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The need for understanding the propagation mechanisms behind the recent financial
crises lead the increased interest for works associated with asset interconnections. In
this framework, network-based methods have been used to infer from data the linkages
between institutions. In turn, those connections have implications for the evaluation of
systemic risk. The literature is still debating on the definition of systemic risk and how
it differentiates from or overlaps with systematic risks. In this paper, we elaborate on
this and make a step forward by introducing network linkages into linear factor models,
thus allowing for the interdependence between asset connections and systematic risks.
Networks are used to infer the exogenous and contemporaneous links across assets, and
impacts on several dimensions. From a factor exposure perspective, network links act
as inflating factor for systematic exposure to common factors, and allow for cross-asset
exposures to factors due to the presence of the network. In turn, the presence of networks
and factors, has potential implications for pricing. Nevertheless, we show that those im-
plications have a role only at the local, or short-term, level, while over the long-run their
effect is negligible. Furthermore, the power of diversification is reduced by the presence
of network connections, and we analytically show that network links reduce the diversi-
fication potential but at the same time could allow for absorption of risks. Finally, our
modeling framework is coherent with empirical evidences associated with standard linear
factor model. By fitting a (misspecified) linear factor model under our data generating
process (allowing for the presence of network links), the model provides residuals are cor-
related and heteroskedastic, and the factor exposures become time-varying. We support
our claims with an extensive simulation experiment.
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1 Introduction

The term “Systematic risk” is a well established concept that derives from the seminal

work on portfolio choice proposed by Markowitz (1952) and extended in a general equi-

librium framework by Sharpe (1964), Lintner (1965a,b), and Mossin (1966) and in the

Arbitrage Price Theory model by Ross (1976). It refers to the risk an investor of a well-

diversified portfolio is exposed to, which stems from the dependence of returns to common

factors.

On the other side, the definition of ”Systemic risk” is not well defined throughout the

literature and, as a result, can be measured from a wide range of perspectives. According

to Acharya and Yorulmazer (2002), Nier et al. (2007) and De Bandt et al. (2000) systemic

risk materialises through (1) “pure” contagion, (2) feedback effects from endogenous fire

sales, (3) herding behaviour causing informational contagion, and (4) exposure to common

factors. Hartmann (2002) argues systemic risk stems from either build-up imbalances,

contagion or large shocks.

The broad definition provided above links contagion risk to systemic risk as well as

exposure to common factors, that in principle is largely related to systematic risk. A

natural statistical model for capturing systemic risk exposure due to linkages between

institutions is a network model, which is commonly used to describe features of a network

of connections.

In this paper we provide a unique framework for systematic risk and network connec-

tions and estimate the feedbacks among network exposures and common factors and the

impact of them on the risk exposures and risk premia of stock returns. More specifically,

we look to the the interactions of the four ways through which a broad definition of sys-

temic risk materialize, i.e. the relationships between (i) “pure” contagion, (ii) feedback

effects from endogenous fire sales that could be well captured by a network model, (iii)

herding behaviour causing informational contagion and (iv) exposures to common factors

that could be considered per se as systematic risk exposure.

A growing literature investigates the role of interconnections between different firms
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and sectors, functioning as a potential propagation mechanism of idiosyncratic shocks

throughout the economy. Acemoglou et al. (2011) use network structure to show the

possibility that aggregate fluctuations may originate from microeconomic shocks to firms;

Billio, Gray, Getmansky, Lo, Merton and Pelizzon (2014) use contingent claim analysis

and network measures to highlight interconnections among sovereign, banks and insur-

ances. There are several other contribution in the literature on network analysis: see

Billio, Getmansky, Lo, and Pelizzon (2012), Diebold and Yilmaz (2015) and Hautsch,

Schaumburg, and Schienle (2012, 2013) and Barigozzi and Brownlees (2014). Network

interconnections and the effects called network externalities that arises from small and

local shocks that can become big and global is a possibility discarded in standard asset

pricing and macro-economics models due to a “diversification argument”. As argued by

Lucas (1977), among others, microeconomic shocks would average out and thus, would

only have negligible aggregate effects. Similarly, these shocks would have little impact on

asset prices. However, there is also a growing literature on the role of sectorial shocks in

macro fluctuations. Examples include Horvath (1998, 2000), Dupor (1999), Shea (2002),

and Acemoglu et al. (2012). Morevoer, Ang et al. (2006), among others, show that

idiosyncratic volatility risk is priced in the cross-section of expected stock returns, a reg-

ularity that is not subsumed by size, book-to-market, momentum, or liquidity effects.

From a theoretical point of view Wagner (2010), Ozsoylev and Walden (2011), Allen et

al. (2012), Buraschi and Porchia (2013) and Branger et al. (2014) arrive at similar con-

clusions. Ahern (2013) empirically documents a positive market price of centrality, i.e.,

more central assets earn higher expected returns.

The need for understanding the propagation mechanisms behind the recent financial

crises leads to an increased interest for works associated with systemic risks. In this

framework, network-based methods described above will be used to infer from data the

linkages between institutions (or companies). Part of the literature postulates that sys-

temic risk is strictly related (if not equal) to systematic risk and therefore there is no need

to distinguish among the two. With this paper instead we argue that it is important to
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disentangle the channels through which risk propagates.

In fact, the contribution of this paper to this literature is to propose a modelling frame-

work where network interconnections and common factors risks co-exist. The proposed

model is a variation of the traditional CAPM/APT model where networks are used to

infer the exogenous and contemporaneous links across assets. We also provide a number

of generalizations for our approach to make it more flexible coherent with the empirical

evidences, for instance allowing for asset-specific reaction to network links and introducing

time-variation in networks.

By building on the newly introduced model, we provide a number of theoretical el-

ements and empirical evidences based on a simulation framework. At first, focusing on

the returns dynamic and the common factor exposure we show that the presence of as-

set interconnection acts as an inflating factor to the exposure on common risk sources.

Moreover, we are able to disentangle the exposure to common factors that is structural,

that is present even in the case of no network connections, from the exposure associated

with network links. Similar argument applies to the shocks impacting on an asset return,

where network relations expose assets to other asset’s shocks. From a risk perspective,

our approach allows us to decompose the risk of a single assets (or a portfolio) into four

components: the two classical systematic and idiosyncratic components and (i) the impact

of the asset interconnections on the systematic risk component, that is the contribution of

network exposure to the systematic risk component and (ii) the effect of interconnections

on the idiosyncratic risk on the systematic risk component, that is the amplification of id-

iosyncratic risks that generates systematic/non diversifiable risk. Building on this result,

we show how diversification benefits are reduced in the presence of network connections.

Moreover, by combining the return dynamic with the variance decomposition, we can

verify that our model is consistent with the presence of correlation and heteroskedasticity

among traditional linear factor model residuals, thus providing a rational for empirical

evidences found in the literature.

Finally, we also evaluate the impact of networks on the estimation of risk premiums

3



and show that the premiums estimated by our approach and by a traditional linear factor

model are equivalent in the long-run (under some assumption on the evolution of the

network over time). However, our approach allows for local (conditional) expected returns

that change according to changes in the network structure, and thus leading to price

changes even if the risk premiums are time-invariant.

The remainder of the paper is organized as follows. Section 2 describes network models.

Section 3 presents our model combining network links and factor exposure, while Section

4 introduces a set of generalizations making the model more flexibly. Section 6 presents

the simulation analysis and Section 7 concludes.

2 Network Models in Finance

Network models have seen an extremely diverse array of applications: in the social sciences

with studies related to social networking on websites such as Facebook, in the natural

sciences with application to protein interactions, in government intelligence where they

are used to analyse terrorist networks, in politics with application to bill co-authorship,

in economics with potential used in labour markets analysis, and many other areas. In

finance, network models have most frequently been used to assess financial stability. In

fact, interconnections among financial institutions create potential channels for contagion

and amplification of shocks to the financial system that can be also propagated to the

“real economy”.

Applications in this area have gauged considerable interest in the aftermath of the

2007-2009 financial crisis. Network representation of interconnections ranges from linkages

extracted from balance-sheet information to connections estimated by means of econo-

metric approaches from either market data, accounting data or macroeconomic data.

The majority of such “real-world” networks have been shown to display structural

properties that are neither those of a random graph, nor those of regular lattices.

In order to evaluate the relevance and the price of interconnections in the financial
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system it is fundamental to understand all of the channels by which small and local shocks

can become big and global.

Empirical network modelling has been conducted for assessing asset pricing linkages

via contagion (Allen and Gale 2000; Dasgupta 2004; Leitner 2005, Billio, Getmansky, Lo,

and Pelizzon (2012), Diebold and Yilmaz (2014) and Hautsch, Schaumburg, and Schienle

(2012, 2013), Brownlees (2014)), linkages via balance sheets (Cifuentes et al 2005; Laguno

and Schreft 2001), and how failures of institutions result from mutual claims on each other

(Furfine 2003; Upper and Worms 2004; Wells 2004). Babus and Allen (2009) provide a

review of network models in finance.

Much of the empirical finance literature has focused on “direct”contagion arising from

firms’ contractual obligations. Direct contagion occurs if one firm’s default on its contrac-

tual obligations triggers distress (such as insolvency) at a counterparty firm. Researchers’

simulations using actual interbank loan data suggest that “domino defaults ”arising from

contractual violations are very unlikely, (see Furfine (2003) Eisinger et al. (2006), Up-

per and Worms (2004); Mistrulli (2011); Degryse and Nguyen (2007), Van Lelyveld and

Liedorp (2006) and Alves et al (2013)) though they can be highly destructive in the event

that they do materialise.

