then,

GE = Tvec Λ̂22(r∗)′(Γ̂V̂ Γ̂
′
)
−1
vec Λ̂22(r∗)

d→ χ2
(m−r∗)(n−r∗)

where Γ̂ and V̂ are the sample estimates of Γ and V and χ2
l denotes the χ

2 distribution

with l degrees of freedom.

The second testing procedure, suggested by Robin and Smith (2000), focuses on the

eigenvalues of quadratic forms of A. The quadratic form ΥAΠA′ where Υ and Π are

positive definite matrices, is considered. It follows that ρ [A] = ρ [ΥAΠA′] = r∗, and there-

fore this quadratic form has min(m,n) − r∗ zero eigenvalues. Additionally, the eigenvalues
of the estimator of the above quadratic form converge in probability to their population

counterparts. Robin and Smith (2000) consider the statistic

CRT = T

min(m,n)∑
i=r∗+1

λ̂i

where λ̂i are the eigenvalues of Υ̂ÂΠ̂Â′ in descending order, Υ̂ and Π̂ are estimates of Υ and

Π respectively. Under the null hypothesis, the above statistic converges in distribution to a

weighted sum of independent χ2
1 random variables. The weights are given by the eigenvalues

of (D′r∗⊗C ′r∗)V (Dr∗⊗Cr∗), τi, i = 1, . . . , (m−r∗)(n−r∗). Dr∗ and Cr∗ are n× (n−r∗) and
m× (m− r∗) matrices containing the eigenvectors corresponding to the n− r∗ and m− r∗

smallest eigenvalues of ΠA′ΥA and ΥAΠA′ respectively. The sample counterparts of the

above matrices may be obtained straightforwardly to estimate the asymptotic distribution
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of the test statistic. A few comments are in order for this test. Choices for Υ and Π are not

discussed in much detail by Robin and Smith (2000). This choice can depend crucially on

the application considered. An obvious choice that can be made irrespective of application

is to set both Υ and Π equal to the identity matrix. Robin and Smith (2000) also consider

another choice for their Monte Carlo but they do not elaborate on their motivation. Finally,

it is worth noting that Robin and Smith (2000) claim that a big advantage of their test is

that neither full nor known rank for V is needed or, therefore, assumed.

The above tests of rank and the theoretical results that justify them relate to the case

where N is finite. To the best of our knowledge, there are no extensions to the case where

N is large. However, we expect that for moderately large values of N they can provide a

useful guide for setting the value of r.

4.2 Bayesian approach

A natural way to choose the rank of the system is to compute the marginal data density

(MDD) as a function of the chosen r. Such density is given by:

pr(Y ) =

∫
p(Y |θ)p(θ)dθ, (37)

where θ = (A,Σ, B̃0) contains all the coeffi cients of the model. The optimal rank for the

system is associated with the model featuring the highest data density:

r∗ = arg max
r

pr(Y ). (38)

Even though the number of coeffi cients in the MAI model is large, the density pr(Y ) can

be effi ciently approximated numerically by using Rao-Backwellisation and the harmonic

mean estimator proposed by Gelfand and Dey (1994). In particular, we have that given M

simulated posterior draws {B̃0}Mm=1 :

p̂r(Y ) =

[
1

M

M∑
m=1

1

p(Y |B̃m
0 )p(B̃m

0 )
f(B̃m

0 )

]−1

, (39)

where f(·) is a truncated multivariate normal distribution calibrated using the moments of
the simulated posterior draws (see Geweke’s 1999). The term p(Y |B̃m

0 ) is the integrating

constant of the conditional posterior distribution p(A,Σ|Y, B̃0) and is available in closed

form, because conditional on B̃m
0 the model is a multivariate regression with a naturally
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conjugate prior:

p(Y |B̃m
0 ) = π

−TN
2 × |(I + ZmV0Z

.m′)−1|
N
2 × |S0|

v0
2 ×

ΓN (v0+T
2 )

ΓN (v0
2 )

(40)

× |S0 + (Y − ZmA′0)′(I + ZmV0Z
.m′)−1(Y − ZmA′0)|−

v̄
2 .

where ΓN (·) is denoting the N -variate gamma function and where the conditioning
on B̃m

0 is implicit in the conditioning on Zm = (Zm0 , Z
m
1 , ..., Z

m
T−1)′ because Zm′t−1 =

(Y
′
t−1,..., Y

′
t−p)(Ip ⊗ B̃m′

0 ). The result (40) for a general multivariate regression dates back

to Zellner (1971), and a straightforward derivation based on theorem A.19 in Bauwens,

Lubrano and Richard (1999) can be found in Carriero, Kapetanios, and Marcellino (2010).

The marginal data density (39) can also be used to select the optimal lag length p and

optimal shrinkage hyperparameter τ .

5 General Reduced Rank VAR and Multivariate Reduced

Rank Regression

The model we considered so far is a special case of a more general reduced rank specification,

which also nests the reduced rank models of, e.g., Anderson (1951) and Geweke (1996). In

this Section we discuss this more general model, as well as the relationship of the MAI model

with the model studied by Geweke (1996).

5.1 General reduced rank VAR

Let us again consider the VAR model in (1):

Yt = Φ(L)Yt + εt. (41)

As before, we assume that Φ(L) can be factorized as Φ(L) = A(L)B(L), where A(L) =

A1L + .... + Ap1L
p1 and each Au is of dimension N × r. However, we now assume a more

general specification for B(L), namely B(L) = B0 + B1L + .... + Bp2L
p2 where each Bv is

full rank of dimension r ×N . Furthermore we have p1 + p2 = p, p1 ≥ 1, p2 ≥ 0. This gives

the following more general reduced rank VAR specification:

Yt = A(L)B(L)Yt + εt =

p1∑
u=1

p2∑
v=0

AuBvYt−u−v + εt. (42)

In this more general model, the factors or indexes are the r-dimensional vectors of
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variables:

Ft = B(L)Yt = B0Yt +B1Yt−1 + ....+Bp2Yt−p2 . (43)

With respect to the MAI model considered so far, there is more flexibility in the specification

of the autoregressive matrices, which need not have all rank equal to r. For example, for

the case p1 = 2 and p2 = 1 it is

A(L)B(L) = (A1L+A2L
2)(B0 +B1L) = A1B0L+ (A1B1 +A2B0)L2 +A2B1L

3,

so that rank(A1B0) ≤ r, rank(A2B1) ≤ r but rank(A1B1 + A2B0) can be larger than r.