Contractual obligations are not the only means by which small and local shocks can

spread and generate perverse externalities. Focusing only on direct contagion underesti-

mates the risk of financial crisis given that other important channels exist like common

exposures, fire sales, illiquidity spirals and, information spillover. For example, in its

survey Upper (2011) reports that simulations using actual interbank loan data suggest

that domino defaults are very rare events, and Abbassi, Brownlees, Hans and Podlich

(2014) shows that model network structures for a sample of German banks based on CDS

data are only marginally explained by direct connections through interbank exposures

and common exposures to similar asset classes extracted by accounting data.

The approach that we follow in this paper is that both direct and indirect interconnec-

tions extracted from accounting or direct exposures data and market data could co-exist
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and have implication on the dynamic of the returns of financial assets. Therefore, our ap-

proach is very general. We first concentrate on interconnections that could be estimated

from market data and then we provide a theoretical extension of the model where also

direct linkages like balance-sheet exposures or common exposures to similar asset classes

could be included in the framework.

The advantage of using market data to extract linkages has relevant advantages: the

data are easily available, have higher frequency (that is more information, and a more up-

to-date view of links) e and the linkages extracted from market data are forward looking in

contrast to balance-sheet/accounting data that provide a pictures of the actual exposures

(and might be seen thus as backward-looking). The forward looking interpretation can

also supported by the general idea that market prices can be seen as reflecting information

available to traders/operators/market participants, and, in equilibrium, correspond to the

discounted value of future dividends (thus with a link to fundamental valuations of stocks).

Formally, we could represent networks as nodes that are connected (in general) to a

subset of the network total number of nodes, where connections represent links across

nodes. A financial system could be represented as a network structure where nodes

represent assets or the value of financial or non financial institutions, and shocks on one

asset/institutions are transmitted to the connected ones.

Networks are, in general, graphically represented, and we also provide some exam-

ples in the empirical section. Nevertheless, networks have an equivalent (square) matrix

representation. Let us call W the K−dimensional square matrix representing a net-

work composed by K financial assets/companies. Each entry wi,j represents the possible

connection between assets i and j. A zero entry indicates that the two assets are not

connected, while a non-null entry indicates the existence of a connection. Depending on

the approach adopted to estimate the network, non-null entries might differ one from the

other, that is they track the strength/intensity of the connection, or might be simply

equal one to the other, and thus just indicate the existence of a connection. An example

of the last case is the following matrix:
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W =



0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


, (1)

where note that the diagonal contains only null elements (each asset is not influencing

itself) and the network is not symmetric as the first asset is connected to the fourth one,

but the opposite is not true.

In general, networks also convey a further element, the direction of the link. If links

are all bidirectional, the network is symmetric. By convention, in the present paper we

assume that a non null element wi,j indicates the existence of a link between assets i and

j with an effect from j to i.

Interestingly, matrices similar to that of equation (1) are very common in other eco-

nomic and statistic applications, those concerning research and studies associated with

spatial econometrics and spatial statistics. In these fields, subjects (like towns, buildings,

regions) are neighbour one to the other in a physical way, and the W matrices represent

the neighbouring relations with entries possibly associated with the physical distance ex-

isting between two subjects; they are normally called spatial matrices, and are commonly

row-normalized.

Matrix representation of financial networks might thus be seen as the financial parallel

of spacial matrices. Clearly, neighbouring relations are no more physical, but are the out-

come of a specific model, measuring or estimation approach. Going back to the graphical

representation of networks, where nodes are connected one to the other, we might state

that connected nodes (assets/firms) are thus neighbour.

Finally, we stress that, if we consider matrices monitoring only the existence of the

connection across assets, we adhere to the concept of “first order contiguity ”where a unit
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entry denotes the existence of a connection and the fact that two assets are neighbour,

see LeSage (1999). In addition, by convention in spatial statistic/econometrics, the main

diagonal of the W matrix contains zero elements.

In the following, we will clarify how network connections, as monitored by the matrix

W will convey relevant information on the evolution of asset returns. In doing that, we

do not restrict ourselves to a specific structure of W , that is with a W monitoring the

existence of a connection and/or the intensity of the link, but will propose a model which

can be used with any form of W . Moreover, according to Elhorst (2003), we will normalize

W , so that, if we are monitoring only the existence of the connection, we equalize the

impact of each unit on all other units. We will further discuss the normalization of W in

the a following section.

Later, when moving to the empirical part, we will also briefly discuss alternative

methods that can be followed to estimate the existence of a connection across two assets.

3 The systematic effects of network exposure

Since the seminal works of Sharpe (1964), Lintner (1965a,b), and Mossin (1966) linear

returns models have attracted a huge interest in the financial economics literature, and

have had an extraordinary impact on both research and practice. In the last decades,

multifactor generalizations of the CAPM model have been proposed and are now as dif-

fused as the single factor model. The first multifactor models stem from the work of

Ross (1976) on the arbitrage pricing theory, and the most commonly used approaches in

pricing take now into account the developments of Fama and French (1993 and 1995),

and Carhart (1997), leading to the so-called three-factor and four-factor CAPM models,

respectively.

Our starting point is a multifactor model, nesting all the previous cases, which we take

as a general case where network exposure can be introduced. We thuc consider a linear

specification where a K-dimensional set of time t risk asset returns, which we denote by
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Rt, depends on a set of M observable zero-mean risk factors:

Rt = α + βFt + εt. (2)

In equation (2) α is a K−dimensional vector of intercepts, β is a K ×M matrix of

parameters monitoring the exposure of the risky assets to the common factors included in

the M−dimensional vector Ft; finally, and εt is the vector of idiosyncratic shocks. Note

that, the notation we use, and thus also the following generalizations, can be applied

to any collection of risk factors. However, for reasons explained below, the risk factors

should not be recovered by means of statistical approaches, such as principal component

analysis or the estimation of a latent factor model, but must be observed variables.

If we take a pricing perspective, and assume that the market is in equilibrium, then,

the model intercept can be replaced by the vector of expected returns

Rt = E [Rt] + βFt + εt. (3)

Moreover, expected returns depend on the factor risk premiums Λ obtaining

E [Rt] = rf + βΛ. (4)

The four-factor CAPM allows decomposing the total risk of the assets into the sum of

two components:1

V [Rt] = βΣFβ
′ + Ωε, (5)

where V [·] is the variance operator, V [Ft] = ΣF is the covariance matrix of the

common factors, and V [εt] = Ω is the covariance matrix of the idiosyncratic shocks. The

first term on the right represents the systematic contribution to the total risk, while the

second term is the idiosyncratic risk contribution. The same decomposition of the total

1This holds for any multifactor model.
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assets risk applies also to a generic portfolio formed with the K assets. If we take a vector

of portfolio weight ω,2 the portfolio returns satisfy the following equalities

rp,t = ω′Rt (6)

= ω′E [Rt] + ω′βFt + ω′εt

= E [rp,t] + βpFt + ςt,

where E [rp,t] = rf + βpΛ. Moreover, we know that the total risk of the portfolio is

given as

V [rp,t] = ω′βΣFβ
′ω + ω′Ωεω (7)

= βpΣFβ
′
p + σ2

ς

This framework has relevant implications on portfolio risk and diversification. If we

take a diversification point of view, the final purpose is to control or sterilize the impact

of asset idiosyncratic risks on the total portfolio risk. This corresponds to the willingness

of achieving the following limiting condition

limK→∞ω
′Ωεω = σ̃2 > 0 (8)

where σ̃2 is a small quantity depending on the idiosyncratic shock variances and cor-

relations, as well as on the portfolio composition. In a simplified setting, assuming that

idiosyncratic shocks are uncorrelated, that their variances are set to an average value σ̄2

and taking an equally weighted portfolio, we have the following well-know result

limK→∞ω
′Ωεω =

1

K
σ̄2 = 0, (9)

showing that diversification allows sterilizing the idiosyncratic shocks.

2We assume that portfolio weights sum at 1 but we do not exclude short selling.
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In this framework the focus is on the shocks impact, since we know that the systematic

risk component cannot be diversified out, as it is driven by common factors. Therefore, in

the multifactor model, the introduction of new assets allows a contraction of the contribu-

tion of the idiosyncratic component to the total risk of the portfolio, but has, in average,

no effects on the systematic components.3

Our paper aims at introducing in an asset pricing multifactor model the impact of

contemporaneous links that exist across assets, when those are captured by a network.

As discussed in the previous section, networks provide information on the existence of links

and might also convey details on the intensity of the link existing across assets. Therefore,

we aim at coupling the systematic and idiosyncratic risks with a sort of network risk

that would introduce in the model the assets cross-dependence beyond that captured by

common factors. Given this further element we will then evaluate the effects on traditional

uses of the multifactor model.

Let us assume that the risky assets are interconnected and that those links can be

represented by a network. The network relations, as observed in the previous section, can

be, in some sense, forward looking or represent the actual state of the connections across

assets. From this point onward, we will assume that, indifferently from the approach

adopted for the estimation of the network, the network will impact on the contemporane-

ous relations across assets. Starting from this assumption, we have to partially reconsider

the interpretation of a general multifactor model. In fact, if we postulate the existence of

contemporaneous relations across risky assets, we must acknowledge that those are not

explicitly accounted for in 2. Moreover, the common factors capture the dependence of

each risky asset from common sources of risk, but the presence of interconnections im-

plies that risky assets are exposed to the movements (both systematic and idiosyncratic)

of other risky assets. We might label this additional component as network exposure. In

addition, risky assets might differ in terms of interconnections with other assets, and can

thus be affected by an additional form of heterogeneity going beyond those associated

3Nevertheless, we note that, by means of short selling and when a risk free asset is present, we might
be able to build portfolios that annihilate the effect of at least some risk factors.