There is also more flexibility in the specification of the factors, compare (3) with (43). On

the other hand, the factors no longer follow a finite order VAR but rather a VARMA, as it

is:

Ft = B(L)A(L)Ft +B(L)εt. (44)

The moving average representation associated with (42) is

Yt = (I −A(L)B(L))−1εt, (45)

which is the counterpart of (6). The second moving average representation is:

Yt = (A(L)(I −B(L)A(L))−1B(L) + I)εt, (46)

which is the counterpart of (7) and is obtained by inserting the moving average representa-

tion for Ft, which is

Ft = (I −B(L)A(L))−1B(L)εt, (47)

into the equation for Yt in (42). For the extension of the third moving average representation

of the MAI model, we define

D(L) = (I −B(L)A(L))−1 (48)

so that we can compactly rewrite (46) and (47) as Yt = (A(L)D(L)B(L) + I)εt and Ft =

D(L)εt. Then, given the decomposition

D(L) = ((D
′
0D0)−1D

′
0 +D1(D

′
0D0)−1D

′
0L+D2(D

′
0D0)−1D

′
0L

2 + ...)D0 = D∗(L)D0, (49)

we can introduce the (N − r) × N full row rank matrix D0⊥ that is orthogonal to D0,

i.e. D0D
′
0⊥ = 0, such that the rank of (D′0, D

′
0⊥) is N . We then insert the following
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decomposition:

ΣD′0(D0ΣD′0)−1D0 +D′0⊥(D0⊥Σ−1D′0⊥)−1D0⊥Σ−1 = IN , (50)

into the Wold representation in (46) to yield:

Yt = (ΣD′0(D0ΣD′0)−1 +A(L)D∗(L))D0εt +D′0⊥(D0⊥Σ−1D′0⊥)−1D0⊥Σ−1εt. (51)

Defining D0εt = ut and D0⊥Σ−1εt = ξt, we have:

Yt = (ΣD′0(D0ΣD′0)−1 +A(L)D∗(L))ut +D′0⊥(D0⊥Σ−1D′0⊥)−1ξt, (52)

where, as in the MAI case, ut and ξt are uncorrelated at all leads and lags.

We should point out that the analytical derivation of D(L) is complex even in the

case where A(L) and B(L) are known, which, for structural analysis, gives a substantial

computational advantage to the MAI specification.

To conclude, we need to discuss estimation of the general reduced rank model in (42).

It is convenient to rewrite it as:

Yt = A1Zt−1 +A2Zt−2 + ...Ap1Zt−p1 + εt, (53)

where Z ′t−i = (F ′t−i + ...+ F
′
t−p2−i) = (Y

′
t−iB

′
0 + ...+ Y

′
t−p2−iB

′
p2,) = (Y

′
t−i,..., Y

′
t−p2−i)B is of

dimension 1× r, for i = 1, ..., p1 and where B = (B0, ..., Bp2,)
′ is of dimension Np2 × r. We

add the identification restrictions Bj = (Ir, B̃j), j = 0, ..., p2. Next, the system (53) can be

written more compactly as

Yt = AWt + εt, (54)

where A = (A1, ..., Ap1) is of dimension N×p1r andWt = (Z ′t−1, ..., Z
′
t−p1+1)′ is of dimension

p1r×1. Defining Y = (Y1, ..., YT )′ of dimension T×N ,W = (W0,W1, ...,WT−1)′ of dimension

T × p1r, and E = (ε1, ..., εT )′, stacking the equations in (54) for t = 1, ..., T we have

Y = WA′ + E, (55)

where V ar(E) = (IT ⊗ Σ).

As equations (54) and (55) are similar to (19) and (20), the same classical and Bayesian

estimation procedures described in Section 3 can be used, though the computational com-

plexity increases substantially, providing another reason for the use of the MAI specification.

We will see in the next subsection that a substantial simplification occurs for the case p1 = 1,

p2 = p− 1.

18



5.2 Multivariate reduced rank regression and relation with Geweke (1996)

In this section we focus on another special case of the general reduced rand VAR in (42),

which is obtained by setting p1 = 1, p2 = p− 1. Defining Xt = (Y
′
t−1,..., Y

′
t−p)

′, the resulting

model can be written as:

Yt
N×1

= A1
N×r

[B0, ..., Bp−1 ]
r×Np

Xt
Np×1

+ εt
N×1

, (56)

which is a multivariate reduced rank regression. This model was studied by Anderson (1951),

Velu et al. (1986) in a classical context and Geweke (1996) in a Bayesian context, among

others. It is useful to compare (56) with the MAI model:

Yt
N×1

= [A1, ..., Ap]
N×rp

(Ip ⊗B
′
0)′

rp×Np
Xt
Np×1

+ εt
N×1

. (57)

where recognizing that (Ip ⊗ B
′
0)′Xt = Zt−1 leads to expression (19). As is clear from

comparison of (56) with (57) the reduced rank VAR in (56) has only one A1 matrix of

dimension N × r and p matrices B0, ..., Bp−1 each of dimension r × N , while the MAI in
(57) has p matrices A1, ..., Ap each of dimension N × r and only one B0 matrix of dimension

r ×N .
The main advantage of the specification in (56) is that A1 has full rank r, therefore it

is possible to premultiply the system by the generalized inverse A+ = (A′1A1)−1A′1, and

-conditional on A1- to derive a closed form posterior distribution for [B0, ..., Bp−1 ], which

can then be easily simulated using a Gibbs sampling step (details can be found in Geweke

1996). Instead the matrix [A1, ..., Ap] appearing in the MAI in (57) is not full rank, which

is the reason why B0 can only be simulated using a Metropolis step.10

The main advantage of specification (57) is that, as we have discussed in Section 2,

premultiplication of (56) by B0 provides a VAR specification for the factors B0Yt, while in

(56) the factors do not admit a finite order VAR representation. Therefore, the MAI model

is more suited for structural economic analysis as it implies that all the variables are driven

by a limited number of r "factors" and their lags, B0yt−1, ..., B0yt−p, which can have different

effects over time and across variables, and B0yt admit a VAR representation. Instead, in the

multivariate reduced rank model the large set of Np factors have a changing composition

over time, B0yt−1, B1yt−2, ..., Bp−1yt−p, and require a large VARMA specification.

To summarize, estimation of the multivariate reduced rank model in (57) is easier than

estimation of the MAI model in (56), but the MAI model allows to derive a finite order VAR

10Blocking the system in p different blocks and deriving conditional posteriors is also not feasible in the
MAI model. Indeed, while the regressor matrix Ip⊗B

′
0 has a block-diagonal structure, each of the blocks in

this matrix is equal to the same matrix B0, and this cross-equations restriction precludes the derivation of
conditional posteriors for each of the p blocks.
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representations for a set of r factors. For these reasons, specification (57) can be preferable

when the interest is in forecasting (see e.g. Carriero, Kapetanios and Marcellino 2011 for

an application with a large dataset), while specification (56) is better suited for structural

analysis.

6 Monte Carlo Evaluation

In this section we present an extensive Monte Carlo study focusing on the properties of the

MAI model, which will be later used also in empircal applications.

We produce artificial data from two alternative Data Generating Processes (DGP). We

recall equation (1) and rewrite it as:

Yt =

p∑
u=1

ΦuYt−u + εt, εt ∼ i.i.d.N(0,Σ). (58)

The first DGP (DGP1) is an unrestricted VAR, so it uses (58) without imposing any fur-

ther restriction. The second DGP (DGP2) is the MAI, so it imposes the rank reduction

restriction:

Φu = AuB0 (59)

with u = 1, ..., p. To set up the parameters Σ and Φ1, ...,Φp we use the estimates obtained

from our empirical application (which is extensively discussed in the next Section, along

with a description of the data). For DGP1 we estimate (58) using a standard Bayesian

approach,11 which provides us with the estimated values Σ̂ and Φ̂1, ..., Φ̂p.
12 Similarly, for

DGP2 we estimate (58) again but this time under the restriction (59), with rank set to

r = 3, and using the estimation approach described in Section 3.2, which provides us with

the estimated values Σ̌ and Φ̌1, ..., Φ̌p.

To simulate artificial data from the two alternative DGPs we set Σ and Φ1, ...,Φp to Σ̂

and Φ̂1, ..., Φ̂p (under DGP1) or Σ̌ and Φ̌1, ..., Φ̌p (under DGP2), draw 100 different distur-

bances vectors from εt ∼ i.i.d.N(0, Σ̂) and project forward (58), which provides 100 different

realizations of the process Yt under DGP1 and 100 different realizations under DGP2.

Finally, for each of the two DGPs we estimate three alternative models: i) the MAI under

the Bayesian approach, described in Section 3.2; ii) the MAI under the classical approach,

11To save space we do not spell out the Bayesian VAR estimation details here. Our implementation follows
Kadiyiala and Karlsson (1996) and Carriero, Clark and Marcellino (2015) to which the reader is referred for
further details.
12Note that while it is true that in a large sample the unrestricted BVAR estimates would eventually

capture a rank reduction such as the one in (59), the dimension of the system is such that this does not
happen with the sample size we are working with. Also, we have carefully checked that the values that we
are using in this MC experiment for DGP1 always involve full rank Φ1, ...,Φp matrices.
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described in Section 3.1; iii) an unrestricted BVAR, estimated as in the baseline specification

of Carriero, Clark, and Marcellino (2015).

To ascertain the properties of the different models under the different DGPs we focus

on the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) arising from

estimation of the conditional mean parameters. As the number of coeffi cients is very large

rather than looking at individual RMSEs and MAEs for each of the coeffi cients appearing

in Φ1, ...,Φp we focus on the average RMSE and MAEs over all the estimated coeffi cients.

Moreover, to facilitate comparisons, for the MAI models we provide results in relative terms

with respect to those obtained by the standard unrestricted BV AR. We evaluate the per-

formance along various dimensions, considering different values for the total number of

variables N , the number of observations T , and the system rank r.

We start with the results obtained under DGP2, i.e. the data generating process which

does feature rank reduction. Results are displayed in Table 1. The Table is divided into two

panels. Panel A displays results for different combinations of sample size and cross sectional

size, in particular N = 5, 10, 15, 20 and T = 300, 460, 720.13 Panel B displays results for fixed

N and T (20 and 460 respectively, which are the dimensions of our empirical application)

and for different values of the rank of the DGP, r = 1, 2, 3, 4, 5 in (59).14 The entries

of the table show the RMSE and MAE of the MAI model estimated with the Bayesian

and classical approaches, relative to the RMSE and MAE obtained with the unrestricted

BV AR, therefore a figure below one in the entries of the table signals that the MAI model

is performing better than the BV AR benchmark.

The Bayesian MAI performance is systematically better than the classical MAI perfor-

mance, with gains decreasing with the sample size T but remaining very large (over 100%)

even with T=720. The Bayesian MAI performs also much better than BVAR, in particular

when N=15,20, while the classical MAI is never better than the BVAR, which suggests that

this model is still too overparametrized to be effectively handled by maximum likelihood

estimation.

The considerations above are still valid when looking at results for different system ranks,

with the Bayesian MAI outperforming consistently the BVAR. Interestingly, the classical

MAI performs better than the BVAR only for r=1, which again points towards the idea that

13 It should be noted that while comparing results for increasing T and fixed N involves looking at the same
DGP estimated with an increasing number of observations, comparing results for increasing N and fixed T
is not as straightforward. Indeed, since the DGPs are calibrated using estimates obtained in a preliminary
step based on actual data, qualitative differences in the data used for the DGP calibration enter the picture
and should be kept in mind. Another potential difference lies in the fact that the overall shrinkage for the
Bayesian approaches is kept fixed as N increase, while in theory the shrinkage parameter should be chosen
optimally for each cross-sectional size and typically should decrease as the number of variables decreases.
14Recall that the rank restriction is imposed in the preliminary estimation step that provides us with the

values of the DGP parameters. To obtain different ranks in the DGP it is suffi cient to impose restricion (59)
with the desired alternative values for the rank.
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for maximum likelihood estimation to work well one needs a rather small system, while for

larger N and r the use of the Bayesian approach is preferable. It is worth noting that the

best RMSE is achieved by a rank of 2, while the model with rank equal to 3 (which is the

true rank in the DGP) performs slightly worse.

We now turn to the results obtained under DGP1, i.e. the data generating process which

does not feature rank reduction. Results for this case are displayed in Table 2. Looking

at the results in panel A, the Bayesian MAI remains systematically better than classical

MAI, with gains decreasing with the sample size T but remaining very large even with

T = 720. As expected, the Bayesian MAI is imposing a restriction which is not holding true

in the data so it underperforms the BVAR under this data generating process. However it

is interesting to note that the cost of the rank reduction is decreasing as the dimension of

the system increases, being about 50% worse than the BVAR for N = 5, but only less than

20% worse when N = 20, a result driven by the fact that the bias gets compensated by

substantial improvements in effi ciency as N increases.

Looking at results for different ranks, the Classical MAI remains systematically worse

than the BVAR and the classical MAI, and losses increase with r. With r = 1 and N = 20,

the Bayesian MAI performs even slightly better than the BVAR in terms of RMSE (but not

forMAE). With higher r both RMSE andMAE increase,which is related to the increased

complexity of the model.

Overall, the Monte Carlo experiments suggest that Bayesian estimation of the MAI

model is systematically better than classical estimation. The ranking of the MAI and full

rank BVAR models is instead not clear-cut. However, even with a full rank BVAR DGP,

the MAI does reasonably well, in particular when N is large and/or r is small.

7 Empirical Applications

In this section we illustrate how the MAI model can be used for structural analysis. We begin

with describing the data and then we move on to select the optimal rank, lag length and

shrinkage of the model. Finally, we use the selected optimal model to study two alternative

examples of structural shocks.

7.1 Data and selection of optimal model

We use the "medium" dataset of Banbura, Giannone, Reichlin (2010, BGR), which includes

the 20 variables described in Table 3. The sample is at monthly frequency and we have

extended it to cover the period January 1974 to December 2013.

Since the Monte Carlo experiments have shown that the Bayesian approach produces

much more reliable estimates than the classical approach, we focus the discussion on the
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former, but we will provide some results for the classical MAI when we analyze the effects

of monetary policy shocks.

Before using the model for structural analysis, we proceed to select some of its key

features such as lag length, rank, and shrinkage hyperparameter. We consider lag lengths

of 1 to 13 lags, a possible rank of the system ranging from 1 to 5, and different values of the

shrinkage hyperparameter τ in the grid
√
τ ∈{0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1}. This

provides a total of 455 alternative specifications. We estimate all these specifications and

rank them according to the marginal data density computed as shown in equation (39).

In Table 4 we provide results for the best 20 specifications. The first three columns con-

tain the rank-lags-shrinkage combination that uniquely identifies a specification. Columns

4 and 5 contain the MDD of the MAI and the BVAR (note that the BVAR MDD can be

obtained in closed form using a formula similar to (40) and is of course insensitive to the

rank). For reference, columns 6 and 7 contain the Potential Scale Reduction Factors for the

MAI model.15 Columns 8 and 9 contain the Bayesian Information Criterion computed for

the MAI and the BVAR. As is clear from the table, the best specification selects 13 lags,

a rank of 3, and a shrinkage parameter
√
τ = 0.02. With this combination of rank and lag

length the MAI features a MDD of -9444. However it is important to note that instead the

best BVAR model is obtained by setting p = 13 and with an overall shrinkage of 0.1 (a

combination not shown in the table) which produces a MDD of -8956, a BIC of 81.35 and

a trace adjusted R-squared of -28.6.16 As is apparent from the Table, specifications with

r = 1 or r = 2 are also providing good results in terms of MDD and especially in terms of

BIC. However, as the MDD criterion is more in line with the Bayesian approach, we rely on

it and select a rank of 3 for our application. Moreover, while the BIC tends to favour more

parsimonious specifications, lag exclusion Wald tests performed with a rank of 3 rejected

the null that all the coeffi cients attached to the third factors were equal to 0.