11



with the different exposure to common factors and with the relevance of the own idiosyn-

cratic risk. As a consequence, the beta matrix with respect to common factors that can

be recovered from 2 cannot be directly linked to both the interconnections and to the

source of network heterogeneity across risky assets.

One possible way of indirectly recovering the network exposure is to interpret the

model in 2 as a reduced form model where reduced form parameters (the betas and the

error covariance) are functions of structural parameters. The latter thus include the true

exposure to common factors, the exposure to other assets due to the interconnections (or

network exposure) and the structural idiosyncratic shock’s variance.

To shed some light on the previous points we rewrite the model in 3 as a structural

simultaneous equation system

A (Rt − E [Rt]) = β̄Ft + ηt (10)

where the matrix A captures the contemporaneous relations across assets and it co-

exist with the common factors which are here considered as exogenous variables. In 10 the

covariance of ηt represents the structural idiosyncratic risk while the parameter matrix

A is associated with assets interconnections, and thus with a network. Further details

on the last aspect will be given in few paragraphs. If we translate the model 10 into a

reduced form, we have

Rt = E [Rt] + A−1β̄Ft + A−1ηt (11)

where we stress two relevant elements. Firstly, we observe that the reduced form pa-

rameters of the linear factor model, which can be consistently estimated by least squares

methods, are non-linear functions of the interconnections across assets (the matrix A) and

of the structural exposure to common factors (the matrix β̄). Secondly, the covariance

matrix in 2 is also influenced by the presence of asset’s interconnections. Note that, if we

postulate that i) a network structure exists, and thus assets are interconnected, ii) that
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there are just four common factors, and then iii) we estimate the linear factor model in

2 without taking into account the network, we have by construction that the shocks are

correlated.4 Therefore, the empirical evidences of idiosyncratic shock correlation found

on the residuals of a four-factor CAPM model might be due to the exclusion of contem-

poraneous relations as shown by the results of Ang, Hodrick, Xing, and Zhang (2006):

idiosyncratic volatility risk is priced in the cross-section of expected stock returns, a reg-

ularity that is not subsumed by size, book-to-market, momentum, or liquidity effects. In

addition, if we assume that the network links affect the matrix A, and estimate model

(11), the residuals covariance will be a function of the network links. Thus, if network

links are not known, they might be estimated by looking at the covariance of A−1ηt, as

in Barigozzi and Brownlees (2014). However, in such a case the economic interpretation

of network links might be difficult to recover and potentially exposed to estimation error.

We also highlight a further aspect. If the common factors are estimated by means

of statistical approaches rather than being observed variables, the network exposure, if

present, will be totally destroyed. In fact, statistical factors are generally estimated from

a reduced form model. Therefore, if we neglect the network exposure and adopt, say,

principal component analysis, or fit a latent factor model, it might happen that one of

the identified factors represent a sort of proxy of or a biased estimate of the network

exposure, with possible further biases on the estimated factor loadings. Such a problem

might be overcome by estimating a latent factor model accounting for contemporaneous

links across assets.

Our approach aims are re-introducing contemporaneous relations into the multifactor

model thus allowing to recover both the impact of network exposure as well as the exposure

to common factors. Note that both elements co-exist, and network exposure can be seen

as an additional common risk source going beyond that of common factors. We might

even define the exposure to common factors as the exogenous systematic risk exposure,

while the network exposure can be labelled as an endogenous systematic risk exposure.

4This holds if we assume that A is not diagonal. However, this is an inconsequential restriction as if
A is diagonal we do not have contemporaneous relations across assets.
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Notably, in this way, the idiosyncratic risks will be defined as structural and, at least in

principle, should be less correlated than the shocks in 2.

The simultaneous equation system in 10 poses serious challenges for the estimation

of the matrix A. We overcome this potential problem by resorting to network links.

If we postulate the existence of network connections, exogenously provided by direct

exposures and indirect exposures across risky assets, we can state that linked assets are

neighbors. Such a wording is very common in the spatial econometrics literature where

relations across entities (towns, areas, countries) depend in many cases on the physical

(geographical) distances and are collected in a proximity matrix that identifies neighbor

entities. In a financial framework, the network links can be easily recast in a proximity

matrix W as mentioned in Section 2. The proximity matrix can be used to impose a

structure on the matrix A. Given the matrix W , as extracted from a network, we can

easily specify a spatial autoregressive (SAR) model (see Anselin, 1988, and LeSage and

Pace, 2009):5

Rt − E [Rt] = ρW (Rt − E [Rt]) + β̄Ft + ηt (12)

where the (scalar) coefficient ρ captures the response of each asset to the returns of

other assets, as weighted with the corresponding row of W . Moreover, we assume that

the error term ηt has a diagonal covariance matrix, that is V [ηt] = Ωη is diagonal. Such

an assumption is required for identification purposes as we will discuss in the model

estimation section. If we assume, as we will do in the following, that the matrix W is

known, the expected returns are conditional to the (known) W . To maintain a simplified

notation we do not report the conditioning with respect to W in the returns expectations.

At the single asset level the model reads as follows

Ri,t = E [Ri,t] + ρ

k∑
j=1

wi,j (Rj,t − E [Rj,t]) + β̄iFt + ηi,t (13)

5Anselin (1988) calls the model mixed-regressive spatial-autoregressive. We stick here to the simpler
acronym adopted in LeSage and Pace (2009).
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where wi,i = 0, wi,j ≥ 0 and
∑k

j=1wi,j = 1. Taking a financial point of view, the

coefficients in the vector β̄i represent the exposure to the common factors, or exogenous

exposure, while the coefficient ρ tracks the endogenous risk exposure which is influenced

by the network structure, and thus called network exposure. Further insights on the

interpretation of the model coefficients will be given in the following subsections.

The model in 12 can be rewritten in a more compact form as follows

(I − ρW ) (Rt − E [Rt]) = β̄Ft + ηt (14)

thus highlighting the fact that spatial proximity and the associated SAR model give

a structure to the contemporaneous relation matrix, which is now parametrized as

A = I − ρW (15)

The structural model now includes contemporaneous relations, driven by links or con-

nections across asset, systematic components and asset specific shocks. We now elaborate

on the relation between returns, risk, networks and risk factors.

3.1 Returns, networks and risk factors

The reaction of one asset to common factors and network exposure appears in a more clear

way once we rewrite the model in a reduced form representation. In this way we highlight

the impact of the network connections included in W on the reduced form parameters

(the reduced form betas and the reduced form shock’s covariance). The model reads as:

Rt = E [Rt] +Aβ̄Ft +Aηt (16)

where A = A−1, A = I − ρW and we assume that A is non-singular. For simplicity,
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we focus on the case where the network exposure is driven by a single parameter, the ρ.

However, all derivations and comments apply also to the more general parametrizations

of the matrix A that we will introduce in Section 4.

From LeSage and Pace (2009) we take the following relation

(I − ρW )−1 = I + ρW + ρ2W 2 + ρ3W 3 . . . , (17)

where the term ρW monitors the effect of linked assets (in spatial econometrics, the

neighbours), for instance if asset j is linked to asset i we have a non-null entry in Wij.

Differently, ρ2W 2 is associated with the effect on asset j induced by the assets linked to

asset i (those called in spatial econometrics, the second-order neighbours). The latter

relation can be further generalized to higher orders. Notably, the matrices W j might also

include a so-called feedback loop as, following the previous example, asset i can be linked

to asset j (the relation is thus bi-directional), causing the matrix W j to have non-null

elements on the main diagonal. We stress that, despite the summation has infinite terms,

by imposing that |ρ| < 1 we can easily ensure the effect of linked assets converges to zero.

On the contrary, if |ρ| > 1 we might have explosive patterns. In general, the coefficient ρ

takes values in the range
(
λ−1min, λ

−1
max

)
, with λmin and λmax are, respectively, the minimum

and maximum eigenvalues of W . In the case of row-normalization of the W matrix, in

spatial econometrics a commonly adopted range is [0, 1). We will further elaborate on the

values assumed by ρ in following sections.

By using 17 we can rearrange the model in 16 as

Rt = E [Rt] + β̄Ft +
∞∑
j=1

ρjW jβ̄Ft + ηt +
∞∑
j=1

ρjW jηt. (18)

Such a representation highlights that the impact of the common factors as well as of

the idiosyncratic shocks on the risky asset returns can be decomposed into two parts.

For both elements, the first component is the traditional, or direct, or structural impact,

while the second component is the impact associated with the network exposure. We can

16



thus define the following four elements:

a - β̄Ft: the structural exposure to common factors;

b -
∑∞

j=1 ρ
jW jβ̄Ft: the network exposure to common factors;

c - ηt: the structural impact of idiosyncratic shocks;

d -
∑∞

j=1 ρ
jW jηt: the network impact of idiosyncratic shocks.

Note that the network-related exposures depends on the structure of the matrix W as

well as on the parameter monitoring the network impact, the ρ. A relevant remark comes

from the network impact of common factors. Let’s take for simplicity a specific common

factor, that is, we focus on a single column of Ft and consider the impact of the m−th

factor on the risky asset returns

β̄m +
∞∑
j=1

ρjW jβ̄m. (19)

Equation (19) provides two relevant insights.

At first, we note that the network exposure to common factors acts as a multiplier of

the structural exposure if the ρ coefficient is positive (W elements are anyway positive).

Therefore, shocks to the common factors will be amplified by: the presence of connections

across assets, that is when, for asset i, the i−th row of W contains at least one non-null

element; the change in the impact of network connections, that is when the ρ coefficient

increases; by changes in the network structure, that is when the matrix W changes. Note

that, if asset i is not connected to other assets, all products ρjW jβ̄i are equal to zero.