Having chosen the system rank to be r = 3, we further restrict the B0 matrix in order

to identify some economically relevant factors. More precisely, we identify an output factor,

a price factor, and a financial / monetary factor by imposing restrictions on the matrix B0,

as detailed in Table 5. The resulting factors and their components are plotted in Figure 1.

Once this set of restrictions is imposed, we compute again the marginal data density and

find that its value increases from -9444 to -9380, providing support for the restrictions.17

Table 6 shows the prior and posterior mean and standard deviation of the elements of the

matrix B0 under this optimal specification, which is the one we use for the structural analysis

15The PSRFs provide an easy diagnostic tool for the convergence of the agorithm. Values below 1.1 are
considered an indicator of good mixing and convergence properties of the algorithm.
16When comparing the MAI impulse responses with the BVAR impulse responses we use this optimal

specification for the BVAR.
17We also re-compute the optimal shrinkage and lag-length under this restricted specification and the

resulting optimal values are
√
τ = 0.1 and p = 13.
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discussed in the next subsections

7.2 Structural analysis

To illustrate how to conduct empirically structural analysis using the MAI, we first replicate

in the MAI context the BVAR analysis of the transmission of US monetary policy shocks

conducted by Banbura, Giannone, and Reichlin (2010), using the N -shock MA represen-

tation of the MAI. Then, we assess the effects of demand, supply and financial/ monetary

shocks, modelling the same dataset but with the FAVAR-style MA representation of the

MAI.

7.2.1 Monetary policy shock

In line with the literature, the monetary policy shock is identified with a Cholesky scheme

where the federal funds rate is ordered after the slow moving variables and before the fast

ones.18 Formally, the impulse responses are based on the representation:

Yt = {A(L)[I −B0A(L)]−1B0 + I}Λ−1ε∗t (60)

where ε∗t are the structural shocks and Λ−1 is the Cholesky factor of the reduced form

shocks εt. The resulting s-period ahead response is:

Ψs = A1B0Ψs−1 + ...+Amin(s,p)B0Ψs−min(s,p); s > 0 (61)

with

Ψ0 = {A(0)[I −B0A(0)]−1B0 + I}Λ−1 = Λ−1. (62)

We simulate the distribution of the impulse responses using 40000 draws19 and plot

the median responses together with the 16th and 84th quantiles in Figure 2 and Figure 3.

In Figure 2 the Bayesian MAI impulse responses are overlayed with those obtained with

a classical estimation of the MAI, while in Figure 3 they are overlayed with the responses

obtained using the unrestricted BVAR approach of Banbura, Giannone, and Reichlin (2010).

As is clear from the figures, the impulse responses of the Bayesian MAI model are

reasonable from an economic point of view. Following an increase in the federal funds rate

industrial production, capacity utilization, employment, consumption and housing starts

decline, while unemployment increases. There is a negative reaction also in CPI, PPI, PCE

deflator, and earnings. Money and reserves decrease, while the exchange rate appreciates

18Other approaches are of course possible, see e.g. Lanne and Lutkepohl (2008).
19The 40000 draws are obtained by running 2 parallel chains of 25000 draws. For each chain we produce

25000 draws and discard the first 5000 for burn-in.
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and the reaction of the stock market is close to zero.

Comparing these responses to those obtained with maximum likelihood estimation dis-

played in Figure 2 it emerges that while the classical and Bayesian responses are overall

similar at short horizons, in the long run they diverge because some classical responses tend

to explode (black lines in Figure 2), which we attribute to the problem of overparameter-

ization in the classical set-up that makes the Bayesian approach more suited (and also in

line with the Monte Carlo results).

Comparing these responses to those obtained with an unrestricted BVAR displayed in

Figure 3 it emerges that the MAI model produces more reasonable responses for the real vari-

ables. Indeed the BVAR specification of Banbura, Giannone and Reichlin (2010) (blue lines

in Figure 3) implies a puzzling reaction for the real variables in the first 6 to 12 months,

with variables such as employment, industrial production, capacity utilization and hous-

ing starts initially increasing and unemployment initially decreasing after a contractionary

shock, which is at odd with economic intuition.

7.2.2 Demand, supply and financial shocks

In this subsection we analyze the effects of demand, supply and financial shocks. More

precisely, recall that we identified an output factor, a price factor, and a financial / monetary

factor by imposing restrictions on the matrix B0, as detailed in Table 5 and Figure 1.

The s-period ahead responses on the VAR equations are based on the representation

(16) and are:

Ψs = A1Πs−1 + ...+Amin(s,p)Πs−min(s,p); s > 0 (63)

with

Ψ0 = {ΣB′0Ω−1 +A(0)[I −B0A(0)]−1}P−1 = ΣB′0P
′ (64)

where the second equality follows from Ω−1 = P ′P .

We simulate the distribution of the impulse responses using 40000 draws and plot the

median responses together with the 16th and 84th quantiles. Specifically, Figures 4, 5, and

6 show the responses of the 20 macroeconomic variables to a demand, supply, and financial

shock, respectively.

The effects of a (positive) demand shock are illustrated in Figure 4. This shock is

modelled as a shock to the first factor. All the real variables react positively, and the prices

also increase. As a consequence, the federal fund rate increases substantially, as well as

the 10 year rate, with a drop in monetary indicators and in the stock market index and an

appreciation of the effective exchange rate. The effects are generally statistically significant.

The effects of a (negative) supply shock are presented in Figure 5. This shock is modelled

as a shock to the second factor. Now all the real variables deteriorate, and all the price
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variables increase. The latter effect is more marked than the former, so that there is an

increase in the federal fund rate, though much smaller than in the case of the demand

shock. The 10 year rate also increases, and there is a drop in the monetary indicators and

in the stock market index and a depreciation of the effective exchange rate, followed by an

appreciation that starts about one year after the shock. The effects are generally statistically

significant, in particular at short horizons in the case of the fast variables.

The effects of a (negative) financial shock are presented in Figure 6. This shock is

modelled as a shock to the third factor. The shock is similar to the monetary policy shock

analyzed in the previous subsection but now not only the short term but all the interest rates

increase on impact, and in addition there is a decrease in the amount of money, reserves and

the stock market index. Hence, qualitatively the responses of the real and price variables

are similar to those reported in Figure 2 and Figure 3 but with a clearer negative effect

already in the first periods after the financial shock.

Overall, these empirical applications illustrate how the MAI can be easily used to conduct

structural analysis, along the lines of either the structural VAR and BVAR approaches or

the FAVAR methodology. The two possibilities lead to similar results in the case of a

monetary/financial shock, with even more sensible responses from an economic point of

view.

8 Conclusions

In this paper we address the issue of parameter dimensionality reduction in Vector Autore-

gressive models (VARs) for many variables by using the Multivariate Autoregressive Index

(MAI) model of Reinsel (1986), which imposes reduced rank restrictions on the coeffi cient

matrices.

As we are particularly interested in the use of MAI models for structural analysis, we

derive alternative Wold representations for them. We focus on a representation that high-

lights the similarities of MAI and dynamic factor models, a competing approach to model

large datasets, but also discuss the differences in the two methods.

Next, we review classical estimation of the MAI model, and we extend the asymptotic

results to the case of N diverging. Moreover, we provide the conditional posteriors and an

MCMC algorithm for Bayesian estimation of the model. We then extend the representation

and estimation results to general reduced rank VARs.

We assess the finite sample performance of the MAI estimation methods in Monte Carlo

experiments. The results show that Bayesian estimation of the MAI model performs much

better than classical maximum likelihood, due to the overparameterization when N is large.

The Bayesian MAI also provides relevant gains against an unrestricted Bayesian VAR when
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the true data generating process features less than full rank in the conditional mean matrices.

Finally, structural analysis with the MAI is illustrated with empirical applications on the

transmission mechanism of monetary policy, and of demand, supply and financial shocks,

in a model that includes 20 key macroeconomic variables for the US. The results are quite

sensible from an economic point of view, often more than those from unrestricted BVARs.

Overall, the method is general, simple, and well performing. It could be also extended in

several directions, for example to allow for non-normal errors or Markov Switching changes in

the parameters as e.g. in, respectively, Lanne and Lutkepohl (2010) and Lanne, Lutkepohl

and Maciejowska (2010). Hence, the MAI model is promising as an alternative tool for

structural analysis using information in large datasets.

Appendix A: properties of MLE estimation

In this appendix we set out a framework for analysing Maximum Likelihood estimation in

the presence of a large dataset modelled through the use of a parametric model. We first

provide a general analysis of consistency and rates of convergence for the estimator and we

then proceed to prove Theorem 1 by verifying the conditions needed for the general result.

Consider a random matrix of dimension T ×N , Y = (Y1, ..., YT )′ with density F (Y, θN0)

depending on a parameter θN0 ∈ ΘN ⊆ RkNN for some sequence of finite constants kN .

We assume that N is a function of T . Y is an array. Let θN be an arbitrary element of

ΘN , and let L (θN ) = F (Y, θN ) =
∏T
i=p Fi (Yi|Y1:i−1, θN0) denote the assumed likelihood

function of Y , for some p > 1, where Y1:i−1 = (Y1, ..., Yi)
′. Then, l (θN ) = logL (θN )

=
∑T

i=p fi (Yi|Y1:i−1, θN0) denotes the log-likelihood function where fi (Yi|Y1:i−1, θN0) =

logFi (Yi|Y1:i−1, θN0). We also define the kN × 1 score vector by

s (Y, θN ) = s (θN ) = ∂l/∂θN ,

and the Hessian

H (Y, θN ) = H (θN ) :=
1

T

T∑
i=1

Hi (θN ) :=
1

T

T∑
i=1

∂2fi (Yi, θN )

∂θN∂θ′N
.

When l (θN ) is differentiable, the MLE θ̂N satisfies

s
(
Y, θ̂N

)
= 0. (65)

In the general analysis that follows, we assume the following set of regularity conditions:

Assumption 1 (RC1) The support of F , S =
{
Y ∈ RT×N : F (Y, θN ) > 0

}
, is independent
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of θN ; (RC2) F (Y, θN ) is twice continuously differentiable with respect to θN ; (RC3) The

matrix J (θ) := E
(
∂2 log f(Y,θN )
∂θN∂θ

′
N

)
has finite elements and is negative definite at θN = θN0.

We first consider consistency of MLE estimation. We make the following assumption:

Assumption 2 (C1) F (Y, θ) is continuous w.r.t. θ; (C2) ΘN is a compact subset of RkNN

for all N ; (C3) θN0 lies on the interior of ΘN and is the unique maximiser of El (θN ) over

ΘN . In other words,

κ (θN ) := El (θN0)− El (θN ) > 0 (66)

for all θN ∈ Θ\ {θN0}; (C4) l (θN ) satisfies a uniform law of large numbers over ΘN :

max
θN∈ΘN

∣∣∣∣∣∣ 1

T

T∑
i=p

fi (Yi|Y1:i−1, θN0)− Efi (Yi|Y1:i−1, θN0)

∣∣∣∣∣∣→p 0 as N →∞. (67)

Theorem 2 (Consistency) Under (C1)-(C4),∥∥∥θ̂N − θN0

∥∥∥→p 0 as T →∞.

Proof. For arbitrary δ > 0, consider an open neighbourhood around θN0 of radius δ:

N (δ) := {θN ∈ ΘN : ‖θN − θN0‖ < δ} .

Both N (δ) and its complement

N (δ) = {θN ∈ ΘN : ‖θN − θN0‖ ≥ δ}

are subsets of ΘN which, in turn, is a subset of RkNN . It is easy to see that N (δ) is an

open set, so N (δ) is a closed set. N (δ) is also bounded, since it is a subset of the bounded

set ΘN (see (C2)). We conclude that N (δ) is a closed and bounded subset of RkN , so N (δ)

is compact by the Heine-Borel theorem. Since, by (C1), El (Y, θN ) is a continuous function

w.r.t. θN , the maximiser of El (Y, θN ) over N (δ) belongs to N (δ): denoting this maximiser

by θδN , we conclude that there exists θδN ∈ N (δ) satisfying

El (Y, θδN ) ≥ El (Y, θN ) for all θN ∈ N (δ). (68)

We next note that (67) is equivalent to the event

A (ε) :=

{
ω : max

θN∈ΘN

∣∣∣∣( 1

T
l (Y (ω), θN )− E [l (Y (ω), θN )]

)∣∣∣∣ < ε

2

}
occurring with probability tending to 1 for arbitrary ε > 0, i.e., limT→∞ P (A (ε)) = 1. If

28



we can show the inequality

P (A (ε)) ≤ P
({
ω : θ̂N (ω) ∈ N (δ)

})
, (69)

for arbitrary δ > 0 and some ε > 0, consistency of θ̂N will follow immediately since

P
({
ω : θ̂N (ω) ∈ N (δ)

})
= P

({
ω :
∥∥∥θ̂N (ω)− θN0

∥∥∥ < δ
})

,

and the right hand side tends to 1 as T → ∞ as P (A (ε)) → 1 for arbitrary ε > 0. It

remains to show (69). Using the identity |x| < r ⇔ −r < x < r, we obtain for all θN ∈ ΘN :

ω ∈ A (ε)⇒
{
E
[

1
T l (Y (ω), θN )

]
− ε

2 <
1
T l (Y (ω), θN )

1
T l (Y (ω), θN ) < E

[
1
T l (Y (ω), θN )

]
+ ε

2 .
(70)

Since θN0 ∈ ΘN and θ̂N ∈ ΘN (by compactness of ΘN and continuity of the log-likelihood)

(70) will apply for θN = θN0 for the top inequality and θN = θ̂N for the bottom inequal-

ity. Since l (Y (ω), θN ) ≤ l
(
Y (ω), θ̂N

)
by definition of the MLE, (70) implies the chain of

inequalities

E
[

1

T
l (Y (ω), θN0)

]
− ε

2
<

1

T
l (Y (ω), θN0)

≤ 1

T
l
(
Y (ω), θ̂N

)
< E

[
1

T
l
(
Y (ω), θ̂N

)]
+
ε

2
.