From a different viewpoint, the presence of network exposure allows us to decompose

the betas into two components, a structural one, and a multiplier depending on the

network structure, the W matrix. The estimation of a standard factor model where the

data generating process includes network dependence across returns, will provide partial

information, returning only the combination of the two components.
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Now assume that for the risky asset i the m−th common factor is not relevant (that

is β̄i,m = 0). In this case, in the standard linear factor models, the common factor will

have no role in explaining the asset returns. However, when asset are linked and network

exposures are taken into account, a common factor to which a risky asset has a zero

structural exposure might still be relevant to explain the risky asset return evolution.

Such an effect is not direct but induced from the network exposure and is associated with

the existence of non null elements in the i−th row of the matrix W . Take for instance

the following case

W =


...

0i 1 0K−i−1
...

 (20)

where assets i is connected only to asset i+ 1 and subscripts denote the length of row

vectors of zeros. Moreover, assume the following factor exposure for both assets

β̄ =



...

β1,i 0 0 0

β1,i+1 β1,i+1 0 0

...


, (21)

where, in a multi-factor model, asset i is not exposed to factor 2 while asset i + 1

is affected by the same risk factor, and both assets are exposed to factor 1. Asset i

dependence on risk factors can thus be represented as

βM,iR
M
t + ρβ1,i+1F1,t + ρβ2,i+1F2,t +

∞∑
j=2

(
ρjW jβ̄Ft

)
|i (22)

where |i identifies the i−th element of a vector. Note that the last term on the right

represents further elements that can be specified only through the knowledge of the entire

W matrix. Therefore, even if a risky asset i is not (structurally) exposed to a common

factor (in the previous example, factor 2), the common factor will play anyway role if it
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impacts on the returns of the assets to which i is linked.

Such a result can be further generalized by focusing, for instance, on sector specific

risk factors. Those, in presence of a network exposure, despite being sector specific will

have a systematic impact on all connected assets. Moreover, if we disregard the network

exposure, we might also incur in the risk of misinterpreting the impact of risk factors. In

fact, by estimating the reduced form model we might label as common a factor that in

reality is structurally related just to a subset of the investment universe and impact on

other assets only through network connections.

A similar property exists for the idiosyncratic shocks. In fact, if we assume they are

uncorrelated, the existence of network connections implies that the structural shocks of

one asset impacts on the returns of all the connected assets. Therefore, shocks on single

assets can have effects on many other risky assets.6

From a pricing perspective, starting from the reduced from representation we can

easily show that the expected returns equal

E [Rt] = rf + β̄Λ +
∞∑
j=1

ρjW jβ̄Λ. (23)

Expected returns are thus influenced by network links that amplify the compensation

for being exposed to the common risk factors.Further, we note that the pricing result

depends on, and is thus conditional to, the network structure, as summarized by W ,

which we assume to be known and time invariant. In fact, if we postulate that the ρ

coefficient is positive and that the elements of W are all positive, the existence of links

across assets induces higher expected returns as opposed to the case where links are

absent. Moreover, bearing in mind the previous discussion, the expected returns might

depend on risk premiums associated with factors to which a given asset is not directly

6Summary measures of the exposure to common factors and idiosyncratic shocks can be obtained
by mimicking the approaches used in spatial econometrics. A discussion on this topic is included in
LeSage and Pace (2009), see their section 2.7; these measures have been used in a financial framework
by Asgharian et al. (2013). We also note that the decomposition of asset returns into four elements is
equivalent to that of Abreu et al. (2005) for separating the standard impact of covariates from that due
to the spatial links, and is thus an alternative to the impact measures of LeSage and Pace (2009).
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(structurally) exposed.

In addition, we stress that the use of a network which is very dense, thus implying

a W matrix almost full, will have further impacts. In fact, a full W implies that all

idiosyncratic shocks are correlated. However, from our viewpoint, this correspond to

an indirect evidence of model misspecification as an additional common factor is now

present but not taken into account. As a consequence, such a common factor risk must

be priced, and could generate the empirical evidences shown by Ang et al. (2006). The

latter case could also correspond to an empirical evidence challenging the validity of the

APT pricing approach. From a different viewpoint, our modeling framework still satisfy

the assumptions required for APT. As we will show in the next section, the presence of

a network exposure despite inducing correlation across the idiosyncratic shocks does not

exclude the existence of diversification benefits. In turn, this is sufficient to guarantee the

validity of the APT where risk premiums can be recovered from the reduced form model.

3.2 Risk decomposition

The model in 10 allows recovering a risk decomposition similar to that available for the

standard linear factor models in 2. The starting point is the reduced form introduced

at the beginning of the previous subsection, see 16. Equation 16 highlights that the

estimation output of standard multifactor models can be coherent with the presence of

contemporaneous links across assets. In fact, we can redefine β = Aβ̄ and εt = Aηt,

and estimate the reduced form mean parameters, the matrix β and the covariance of εt.

However, this do not lead to the identification of the structural parameters: the structural

factor loading β̄, and the network related coefficient ρ included in A. On the contrary,

our purpose is to identify structural parameters of 10. Given the knowledge of structural

parameters, the total variance of the risky assets can be written as follows

V [Rt] = Aβ̄β̄′A′σ2
m +AΩηA′ (24)
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Despite being equivalent to the traditional risk decomposition of a multifactor model,

24 provides a relevant insight. In fact, both the systematic and idiosyncratic risk com-

ponents are influenced by the presence of interconnections across assets as the matrix

A appears on both the right hand site terms. This shows also that, if we estimate the

reduced form model with standard linear methods, our evaluations of the systematic and

idiosyncratic risk components are in reality a blend of the structural loadings and idiosyn-

cratic risks with the network relations. Keiler and Eder (2013) suggest that the presence

of spatial links could be interpreted as a systemic risk contribution. However, the previous

decomposition provides an alternative view, where spatial dependence is not an additive

source of risk but rather a multiplicative one, where the asset-specific effect cannot be

easily recovered (as it depends on both the structure of the network and the associated

W matrix and the spatial parameters in ρ).

Obviously, the same structure appears at the portfolio level where we have

V [rp,t] = ω′Aβ̄ΣF β̄
′A′ω + ω′AΩηA′ω (25)

Since our main focus is a portfolio of risky assets, we start elaborating on the last

decomposition of the portfolio total risk. Nevertheless, we stress that comments similar

to those later reported apply also to each risky asset return. We assume that we want

to maintain a reference with the structural parameters β̄ as they represent the impact of

systematic movements on the portfolio. However, the existence of interconnections across

assets is affecting such impact at the portfolio level, moving it away from that we would

have observed if interconnections were not be present. The latter, common factor loading

without interconnections, would equal ω′β, but in reality, i.e. with interconnections, we

have ω′Aβ̄. We might thus interpret the product ω′A as a transformation of portfolio

weights, due to the impact of the interconnections across assets. The factor A amplifies or

reduces the relevance of one asset compared to its true monetary weight in the portfolio.
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Those modified weights represent the impact at the portfolio level of systematic shocks af-

fecting the risky assets. The interconnections are thus matched with the portfolio weights

rather than altering the betas. This is just a choice which we further motivate by the

decomposition we now introduce.

We first note that, if assets interconnections are not present (that is when A = I), the

idiosyncratic risk equals Ωη while the systematic risk component is β̄ΣF β̄
′. We rewrite

portfolio variance decomposition in 25 by adding and subtracting the portfolio idiosyn-

cratic and systematic variance components when those are not influenced by asset inter-

connections:

V [rp,t] = ω′Aβ̄ΣF β̄
′A′ω + ω′AΩηA′ω ± ω′β̄ΣF β̄

′ω ± ω′Ωηω (26)

After rearranging, the total portfolio variance can be recast into a decomposition

counting four different terms

V [rp,t] = ω′β̄ΣF β̄
′ω︸ ︷︷ ︸

I

+
(
ω′Aβ̄ΣF β̄

′A′ω − ω′β̄ΣF β̄
′ω
)︸ ︷︷ ︸

II

(27)

+ ω′Ωηω︸ ︷︷ ︸
III

+ (ω′AΩηA′ω − ω′Ωηω)︸ ︷︷ ︸
IV

(28)

We give the following interpretation to the four risk components:

I Is the structural systematic risk component that depends on the structural loadings

from the common factors and from the covariance of the common factors; this is the

exogenous systematic effect;

II Is the of asset interconnections on the systematic risk component, or first contribu-

tion of network exposure to the total risk; this is the endogenous systematic effect;

III Is the structural idiosyncratic component that depends only on the structural shocks
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covariance;

IV Is the effect of interconnections on the idiosyncratic risk, or second contribution

of network exposure to the total risk; this might be interpreted as an endogenous

amplification of idiosyncratic risks.

Note that by adding the second and fourth terms we obtain the total contribution of

network exposure to the total portfolio risk. We finally notice that the model with assets

interconnections gives the standard multifactor model if there are no interconnections,

that is W is a null matrix, or, if the coefficient ρ is statistically not significant.

In addition, the network exposure impact on the idiosyncratic part of the variance

implies that the diversification benefits might be endangered depending on the network

structure. In fact, despite the fourth term will decrease with increasing cross-sectional

dimension, the decrease speed will be smaller compared to the case without network

effects.