We conclude that

ω ∈ A (ε)⇒ E
[

1

T
l (Y (ω), θN0)

]
< E

[
1

T
l
(
Y (ω), θ̂N

)]
+ ε (71)

for arbitrary ε > 0. Since (71) holds for arbitrary ε > 0, we may choose

ε = κ (θδN ) = E
[

1

T
l (Y (ω), θN0)

]
− E

[
1

T
l (Y (ω), θδN )

]

in the notation of (66). This choice is possible since θδN ∈ N (δ) ⊆ Θ\ {θ0} so positivity of
κ (θδN ) is guaranteed by (C2). Imposing the choice of ε = κ (θδN ) in (71), we obtain

ω ∈ A (κ (θδN ))⇒ E
[

1

T
l (Y (ω), θδN )

]
< E

[
1

T
l
(
Y (ω), θ̂N

)]
⇒ θ̂N /∈ ΘN ∩N (δ) by (68).

Therefore ω ∈ A (κ (θδN )) ⇒ θ̂N (ω) ∈ N (δ), i.e. P [A (κ (θδN ))] ≤ P
[
ω : θ̂N (ω) ∈ N (δ)

]
,

establishing (69).
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We next consider the rates of convergence for the MLE estimator. We define the Frobe-

nius norm of a matrix A as ‖A‖F .Then we have the following Theorem.

Theorem 3 (Rates) Under (C1)-(C4), if (T1) E [HN (θN0)] is invertible, θ̂N is consistent

and

(T2) sup
i
V ar

(
T∑
t=1

yi,t − E (yi,t)

)
= O

(
T−1

)
,

then ∥∥∥θ̂N − θN0

∥∥∥
F

= Op

(
N5/2

T 1/2

)
+Op

(
N3/2

T 1/2

)

Proof. ∥∥∥θ̂N − θN0

∥∥∥
F

=

∥∥∥∥∥∥
[

1

T

T∑
i=1

Hi (θ∗N )

]−1
1

T

T∑
i=1

zi (θN0)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
[

1
T

∑T
i=1Hi (θ∗N )

]−1
1
T

∑T
i=1 zi (θ0)−

(
1
T

∑T
i=1 E [Hi (θ0)]

)−1
1
T

∑T
i=1 zi (θ0) +(

1
T

∑T
i=1 E [Hi (θ0)]

)−1
1
T

∑T
i=1 zi (θ0)

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
[

1

T

T∑
i=1

Hi (θ∗N )

]−1
1

T

T∑
i=1

zi (θ0)−
(

1

T

T∑
i=1

E [Hi (θ0)]

)−1
1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
(

1

T

T∑
i=1

E [Hi (θ0)]

)−1
1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥∥
F

We have∥∥∥∥∥∥
[

1

T

T∑
i=1

Hi (θ∗N )

]−1
1

T

T∑
i=1

zi (θ0)−
(

1

T

T∑
i=1

E [Hi (θ0)]

)−1
1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
[ 1

T

T∑
i=1

Hi (θ∗N )

]−1

−
(

1

T

T∑
i=1

E [Hi (θ0)]

)−1
 1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
[

1
T

∑T
i=1Hi (θ∗N )

]−1
−(

1
T

∑T
i=1 E [Hi (θ0)]

)−1

∥∥∥∥∥∥
∥∥∥∥∥ 1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥
F

≤
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∥∥∥∥( 1
T

∑T
i=1 E [Hi (θ0)]

)−1
∥∥∥∥2

F

∥∥∥ 1
T

∑T
i=1Hi (θ∗N )− 1

T

∑T
i=1 E [Hi (θ0)]

∥∥∥
F

1−
∥∥∥∥( 1

T

∑T
i=1 E [Hi (θ0)]

)−1
∥∥∥∥
F

∥∥∥− 1
T

∑T
i=1Hi

(
θ∗N
)
− 1

T

∑T
i=1 E [Hi (θ0)]

∥∥∥
F

∥∥∥∥∥ 1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥
F

We examine

∥∥∥∥( 1
T

∑T
i=1 E [Hi (θ0)]

)−1
∥∥∥∥
F

,
∥∥∥ 1
T

∑T
i=1Hi (θ∗N )− 1

T

∑T
i=1 E [Hi (θ0)]

∥∥∥
F
and

∥∥∥ 1
T

∑T
i=1 zi (θ0)

∥∥∥
F
.

We have that ∥∥∥E [H (θN0)]−1
∥∥∥
F

=

√√√√ N∑
i=1

λ−1
E[H(θN0)],i = O

(√
N
)

(72)

where λA,i denotes the i-th eigenvalue of A, in order of magnitude in absolute value, as long

as all eigenvalues of E [HN (θN0)] are bounded away from zero, as assumed. By consistency

of θ̂N , and twice differentiability of f it follows that every element of H (θ∗N ) converges to

the respective element of E [H (θN0)] uniformly over all elements. Therefore,∥∥∥∥∥ 1

T

T∑
i=1

Hi (θ∗N )− E [H (θN0)]

∥∥∥∥∥
F

= Op (N) (73)

Further, by (T2) ∥∥∥∥∥ 1

N

N∑
i=1

zi (θN0)

∥∥∥∥∥
F

= Op

(
N1/2

T 1/2

)

Overall noting that, by (73) and (T1), 1
1−‖E[H(θN0)]−1‖

F
‖ 1
T

∑T
i=1HNi(θ∗N)−E[HN (θ0)]‖

F

is bounded

in probability, we have

∥∥∥θ̂N − θN0

∥∥∥ ≤
∥∥∥E [HN (θ0)]−1

∥∥∥2 ∥∥∥− 1
T

∑T
i=1Hi (θ∗N )− E [HN (θ0)]

∥∥∥
1−

∥∥∥E [HN (θ0)]−1
∥∥∥∥∥∥− 1

T

∑T
i=1Hi

(
θ∗N
)
− E [HN (θ0)]

∥∥∥
∥∥∥∥∥ 1

T

T∑
i=1

zi (θ0)

∥∥∥∥∥+

∥∥∥∥∥E [H (θ0)]−1 1

N

N∑
i=1

zi (θ0)

∥∥∥∥∥
F

= Op

(
N5/2

T 1/2

)
+Op

(
N3/2

T 1/2

)

Remark 4 Given the above general results, we need to prove the conditions needed for

Theorems 2 and 3 to hold for the MAI model (19). For ease of reference, we recall the

general VAR model

Yt = Φ(L)Yt + εt,

and its MAI specialisation

Yt = A(L)B0Yt + εt =

p∑
u=1

AuB0Yt−u + εt, (74)
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We will provide results for (74) while using the relation Φ(L) = A(L)B0 and noting that

straightforward extensions would make (42) also amenable to our analysis. The general

notation introduced in this Appendix for the MLE estimation will apply for the parametric

reduced rank model with the obvious adjustments. In particular, we consider the concentrated

likelihood as presented in page 147 of Reinsel (1983) and therefore θN = (vec(A)′, vec(B)′)′

where A = (A1, ..., Ap).

We make the following assumption:

Assumption 3 (i) All roots of Φ(L) are bounded away from the unit circle uniformly over

N . (ii) εt is an iid sequence, which has a continuous, twice diffentiable and bounded prob-

ability density function and finite 2 + ζ moments for some ζ > 0 and (iii) E [Hn (θn0)] is

invertible.

Remark 5 Assumption 3 ensures that Assumption 1 and Assumption 2 (i)-(iii) hold. There-

fore we only need to prove Assumption 2 (iv) and Condition (T2) of Theorem 3. This result

is provided by Lemma 6.

Lemma 6 Under Assumption 3 and if N = o
(
T 1/2

)
the following hold

sup
i
V ar

(
T∑
t=1

yi,t − E (yi,t)

)
= O

(
T−1

)
. (75)

max
θN∈ΘN

∣∣∣∣∣∣ 1

T

T∑
i=p

fi (Yi|Y1:i−1, θN0)− Efi (Yi|Y1:i−1, θN0)

∣∣∣∣∣∣→p 0 as N →∞, (76)

Proof. To show (75) we use Theorem 18.5.3 of Ibragimov and Linnik (1971). Then, it is

suffi cient to prove that

sup
i
Ey2+ζ

i,t <∞, for some ζ > 0, (77)

and

sup
i

∞∑
m=1

α
ζ/(2+ζ)
i,m <∞, (78)

where αi,m are the strong mixing coeffi cients of yi,t. By assumption, the eigenvalues of the

companion form matrix obtained from Φ(L) are bounded away from 1 in absolute value.

This implies that αi,m = ξmi , ξi > 0, where supi ξi < 1, which implies (78) for all ζ > 0.

Further, the above eigenvalue assumption implies that supi Ey2
i,t < ∞, which implies that

supi
∑∞

m=1 µ
2
i,m < ∞, where µi,m are the coeffi cients of the univariate MA representation
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of yi,t. This, coupled with the Marcinkiewicz—Zygmund inequality gives

sup
i
Ey2+ζ

i,t ≤ sup
i

( ∞∑
m=1

µ2
i,m

)1+ζ/2

Eε2+ζ
i,t <∞, (79)

proving (77). Using the above we now derive the properties of f (Yi, θ). By the above

analysis we have that every element of Yt−AZt−1 has finite variance for all values of A that

satisfy Assumption 3 (i), where Zt−1 = (Y
′
t−1B

′
0,..., Y

′
t−pB

′
0,)
′. Then, for all θN ∈ ΘN ,

E
(

(f (Yt, Zt−1, θ))
2
)
≤ ‖A‖2F ‖B‖

2
F sup

i
Ey2

i,t = O(N2)

Then,

1

T

T∑
i=p

fi (Yi|Y1:i−1, θN0)− Efi (Yi|Y1:i−1, θN0) = Op

(
NT−1/2

)
= op(1) (80)

To prove (76) we use (80) and note that

sup
θN∈ΘN

E
∥∥N−2∂l/∂θN

∥∥2

F
≤ N−2 sup

θN∈ΘN

‖A‖2F sup
θN∈ΘN

‖B‖2F sup
i
Ey2

i,t = O(1)

and so

sup
θN∈ΘN

∥∥N−2∂l/∂θN
∥∥
F

= Op(1)

Then, stochastic equicontinuity follows by Theorem 21.10 and (21.57) of Davidson (1994)

proving (76).

Appendix B: convergence diagnostics

In this section we discuss convergence of the algorithm used in the paper. The results in

the paper are based on 40000 draws from the simulated posterior, obtained by drawing 2

parallel chains of 25000 draws each and discarding the first 5000 draws for burn-in.

We assess convergence by looking at the Ineffi ciency Factor (IF) and the Potential Scale

Reduction Factor (PSRF). The IF are related to the autocorrelation functions and measure

how effi cient the sampler is, in reference to i.i.d. sampling. An IF of 1 denotes that the

draws produced by the algorithm are virtually i.i.d. Typically, an IF below 20 is considered

satisfactory for an MCMC sampler. The PSRF, proposed by Gelman and Rubin (1992) is a

measure of convergence based within-chain and between-chain variance of the draws. When

the PRSF is below 1.1, this is taken as indication of convergence of the algorithm. Results

can be found in Table 7 and show that the algorithm is effi cient and reaches convergence.
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Table&1.&MC&results&under&the&MAI&DGP

PANEL&A:&r=3,&increasing&N&and&T
N=5 && & N=10 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 0.76 0.74 0.74 0.74 0.74 0.74
Classical(MAI 6.23 4.75 3.64 4.69 3.56 2.70
BVAR((benchmark) 0.009 0.010 0.009 0.011 0.011 0.011

MAE
Bayesian(MAI 0.90 0.89 0.88 0.84 0.84 0.84
Classical(MAI 5.94 4.53 3.49 4.25 3.23 2.48
BVAR((benchmark) 0.008 0.008 0.008 0.009 0.009 0.009

N=15 && & N=20 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 0.53 0.48 0.43 0.49 0.44 0.39
Classical(MAI 4.99 3.64 2.80 4.28 2.89 2.08
BVAR((benchmark) 0.010 0.010 0.010 0.010 0.010 0.010

MAE
Bayesian(MAI 0.52 0.48 0.43 0.48 0.43 0.39
Classical(MAI 4.47 3.30 2.55 3.86 2.63 1.88
BVAR((benchmark) 0.008 0.008 0.008 0.008 0.008 0.008

PANEL&B:&N=20,&T=460,&increasing&r
& &

r=1 r=2 r=3 r=4 r=5
RMSE
Bayesian(MAI 0.50 0.41 0.43 0.47 0.51
Classical(MAI 0.87 2.10 2.93 3.41 3.38
BVAR((benchmark) 0.012 0.010 0.010 0.010 0.012

MAE
Bayesian(MAI 0.47 0.40 0.43 0.45 0.49
Classical(MAI 0.77 1.90 2.65 3.11 3.03
BVAR((benchmark) 0.010 0.008 0.008 0.009 0.010

!
For!the!Bayesian!and!Classical!MAI!the!entries!show!the!RMSE!and!MAE!relative!
to!the!BVAR!(i.e.!ratios).!The!BVAR!entries!are!the!RMSE!and!MAE!(levels).!
!



Table&2.&MC&results&under&the&VAR&DGP

PANEL&A;&r=3,&increasing&N&and&T
N=5 && & N=10 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 1.45 1.43 1.51 1.33 1.38 1.37
Classical(MAI 4.84 3.86 3.22 4.57 3.51 2.82
BVAR((benchmark) 0.012 0.011 0.011 0.011 0.010 0.010

MAE
Bayesian(MAI 1.52 1.57 1.65 1.38 1.44 1.48
Classical(MAI 4.48 3.65 3.14 4.22 3.33 2.74
BVAR((benchmark) 0.010 0.010 0.009 0.009 0.009 0.008

N=15 && & N=20 && &
T=300 T=460 T=720 T=300 T=460 T=720

RMSE
Bayesian(MAI 1.21 1.22 1.19 1.19 1.17 1.16
Classical(MAI 5.58 3.88 2.87 4.91 3.35 2.53
BVAR((benchmark) 0.010 0.010 0.010 0.010 0.010 0.009

MAE
Bayesian(MAI 1.25 1.30 1.29 1.24 1.26 1.27
Classical(MAI 5.04 3.61 2.77 4.49 3.17 2.48
BVAR((benchmark) 0.009 0.008 0.008 0.008 0.008 0.008

PANEL&B;&N=20,&T=460,&increasing&r
& &

r=1 r=2 r=3 r=4 r=5
RMSE
Bayesian(MAI 0.98 1.08 1.16 1.23 1.20
Classical(MAI 2.10 2.74 3.35 4.12 4.43
BVAR((benchmark) 0.010 0.010 0.010 0.010 0.010

MAE
Bayesian(MAI 1.13 1.18 1.24 1.30 1.29
Classical(MAI 1.97 2.59 3.16 3.89 4.18
BVAR((benchmark) 0.008 0.008 0.008 0.008 0.008

For!the!Bayesian!and!Classical!MAI!the!entries!show!the!RMSE!and!MAE!relative!
to!the!BVAR!(i.e.!ratios).!The!BVAR!entries!are!the!RMSE!and!MAE!(levels).!
 