Similarly to the standard linear factor model, we can recover analytical elements in

a simplified setting. As we previously stated, the covariance matrix Ωη is diagonal; we

further assume that the diagonal elements are set to an average value σ̄2 = 1. In addition,

we take an equally weighted portfolio and focus on the limiting case where all assets are

connected (thus W has zeros only over the main diagonal, while off-diagonal terms equal

1
K−1 after row-normalization). In this case, it can be shown that

ω′AΩηA′ω = σ̄2ω′AA′ω (29)

=
σ̄2

K2
i′KAA′iK

=
K + ρ2

(K + ρ)2 (ρ− 1)2
σ̄2

where K is the asset number and iK is a K−dimensional vector of ones.7 Moreover,

we have that

7In the special case considered the diagonal elements of A equals (K−1)ρ−K
ρ2+(K−1)ρ−K and the off-diagonal
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limK→∞
K + ρ2

(K + ρ)2 (ρ− 1)2
σ̄2 = 0 (30)

thus preserving the diversification benefit. However, the idiosyncratic risk contribution

is higher than in the case without spatial dependence (i.e. with ρ = 0). In fact, we

can show that the above reported portfolio idiosyncratic risk is higher than 1
K
σ̄2 thus

confirming that term IV is positive.

The previous model gives thus a framework where we can analyse the impact at the

portfolio level of the interconnections we might observe across assets, and how those in-

terconnections can endanger/limit the benefits of portfolio diversification. The following

section provides some further evidences, examples and comments on a simulated frame-

work.

4 Model generalizations

4.1 Heterogeneous network reaction

The model in (14) has, however, a very restricted structure. In fact, there is a single

parameter, the ρ, driving the network exposure. This can be easily generalized by al-

lowing for asset-specific responses to the network structure. We can thus modify the

contemporaneous relation matrix of (15) into

A = I −RW (31)

where R = diag(ρ1, ρ2, . . . , ρK) is a diagonal matrix. This model is similar to the fixed

coefficient specifications for spatial panels discussed in Elhorst (2003). A clear advantage

elements are −ρ
ρ2+(K−1)ρ−K . Moreover, the diagonal elements of AA equal Kρ2+[(K−1)ρ−K]2

[ρ2+(K−1)ρ−K]2
and the off-

diagonal are (K−1)ρ2−2ρ[(K−1)ρ−K]

[ρ2+(K−1)ρ−K]2
. Summing up the elements in AA and simplifying we obtain the above

reported result.
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of such a structure is given by the possibility that assets have different network exposures,

as for each asset the model becomes

Ri,t = E [Ri,t] + ρi

k∑
j=1

wi,j (Rj,t − E [Rj,t]) + β̄iFt + ηi,t. (32)

To estimate the asset-specific parameters the network must satisfy an identification

condition: each asset must be connected to at least one other asset. If this is not the case,

the diagonal of matrix R must be restricted in such a way that not-connected assets will

not have a network exposure. Further details will be discussed in the estimation section.

4.2 Time-change in the network structure

The spatial econometrics literature generally assumes that the spatial proximity matrix

is time invariant. In fact, if the matrix W depends on physical measures, such as those

is the space, those can be safely assumed constant over time. However, in a financial

framework, the connections across assets might change over time for a number of reasons,

some of them being, for instance, the occurrence of an unexpected market shock, mergers

and acquisitions. Similar approaches have been adopted by Asgharian et al. (2013) and

Keiler and Eder (2013). We mentioned in Section 2 that the network structure can be

estimated on the basis of different approaches and data. The latter can be either time

series and/or cross sectional data. Therefore, the networks might be estimated, with the

same type of data, over different samples. Clearly, by changing the sample, we can easily

obtain different networks, and the time-evolution of connections across assets is itself

a relevant, but also expected, finding. Despite the time-variation of the networks, and

still assuming the network exogenous with respect to the linear structural model,8 the

contemporaneous matrix can be further re-written as

8We might relax the exogeneity assumption by stating that the network are known conditionally to
the past.
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At = I −RWt (33)

where we highlight that the network changes over time, and thus lead to a time-varying

W matrix. In turn, this induce time-dependence on the Amatrix, as well as on the reduced

form parameter matrices, both on the betas as well as on the covariance of idiosyncratic

shocks, that is, we have also heteroskedasticity. Nevertheless, we might postulate that

the dynamic of Wt is smooth, and operates at lower time scales as compared to those

monitoring the evolution of returns (for instance we can assume the W matrices change

over years, or after specific events such as crises). Therefore, the heteroskedasticity is

mild, and the betas are slowly evolving. The use of time-varying W matrices thus lead

to a time change in the spatial dependence differing from the approach of Blasques et al.

(2013) that obtain the same result by letting the R parameters being time-varying. We

notice that, if the network exposure exist and the structural parameters in the matrix

β̄ are constant, the estimation of the reduced form model over different samples might

suggest changes in the factor exposure. However, those changes are not present but due

to the misspecification of the network relations. We remind that the expected returns

are conditional to the W matrix. If the network exposure is time-varying, the expected

returns, conditional to Wt will be time varying.

A further issue associated with the change over time of Wt is the normalization. In

fact, if we let each single Wt to be row-normalized, we could reduce the impacts of changes

in the network density: an increase in the number of assets linked to asset j would lead

to a decrease of the impact coming from a single asset since the corresponding element

of Wt would diminish. As a consequence, with the introduction of dynamic Wt we also

suggest to consider a different normalization which we refer to as a max row normalization.

Formally, an non normalized WU
t will be normalized as
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Wi,j,t = WU
i,j,t

(
maxt

N∑
i=1

WU
i,j,t

)−1
. (34)

We stress that, when conditioning on the network structure, the pricing equation

assumes the following form (where we also introduced asset-specific coefficients for network

exposure):

E [Rt|Wt] = rf + β̄Λ +
∞∑
j=1

(RWt)
j β̄Λ. (35)

The heterogeneity with respect to connections creates reactions to shocks on the com-

mon factors that differ across assets due to the different exposures of assets to the factors,

but also due to the different impact of feedback loops coming from the underlying net-

work structure. The change over time of the Wt matrix, or the presence of a structural

break on the R coefficients (that we might locate in proximity of a crises or of an extreme

event) creates abrupt changes in the expected returns with the consequence of relevant

movements in stock prices. Therefore, the pricing, conditional to the network structure

becomes a function of the network structure: if the network changes, the local equilibrium

expected returns change. Alternatively, when we introduce a time-variation in the W ma-

trices, or in the R elements, the APT still holds and with risk premiums estimated in the

cross-sectional dimension starting from the reduced form model parameters and within a

certain time interval. However, if we focus on a standard pricing model, we neglect such

a potential local time-variation in expected returns. Note we refer to local equilibrium

as the expected returns in (35) are conditional to the network structure. The long range

equilibrium returns should be computed integrating with respect to the network dynamic.

4.3 Plurality of networks

This further generalization of the model refers to the possibility of constructing a net-

work structure from different data, for instance cross-exposures or estimation of causality

relations. This is both intuitive and feasible within our model. In fact, a-priori, we do
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not have information allowing us to order the alternative networks in terms of their rele-

vance, nor we cannot exclude some of them. However, competing networks can be easily

introduced in the model, allowing the data to provide guidance to network comparison.

In fact, the contemporaneous relation matrix can be written as

A = I −
m∑
j=1

ρjWj (36)

where m different networks are jointly introduced into a model. The estimated pa-

rameters can then provide useful details on the relevance/preference of different network

measures.9 We also note that distance matrices W recovered from a network approach

can be also jointly used with similar matrices obtained from different methods, such as

on the basis of economic sector partitions of assets as in Arnold et al. (2013) and Caporin

and Paruolo (2013), bilateral trades (Asgharian et al. 2013), or foreign direct investments

(Fernandez-Avila et al. 2012).

4.4 Contributing to and receiving from networks

We further note that the use of a matrix A = I −RW lead to a focus on the impact of

the network exposures where the asset-specific coefficients ρi represents the impact on i

coming from the assets linked to i, or, from a different viewpoint, it is the loading of i

from the network risk. We might, however, be interested on the effect of asset i on the

other assets, having thus a ρi coefficient that represents the impact of i to the assets to

which i is linked. We might see this as an outgoing effect of i to other assets through the

network, or as a contribution of i to the network factor.

This can easily be achieved with a simple modification of the model, by replacing A with

B = I −WR. With such a change, the return equation (32) becomes

9We note that, when the network exposure parameter are asset-specific, the introduction of different
W matrices requires some identification conditions that depend on the network structures.
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Ri,t = E [Ri,t] +
k∑
j=1

wi,jρj (Rj,t − E [Rj,t]) + β̄iFt + ηi,t. (37)

We now note that the ρj coefficients represent the impact of the j − th asset on the

other assets. Moreover, if we consider the reduced form representation of the model, we

have

Rt = E [Rt] + Bβ̄Ft + Bηt (38)

where B = B−1. The reduced form betas can again we seen as a by-product of both

the structural risk exposure, the β̄ and the inflating factor coming from the network, the

B. However, the structure of B has a different interpretation. In fact, the coefficients are

no more linked to the loading of the network risk but rather to the effect a given asset is

causing to other assets or to its contribution to the network risk.

4.5 On the sign of the ρ coefficient

Up to this point, we have not yet discussed the sign of the ρ coefficient. Intuitively, we

expect that the assets are positively related one to the other, as the links are coming from

a network. We thus imagine that shocks transmit to connected assets preserving their

sign. If we take simplified model with one single ρ coefficient, it is highly improbable

we will ever observe negative coefficients. In fact, a single coefficient represents a sort of

average reaction of the asset to the shocks coming from neighbors.

However, in a model accounting for the heterogeneity of the reaction to the network

exposure, negative asset-specific coefficients might appear. In other words, we cannot

exclude a-priori that a shock in one asset lead to an apposite movement of a linked asset.

We motivate such a finding by making a parallel with negative correlations. If two assets

are negatively correlated, their joint introduction in a portfolio lead to a decrease of

the overall variance as compared to the case in which only one of the two assets were

present. In a factor model, negative correlations across asset returns can be motivated by
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loadings to the (same) common factors having different signs. In our framework, negative

correlations across asset returns can emerge both in response to different sings in the factor

loadings but also due to the presence of negative asset-specific reaction to the network

exposure.

Consider the reduced form of our model as represented in equation (16). In this

case, the innovation term has a non-diagonal covariance. Let’s also assume that the

spatial proximity matrix W is time invariant and thus the reduced form model has time

invariant betas and homoskedastic innovations. If we estimate the reduced form model,

the innovations could show evidence of non-null correlations, some of them being negative.

They can be due both to the presence of opposite reaction to the common factors, whose

coefficients have been estimated by a biased estimator (due to model misspecification),

but also due to the presence of negative ρi coefficients.

In a general model with heteregenous asset reaction to the network exposure, the

components II and IV in the risk decomposition we have previously introduced, can

become negative. In such a case, the network exposure reduces risk, and this could also

be seen as a kind of flight-to-safety effect: if shocks hit financial assets and then transmit

to industrial pro-cyclical sectors, we cannot exclude that the anti-cyclical sectors will

anyway suffer.

Within our model, negative ρ might thus exist, but how can we interpret them from

a pricing perspective? We read them as evidences of risk absorption due to the network

exposure. In fact, a negative ρi allows a reduction of the exposure of one asset to the

common factors, since the i− th component of the second term in equation (19) becomes

negative. Risk absorption has consequences also to expected returns, leading to a reduc-

tion of the contribution of network exposure. In fact, also the i − th component of the

third term in equation (35) will become negative.
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5 Model estimation

We have seen how to interpret the model parameters and how to derive from the models

intuitive decomposition both on the returns as well as on the total risks. However, model

parameters must be estimated and this poses relevant challenges. Let us report the

simultaneous model equation

ARt = α + β̄Ft + ηt. (39)

As standard econometrics textbook reports, identification conditions are required to

estimate the parameters of A, α, β̄ and V [ηt]. The simple order condition of identification

requires that the model parameters must be less than the parameters we can recover

from the reduced form specification. In fact, the latter can be estimated by least square

methods, and structural parameters could be recovered thanks to their relation with

reduced form parameters. The reduced form model is

Rt = α? + β̄?Ft + εt. (40)

suggesting we can consistently estimate 4K mean parameters plus 1
2
K (K + 1) covari-

ance parameters. However, an unrestricted structural specification, despite having the

same number of parameters in the covariance, has 4K +K2 mean parameters.

The presence of assets interconnections, summarized into a network, allows a sensible

reduction of the number of parameters included in the matrix A. In fact, if we have

asset-specific network exposures and a single network, we have only K parameters in A.

However, this is not sufficient to achieve identification of the model remaining parameters,

since the order condition is still not satisfied. Identification is obtained by imposing the

diagonality of V [ηt]. Such a choice, which is economically motivated, allows satisfying

the standard order condition for identification.

Nevertheless, further constraints are generally required on the model parameters.
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Starting from the spatial econometrics literature, that takes a scalar time invariant ρ

coefficient and a time invariant row-normalized W matrix, we must impose that 1
λmin

<

ρ < 1
λmax

where λmin and λmax are, respectively, the minimum and maximum eigenvalues

of W . This constraint ensures the non-singularity of I − ρW .

In our framework we deviate from traditional approaches in several ways. We first

consider the case of a time-varying spatial matrix, that is Wt. A sufficient condition for

the invertibility of I − ρWt for all t is stated in the following assumption

Assumption 5.1. The coefficient ρ satisfies the following condition

λ̄−1min < ρ < λ̄−1max (41)

where

λ̄max = min {λt,max}Tt=1 (42)

λ̄min = max {λt,min}Tt=1 (43)

and λt,max and λt,min are, respectively, the minimum and maximum eigenvalues of a matrix

Wt. �

If we have a diagonal matrix R containing the asset-specific reaction to the spatial

links, we assume the non-singularity which is then validated in the estimation step of the

model:

Assumption 5.2. The diagonal coefficient matrix R is such that

I −RWt (44)

is non-singular for each matrix Wt. �

Note that the previous assumption covers both the case of a time-invariant and time-

varying spatial matrix. We further note that, when we consider a model with R, we must

impose an additional identification condition
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Assumption 5.3. The diagonal coefficient matrix R = diag (ρ1, ρ2, . . . , ρK) is such that

ρj = 0 if the matrix Wj =
[
W ′
j,1W

′
j,2 . . .W

′
j,T

]
, with Wj,t being the j−th row of Wt, has

non-null rank.�

The previous assumption requires, irrespective of the number of Wt matrices, that if

the j−th row of all the matrices Wt contains only zeros (that is the asset j is not linked to

any other asset in the various evolution of the network), then the asset j network impact

coefficient is restricted to zero as it cannot be identified. This condition ensures that the

asset specific impact to the network links is estimated only if such link exist for at least

one point in time.

Finally, we note that, if we introduce many spatial matrices, a further identification

condition is required. Let us assume the presence of m different time-invariant networks

that could have either a constant impact (with scalar ρ coefficients) or heterogeneous

impacts (with m matrices R. We impose the following:

Assumption 5.4. [i] If the matrix A satisfies A = I −
∑m

l=1 ρlWj, we assume A

is invertible. [ii] If the matrix A satisfies A = I −
∑m

l=1RlWl, we assume A is

invertible and the matrices Wj =
[
W ′
j,1W

′
j,2 . . .W

′
j,m

]
, with Wj,i being the j− th row

of matrix Wi, have all full column rank.�

The second item of the previous assumption requires that all the network impact

coefficients are identified. Otherwise, zero restrictions must be imposed on the matrices

Rl.

The use of covariance restrictions has a consequence for the estimation of model pa-

rameters. In fact, those must be jointly evaluated, despite the linear model structure

might allow for single equation (single asset) parameter estimation.

Under the two strong parametric restrictions we impose (the structure on A and the

absence of correlation across the idiosyncratic shocks), a viable approach is that of Full

Information Maximum Likelihood (FIML) methods. However, if K is even moderately

large, the total number of parameters to be estimated in the restricted structural model,
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7K, might be quite large. Fortunately, we can follow the approaches commonly used in

spatial econometrics, namely the use of concentrated likelihoods. As in Elhorst (2003),

and LeSage and Pace (2009), we start by writing the full model log-likelihood

L (Θ) =
T∑
j=1

lt (Θ) , (45)

lt (Θ) ∝ −1

2
log|Ω| − 1

2
e′tΩ

−1et, (46)

et = Rt − ᾱ−RWRt − β̄Ft. (47)

where Ω is a diagonal matrix. We can note that, if ρ is known, we can write

Rt −RWRt = Zt = ᾱ + β̄Ft + εt (48)

Therefore, with a know network exposure parameter matrix R, we might estimate the

parameters in ᾱ and in β̄ by least square methods, obtaining the well-known expressions.

In addition, we might even recover standard estimators for the innovation variance. This

suggests that the network exposure parameters can be easily obtained by maximizing the

concentrated likelihood obtained by replacing the other parameters by their least square

estimators.

This will be of a relevant computational importance as it allows reducing the param-

eters to be jointly estimated to 2K if we concentrate the likelihood with respect to ᾱ and

β̄, and to K if we concentrate also with respect to the innovation variance. Standard

errors can be recovered from the full-model likelihood by numerical evaluations of the

Hessian (and of the gradient if we take a robust parameters covariance matrix). Note

that this approach can be followed even if the spatial matrix W is time-varying, or with

zero restrictions added to specific parameters of R to ensure model identification.
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6 Simulation Analysis

To show the capabilities of the proposed framework and to underline the effect due to

model misspecification, that is, neglecting the network links across assets, we include in

this section a set of simulations.

6.1 Scalar network impact

At first, we concentrate on the simplest model, with time invariant W and scalar ρ. Such

a baseline design will provide some expected results, as we will point out in few lines.

The first data generating process we consider is a linear factor model with a unique risk

factor, a scalar network impact and a fixed (and known a-priori) network matrix W :

(I − ρW ) (Rt − E [Rt]) = β̄Ft + ηt, (49)

with the following specification for parameters, shocks and asset interconnections:

• We consider K = 100 assets, thus focusing on a somewhat large cross-sectional

dimension, and assume we simulate monthly returns;

• The ρ coefficient assumes fixed values ρ ∈ {0, 0.25, 0.5, 0.75} allowing to compare

the case of no network impact with different and increasing levels of network impact;

note that when ρ = 0 our model collapses on the traditional linear factor model;

• The factor loading coefficients are randomly generated from βi ∼ U (0.8, 1.2) , i =

1, 2, . . . , K with thus positive factor loadings with an average value of 1;

• We simulate the factor returns from a Gaussian density, Ft ∼ N (µF , σ
2
F ) with

µF = 0 and σF = 15% on a yearly basis;

• The risky assets expected return equal E [Rt] = rf + (I − ρW )−1 βΛ with β being

the K−dimensional vector of betas simulated above, the factor risk premium equals

5% on a yearly basis, and the risk-free rate is set to 1% on a yearly basis;
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T ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Distortions for ρ
200 0.067 0.084 0.062 0.075 0.050 0.058 0.028 0.032
500 0.029 0.040 0.028 0.037 0.024 0.030 0.014 0.017
1000 0.015 0.024 0.014 0.023 0.012 0.019 0.007 0.011

Cross-sectional average of the β distortions
200 -0.072 0.091 -0.088 0.107 -0.096 0.107 -0.119 0.133
500 -0.032 0.043 -0.040 0.053 -0.045 0.061 -0.059 0.072
1000 -0.016 0.026 -0.020 0.032 -0.022 0.034 -0.031 0.045

Table 1: Mean and standard deviation for the ρ and β distortions under correct model
specification across different values of the network impact and different sample sizes.
Values computed across 500 replications.