Table&3:&Data
Variable FRED&code
Employees)on)nonfarm)payroll PAYEMS
Average)hourly)earnings AHETPI
Personal)income A229RX0
Real)Consumption PCE÷PCEPI
Industrial)Production)Index INDPRO
Capacity)Utilization TCU
Unemployment)rate UNRATE
Housing)starts HOUST
CPI)all)items CPIAUCSL
Producer)Price)Index)(finished)goods) PPIFGS
Implicit)price)deflator)for)personal)cons.)exp. PCEPI
PPI)ex)food)and)energy PPILFE
Federal)Funds,)effective FEDFUNDS
M1)money)stock M1SL
M2)money)stock M2SL
Total)reserves)of)depository)institutions TOTRESNS
Nonborrowed)reserves)of)depository)institutions NONBORRES
S&P's)common)stock)price)index S&P
Interest)rate)on)treasury)bills,)10)year)constant)maturity GS10
Effective)Echange)rate CCRETT01USM661N

The! sample! is! at! monthly! frequency! and! covers! the! period! January! 1974! to!
December!2013!



The! table! displays! the! topN20! MAI! specifications! (in! terms! of! MDD)! we! found! over! the! total! 455!
specifications!we!searched!over.!The!first!three!columns!contain!the!rankNlagsNshrinkage!combination!
that!uniquely!identifies!a!specification.!Columns!4!and!5!contain!the!value!of!the!Marginal!Data!Density!
of! the!MAI!and!the!BVAR.!Columns!6!and!7!contain!the!Potential!Scale!Reduction!Factors! for!the!MAI!
model,!for!the!parameters!in!the!matrices!A!and!B!respectively.!!Columns!8!and!9!contain!the!Bayesian!
Information!Criterion!for!the!MAI!and!the!BVAR.!
!



Table&5:&Composition&of&factors
Variable F1 F2 F3
Employees)on)nonfarm)payroll 1 0 0

Average)hourly)earnings b_{1,2} 0 0

Personal)income b_{1,3} 0 0

Real)Consumption b_{1,4} 0 0

Industrial)Production)Index b_{1,5} 0 0

Capacity)Utilization b_{1,6} 0 0

Unemployment)rate b_{1,7} 0 0

Housing)starts b_{1,8} 0 0

CPI)all)items 0 1 0

Producer)Price)Index)(finished)goods) 0 b_{2,10} 0

Implicit)price)deflator)for)personal)cons.)exp. 0 b_{2,11} 0

PPI)ex)food)and)energy 0 b_{2,12} 0

Federal)Funds,)effective 0 0 1

M1)money)stock 0 0 b_{3,14}

M2)money)stock 0 0 b_{3,15}

Total)reserves)of)depository)institutions 0 0 b_{3,16}

Nonborrowed)reserves)of)depository)institutions 0 0 b_{3,17}

S&P's)common)stock)price)index 0 0 b_{3,18}

Interest)rate)on)treasury)bills,)10)year)constant)maturity 0 0 b_{3,19}

Effective)Echange)rate 0 0 b_{3,20}

!
In!the!table,!the!notation!b_{j,i}!denotes!the!element!in!the!jNth!row!and!iNth!column!of!
the!matrix!B0.!The! index! j! runs! through!different! factors! j=1,…,3!and! the! index! i! runs!
through!different!variables!i=1,…,N.!
!
!



Table&6:&Prior&and&posterior&moments&of&B₀
Prior Posterior
Mean Std. Mean Std.

Variable F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3
Employees)nonfar 1.000 1 1 1 1 1 1.000 1 1 1 1 1
Avg)hourly)earn. 0.286 1 1 0.077 1 1 0.263 1 1 0.075 1 1
Personal)income 0.328 1 1 0.113 1 1 0.186 1 1 0.099 1 1
Consumption 0.455 1 1 0.097 1 1 0.550 1 1 0.092 1 1
Industrial)Prod 1.125 1 1 0.026 1 1 1.118 1 1 0.027 1 1
Capacity)utiliz 1.102 1 1 0.030 1 1 1.086 1 1 0.030 1 1
Unemp.)Rate 10.739 1 1 0.074 1 1 10.741 1 1 0.072 1 1
Housing)Starts 0.324 1 1 0.105 1 1 0.383 1 1 0.101 1 1
CPI 1 1.000 1 1 1 1 1 1.000 1 1 1 1
PPI 1 0.703 1 1 0.068 1 1 0.670 1 1 0.066 1
PCE)deflator 1 1.063 1 1 0.028 1 1 1.071 1 1 0.028 1
PPI)ex)food 1 1.108 1 1 0.036 1 1 1.100 1 1 0.036 1
FedFunds 1 1 1.000 1 1 1 1 1 1.000 1 1 1
M1 1 1 10.155 1 1 0.102 1 1 10.140 1 1 0.091
M2 1 1 10.345 1 1 0.066 1 1 10.260 1 1 0.062
Reserves,)tot. 1 1 0.082 1 1 0.107 1 1 10.146 1 1 0.092
Reserves,)nonbor. 1 1 10.036 1 1 0.351 1 1 12.101 1 1 0.180
SP500 1 1 11.482 1 1 0.035 1 1 11.449 1 1 0.035
10.00)yr)T1bond 1 1 0.709 1 1 0.071 1 1 0.548 1 1 0.068
Ex.)rate 1 1 0.911 1 1 0.057 1 1 0.841 1 1 0.055

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



Table&7:&Inefficiency&Factors&and&Potential&Scale&Reduction&Factors
B A A⋅B
IF PSRF IF PSRF IF PSRF

mean 7.614 1.000 0.898 1.000 1.128 1.000
median 5.649 1.000 0.826 1.000 0.918 1.000
10%2quan: 2.810 1.000 0.460 1.000 0.491 1.000
90%2quan: 11.235 1.001 1.436 1.000 1.851 1.000
min 2.336 1.000 0.177 1.000 0.151 1.000
max 31.694 1.001 2.334 1.000 13.397 1.000

!



Figure 1: Factors and their components



Figure 2: Baysian vs Classical MAI. Responses to a permanent shock to the Federal Funds rate.
Red solid line and green dashed lines are the median and 16%-84% quantiles of the Bayesian
MAI impulse responses. The solid black line represents the responses computed using maximum
likelihood estimation.



Figure 3: Bayesian MAI vs BVAR. Responses to a permanent shock to the Federal Funds rate.
Red solid line and green dashed lines are the median and 16%-84% quantiles of the Bayesian MAI
impulse responses. The solid blue line represents the responses computed using the unrestricted
BVAR.



Figure 4: Demand Shock. Responses to a permanent shock to factor 1. Red solid line and green
dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses.



Figure 5: Supply shock. Responses to a permanent shock to factor 2. Red solid line and green
dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses.



Figure 6: Financial schock. Responses to a permanent shock to factor 3. Red solid line and green
dashed lines are the median and 16%-84% quantiles of the Bayesian MAI impulse responses.