• The W matrix comes from a simple and naive design: each of its off-diagonal el-

ements is extracted from a Bernoulli density wi,j ∼ B (pB) with pB = 0.3; the

simulated W is then row-normalized;

• The shocks are extracted from a Gaussian ηt ∼ N (0,Ω), with Ω being a diagonal

matrix with diagonal elements extracted from a uniform, ω
1
2
i,i ∼ U (10%, 25%) with

limits referring to a yearly horizon;

• We simulate 500 sequences of monthly returns with three different sample sizes,

T = 200, 500, 1000.

The baseline simulation provides expected results. Firstly, the estimators of the ρ

coefficients and of the (structural) β vector have an asymptotically normal density with

dispersion decreasing with the sample size, see Table (1). Figure (1) report a kernel

estimate of the distortion ρ̂ − ρ across different values of ρ, while Figure (2) provides a

kernel density for the cross-sectional average (over assets) of the distortions β̂i−βi, i =

1, 2, . . . , K; all graphs contain the plots for the three different sample sizes. We note that

the coefficients converge to the true values and that their dispersion decreases with the

sample size, as expected.

If we estimate a standard linear factor model on the series simulated from (49), that

is we fit
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Figure 1: Distortions of the ρ coefficients under the correctly specified model. True values:
(a) ρ = 0, (b) ρ = 0.25, (c) ρ = 0.5, and (d) ρ = 0.75. Lines refer to different sample
sizes, T = 200 thin grey line, T = 500 dashed line, and T = 1000 thick black line.
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Figure 2: Cross-sectional average of the distortions for the β coefficients under the cor-
rectly specified model across different ρ values. True values: (a) ρ = 0, (b) ρ = 0.25, (c)
ρ = 0.5, and (d) ρ = 0.75. Lines refer to different sample sizes, T = 200 thin grey line,
T = 500 dashed line, and T = 1000 thick black line.

38



T ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Cross-sectional average of the distortions γ̂1 − β
200 0.000 0.026 0.337 0.027 1.013 0.028 3.033 0.043
500 0.000 0.016 0.337 0.017 1.011 0.018 3.034 0.027
1000 0.000 0.011 0.337 0.012 1.012 0.012 3.035 0.019

Average residual correlations under the misspecified linear factor model
200 0.000 0.003 0.009 0.007 0.034 0.014 0.149 0.035
500 0.000 0.002 0.009 0.007 0.033 0.013 0.149 0.035
1000 0.000 0.001 0.009 0.006 0.033 0.013 0.149 0.035

Average residual correlations under the correctly specified model
200 -0.001 0.004 -0.002 0.003 -0.002 0.003 -0.002 0.003
500 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002
1000 0.000 0.001 0.000 0.001 0.000 0.001 -0.001 0.001

Table 2: Mean and standard deviation for the cross-sectional average of the distortions
γ̂1 − β under model misspecification, upper panel; average residual correlation under
model misspecification, central panel, and under correct model specification, lower panel.
Statistics computed across different values of the network impact and different sample
sizes. Values computed across 500 replications.

Rt = γ0 + γ1Ft + εt (50)

we have that γ0 = E [Rt], γ1 = (I − ρW ) β, and V [εt] = (I − ρW )−1 Ω (I − ρW ′)−1.

Therefore, estimating the linear factor model we estimate the reduced form representation

of our model with network dependence. The γ1 coefficients, by construction, will be larger

than the structural coefficients β when we simulated from a data generating process with

positive ρ. This is confirmed by Figure (3) and Table (2) where we report the kernel

density for the cross-sectional average of γ̂1,i − βi, i = 1, 2, . . . K and some descriptive

statistics. Moreover, the residuals of the linear factor model will be correlated, with

average correlation increasing with ρ, see Table (2).

Figure (3) and Table (2) confirm that by fitting a linear factor model we estimate a

beta much larger than the structural value, with distortion increasing with the impact

coming from network connections. As a consequence, the value of the true and structural

factor loading might sensibly differ from the one empirically observed, being doubled for
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Figure 3: Cross-sectional average of the distortions γ̂1 − β under the misspecified model
across different ρ values for the data generating process. True values: (a) ρ = 0, (b)
ρ = 0.25, (c) ρ = 0.5, and (d) ρ = 0.75. Lines refer to different sample sizes, T = 200
thin grey line, T = 500 dashed line, and T = 1000 thick black line.
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ρ values equal to 0.5, thus not particularly elevate.

When analyzing the residuals correlations, we see that they are zero when the linear

factor model is correctly specified, that is when ρ = 0. However, in the presence of network

impact, the residual correlations start drifting away from zero, with values increasing with

ρ. On the contrary, under correct model specification, the residual correlations are almost

zero, as expected.

We move then to the estimation of the factor risk premium. We adopt the widely used

two-pass regression approach of Black et al. (1972) and Fama and McBeth (1973). In

linear factor models the first stage corresponds to the estimation of the factor loadings,

that is the betas. Differently, in our model the first stage equals the estimation of reduced

form betas starting from the estimated ρ coefficient and corresponds to a by-product

of the concentrated maximum likelihood estimation approach adopted. We stress that,

under scalar ρ and with a static W , the reduced form betas and the linear factor model

betas are asymptotically equivalent. The second regression is a cross-sectional one, takes

as dependent the average risky asset returns and regress them on the estimated betas

(reduced form betas in our model). As pointed out by Black et al. (1972) the estimated

risk premium suffer for an error-in-variable problem and is thus inconsistent. Standard

solutions include: grouping assets into portfolios, increasing the sample size, increasing

the cross-sectional dimension. We take the second one, since we are working in a purely

simulation setting where we do not control for risky asset market value. As a consequence,

we expect distortions in the estimation of the risk premiums for short sample sizes, and,

given the asymptotic equivalence of the betas no difference between our model and the

misspecified linear factor model. However, such an expected result is not impacting on

the purpose of our simulation design as our final objective is not the correct estimation of

the risk premiums but rather highlighting the differences in the estimated risk premiums

obtained from either a correctly specified model or a misspecified linear factor model.

We finally point out that the cross-sectional estimation of the risk premium could come

from either a standard OLS as well as a GLS estimator. For the latter, we note that the
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T ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Estimated risk premiums from a linear factor model
200 0.415 0.317 0.417 0.318 0.418 0.318 0.419 0.319
500 0.417 0.198 0.418 0.199 0.418 0.199 0.418 0.199
1000 0.423 0.137 0.423 0.138 0.423 0.138 0.423 0.138

Estimated risk premiums from a correctly specified model
200 0.418 0.322 0.419 0.323 0.420 0.324 0.421 0.325
500 0.418 0.200 0.419 0.200 0.419 0.200 0.419 0.200
1000 0.423 0.138 0.423 0.138 0.424 0.138 0.424 0.138

Table 3: Mean and standard deviation of the estimated risk premiums across the 500
replications. The cross-sectional regression adopts an OLS estimator. The true risk-
premium corresponds to 0.4167 at the monthly frequency.

correct model specification allows for a more precise design of the residuals covariance (in

the reduced form representation of our model).

We report in Table (3) the estimated risk premiums. As expected, the premiums are

very close to the true value with a dispersion decreasing in T . The limited distortions

depend on the large sample sizes we consider.10 No difference emerge by comparing the

correctly and incorrectly specified models. Finally, we point out that both the OLS and

GLS estimators provide substantially equivalent results, and thus we reported only the

OLS case.

As a further example, we consider the 1/N portfolio variance, concentrating on the

role played by the idiosyncratic risks. We order assets on the basis of their idiosyncratic

risk and decompose the portfolio idiosyncratic risk into the structural component and the

network effect. We consider portfolios with N varying from 5 to 100. Figure 4 reports

the decomposition both in absolute and relative terms. Notably, the impact of network

exposure induces a decrease of the idiosyncratic risks much smaller than the one associated

solely on the structural risks, and with a relative weight increasing over time. Such a result

lead to diversification benefits that are reduced compared to the ideal case of independent

idiosyncratic shocks (associated with the reduced-form model representation).

10Similar results have been obtained with shorter samples of 60 and 120 observations.
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Figure 4: 1/N portfolio idiosyncratic risk components: structural risk (blue) and network-
related risk (red) across different portfolio sizes using the same assets adopted in the
simulations and with ρ = 0.5. Absolute decomposition (upper) and relative decomposition
(lower).
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To evaluate the impact of the various settings of the data generating process, we run

a number of robustness checks: we simulate the β vector from a Gaussian with mean 1

so that betas are more concentrated around the mean but also characterized by a larger

variance; we increased the volatility of the common factor to a yearly value of 25%; we

changed the network density by setting pB = 0.15 and pB = 0.45, or, maintaining the

same density, we simulate different networks; we modified the factor risk premium to

Λ = 3% or Λ = 10%; we increased the relevance of the idiosyncratic shocks sampling

elements of Ω as ω
1
2
i,i ∼ U (20%, 50%).

All these elements do not affect the previously reported results.11

6.2 Heterogeneous network impact

The second simulation design we consider adds the heterogeneity in the network impact.

We thus move from the ρ coefficient to the diagonal matrix R. The asset-specific network

impact comes from a Normal density, ρi ∼ N (0.5, 0.01), such that with probability close

to 99% the ρ takes values between 0.25 and 0.75. In order to control the computational

time, we reduce the cross sectional dimension for this simulation and set K = 20.

For that case, we provide in Figure (5) a kernel density for the cross sectional average

of ρ̂i − ρi, i = 1, 2, . . . , K for different sample sizes.

We do not provide further results for the estimated factor loadings and residual corre-

lations associated with the fit of the standard linear factor model as they provide the same

evidences as in the first simulation design: the betas are larger than the structural values

and residuals are correlated. We only point out that, in the presence of heterogeneity in

the network impact, residuals correlations are even higher than in the case of scalar ρ.12

Differently, we provide in Table (4) further evidences from the risk premium estima-

tion. Notably, the estimated risk premiums present some slight distortion (overestimation)

as opposed to the previous simulation design. We link them to the introduction of the

asset heterogeneous impact of the network, that intuitively amplifies the impact of the

11Additional figures and tables are available upon request.
12Additional tables and figures are available upon request.
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Figure 5: Distortions of the cross-sectional average of diag (R) under the correctly speci-
fied model. Lines refer to different sample sizes, T = 200 thin grey line, T = 500 dashed
line, and T = 1000 thick black line.
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Misspecified model Correctly specified model
T OLS GLS OLS GLS

Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev
200 0.440 0.326 0.440 0.324 0.443 0.331 0.442 0.328
500 0.443 0.201 0.443 0.200 0.444 0.202 0.444 0.201
1000 0.429 0.149 0.429 0.148 0.429 0.149 0.430 0.147

Table 4: Mean and standard deviation of the estimated risk premiums across the 500
replications. The cross-sectional regression adopts an OLS or GLS estimator. The true
risk-premium corresponds to 0.4167 at the monthly frequency.

error-in-variable problem. Increasing the sample size, the distortions tend to decrease

as well as the dispersion of the estimated risk premiums. There are no differences by

contrasting the two estimation approaches, as in the previous case. Finally, as expected,

the correctly specified model and the misspecified model provide comparable results. We

stress this is a consequence of the data generating process we consider, where the risk

premium is estimated by looking at the reduced form betas. In the current DGP, with

heterogeneous network impacts, the linear factor model provides consistent estimates of

the reduced form betas, but does not allow separating the network and structural elements

affecting the betas.

For the first design we provided an example associated with the decomposition of

the 1/N portfolio idiosyncratic risk into the standard component and network-related

component. We repeat here the same exercise with two different R matrices: the first is

the one used above, while the second allows also for the presence of negative ρi coefficients

in half of the simulated assets. This second example allows highlighting the risk absorption

effect of the network exposure. While for the first case results are qualitatively similar

to those of the scalar ρ case. Differently, when we introduce negate ρi values, and order

assets with respect to their ρi value (in a descending order), we note that the introduction

of assets with negative ρi lead to a sensible decrease of the interconnection impact on the

idiosyncratic risk (the fourth component of the variance decomposition). Such an effect

could even become negative, thus leading of the absorption of risk by the linked assets,

or, in other words, as the amplification of the diversification benefits. This is evident
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Figure 6: Fourth component of the 1/N portfolio variance - impact of interconnections
on the idiosyncratic risk. Assets are ordered in a descending way over ρi values.

in Figure (6) where we report the contribution of the fourth component to the 1/N

portfolio variance, where the portfolio size increases from 5 to 100 assets, and assets have

a descending order on ρi. The last 50 assets have negative network impact, and the

contribution of the interconnections on the idiosyncratic risk becomes negative around

asset 80.

6.3 Dynamic W and heterogeneous network impact

In the third simulation design we combine the heterogeneity in the asset network impact

with the time-change in the network connections across assets. Now the data generating

process is

(I −RWt) (Rt − E [Rt]) = β̄Ft + ηt, (51)

Note that, differently from the previous designs, the expected returns, conditional

to Wt, are dynamic. To generate a time-change in the Wt we chose a simple approach,

starting from the empirical evidence that the links across assets are persistent, that is,
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we do not have networks completely different at time t and at time t + 1. Moreover, as

commented in the previous section, we do not allow for a change in Wt at every t but

rather modify Wt every m = 20 observations.

We change Wt according to the following scheme: at time 1 we sample W1 as in

the first design, that is the off-diagonal elements wi,j ∼ B (pB) with pB = 0.3; every m

observations, each off diagonal wi,j, can take only two values, 0 or 1 and is driven by

a Markov chain with diagonal elements of the transition matrix set as p00 = p11 = 0.9.

Such a choice ensures persistence in the Wt with possible long-lasting increases/decreases

in the associated network density. Finally, we point out that the Wt matrices have been

normalized with the maximum row normalization.

We now provide a number of results recovered from this simulation design. At first,

we focus on the coefficients ρi. As in the previous case, Figure (7) reports the kernel

density for the average of diag
(
R̂
)
− diag (R) for different sample sizes. We observe a

convergence (on average) of the concentrated estimates to the true values with increasing

sample sizes, as expected.13

Secondly, we note that, with the data generating process in (51), the linear factor

model does not estimate the reduced from betas as, by construction, those are time-varying

γ1 6= (I −RWt)
−1 β. Therefore, to evaluate the distance between those two values, we

compute the distortions γ̂1−(I −RWt)
−1 β and compare them with the distortions under

the correctly specified model
(
I − R̂Wt

)−1
β̂ − (I −RWt)

−1 β; in both cases, we focus

on the cross-sectional averages of the distortions. We collect results in Table (5). From

the table it clearly emerges that the correctly specified model captures the evolution

of the reduced form betas which, we remind, are conditional to the knowledge of the

network links. Moreover, the distortions decreases both in mean and in their dispersion.

Differently, for the misspecified model the distortions do not clearly converge toward the

true values but seems to be characterized by an average overestimation of the factor

impact.

13Detailed tables with coefficient-specific results are available upon request.
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Figure 7: Distortions of the cross-sectional average of diag (R) under the correctly speci-
fied model. Lines refer to different sample sizes, T = 200 thin grey line, T = 500 dashed
line, and T = 1000 thick black line.

T Misspecified model Correctly specified model
Mean Std.dev Mean Std.dev

200 0.153 0.008 0.082 0.014
500 0.205 0.003 0.055 0.008
1000 0.194 0.002 0.040 0.006

Table 5: Mean and standard deviation of the cross sectional averages for the distortions
between the estimated betas under the misspecified linear factor model and the reduced
form betas induced by the true model (left columns), and between estimated and true
reduced form betas under the correctly specified model (right columns).
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Misspecified model Correctly specified model
T OLS GLS OLS GLS

Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev
200 0.413 0.316 0.412 0.314 0.417 0.323 0.415 0.355
500 0.417 0.194 0.418 0.193 0.418 0.200 0.415 0.217
1000 0.417 0.146 0.417 0.146 0.419 0.149 0.417 0.157

Table 6: Mean and standard deviation of the estimated risk premiums across the 500
replications. The cross-sectional regression adopts an OLS or GLS estimator. The true
risk-premium corresponds to 0.4167 at the monthly frequency.

Finally, we move to the risk-premium estimation and report in Table (6). In that case,

the GLS estimator we adopted for the correctly specified model takes into account the

known covariance structure across across the reduced form residuals (and thus account

for an impact of the network links in the estimation of the residual covariance). We first

highlight that the OLS and GLS estimates are substantially equivalent, thus there is no

effect associated with the estimator adopted. Then, we come to the most interesting

finding: the risk premium are very close to the true values for both the correctly and

incorrectly specified models, and similarly the risk premium dispersions are very close

under the two estimated models. Distortions were somewhat expected, however, they

have been canceled out by two elements. Firstly, by the introduction of an averaging

across the different Wt matrices. In fact, under the linear factor model we estimate

the betas using the entire sample size, implicitly being affected by the various networks.

The reduced form model estimators are implicitly averaging across the Wt. Secondly,

by the pattern characterizing the Wt matrix, which is not exploding. Nevertheless, this

second element has a minor role. Further simulations with different dynamic for the Wt

introducing a linear or exponential increase in the network density, or a level shift in the

network density, confirm the finding.14

14Additional results are available upon request.
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7 Conclusions

Part of the literature postulates that systemic risk is strictly related (if not equal) to

systematic risk. In this paper we elaborate on this hypothesis and introduce a modelling

framework where systemic and systematic risks co-exist. The model is a variation of the

traditional CAPM where networks are used to infer the exogenous/lagged and contem-

poraneous links across assets. We show that this approach allows us to decompose the

risk of a single assets (or a portfolio) in four components: the two classical systematic

and idiosyncratic components and (i) the impact of the asset interconnections on the sys-

tematic risk component, that is the contribution of network exposure to the systematic

risk component and (ii) the effect of interconnections on the idiosyncratic risk on the

systematic risk component, that is the amplification of idiosyncratic risks that generates

systematic/non diversifiable risk. Our approach allows us also to decompose the risk pre-

mium component of returns in three components: the risk premium associated with (i)

common factors exposures, (ii) impact of asset connections to common factors, and (iii)

the amplification effects of idiosyncratic risk. The simulation analysis we perform shows

that the new model we propose can be used to analyze in detail which implications differ-

ent notions of systemic risk have for equilibrium stock returns and volatilities and analyze

how similar to or different from exposure to common factors systemic risk actually is.

This new model is relevant for policy makers and regulators, since they need to be aware

of the implications of the different possible policy choices on network connections and

their effects on equilibrium stock returns and volatilities, as well as to investors and other

market participants, since they need to understand if and to what degree systemic risk

network connectivity has an impact on risk premia, volatilities, and spillovers between

markets. The model could be analyzed not only through simulations but also on real

data. We plan to work on this in our next project.
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