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Abstract

We take a Bayesian perspective and provide a novel methodology to make robust system-wide inference

on uncertain, time-varying, cross-firm financial linkages. We use this framework to investigate contagion

and systemic risk within the S&P100 blue chips, and find that firms interconnectedness increased across

the period 1999/2003 (e.g. Gramm-Leach-Bliley act, financial scandals, etc.), and the great financial

crisis. The empirical analysis shows that firm-level network centrality does not depend on market values,

while is positively correlated with financial losses. Further, we show that systemic risk partly correlates

with the business cycle and with exposures to sources of systematic risks.
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1 Introduction

The financial crisis of 2007/2009 has shown that liquidity shocks, insolvency, and losses can

quickly propagate affecting institutions in different markets, with different sizes and structures.

Investigate how cross-firm linkages evolve over time is therefore of first order importance for con-

tagion and systemic risk management purposes. Surprisingly, however, cross-firm connectivity

remains a rather elusive concept, in many respects poorly identified and empirically measured

in dynamic contexts.1

In this paper, we address this issue by taking an asset pricing perspective and develop a

unifying framework to identify cross-firm connectedness in large dimensional time series settings,

where systematic and systemic risks are not mutually exclusive. Our methodology directly refers

to the concept of networks. Network analysis is omnipresent in modern life, from Twitter to

the study of the transmission of virus diseases. Broadly speaking, a network represents the

interconnections of a large multivariate system, and its graph representation can be used to

study the properties of the transmission mechanism of a shock (e.g. patient zero). We remain

agnostic as to how network connectivity arises; rather, we take it as given and seek how to

capture it correctly for systemic risk measurement purposes.

For a given linear factor pricing model, we model contagion and systemic risk as a shift in

the strength of cross-firm network linkages, which are inferred system-wide from the covariance

structure of the model residuals. This is consistent with the common definition of contagion

as a significant and potentially persistent jump in cross-sectional correlations (see Forbes and

Rigobon 2000). Also, by looking at the model residuals, we allow systematic and systemic risks

to coexist, such that firm-specific exposures to sources of systematic risks directly depend on

the level of aggregate network connectivity.

This paper builds on a recent literature advocating the use of network analysis in eco-

nomics and finance to make inference on the connectedness of institutions, sectors and countries,

1See among others Forbes and Rigobon (2000), Forbes and Rigobon (2002) and Corsetti, Pericoli, and Sbra-
cia (2005), Adrian and Brunnermeier (2010), Acharya, Pedersen, Phillippon, and Richardson (2011), Corsetti,
Pericoli, and Sbracia (2011), Billio, Getmansky, Lo, and Pelizzon (2012), Bekaert, Ehrmann, Fratzscher, and
Mehl (2014), Barigozzi and Brownlees (2014), Diebold and Yilmaz (2014), Brownlees and Engle (2015), Giglio,
Kelly, and Pruitt (2015) just to cite a few.
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such as Allen and Gale (2000), Goyal (2007), Jackson (2008), Easley and Kleinberg (2010),

Billio et al. (2012), Hautsch, Schaumburg, and Schienle (2012), Ahren and Harford (2014),

Barigozzi and Brownlees (2014), Diebold and Yilmaz (2014),Timmermann, Blake, Tonks, and

Rossi (2014), Brownlees, Nualart, and Sun (2014), Ahern (2015), and Diebold and Yilmaz (2015).

In particular, Billio et al. (2012) and Diebold and Yilmaz (2014) show that the strength of con-

nectedness of financial institutions changed over time, substantially increasing across market

turmoils. In the spirit of Diebold and Yilmaz (2014), we provide a unifying framework to em-

pirically measure systemic risk via direct inference on unobservable, time-varying, cross-firm

linkages.

We take steps from this literature in several important directions. We propose a joint

inference scheme on both the network structure and the model parameters in a single step.

Standard empirical methodologies are based on pairwise correlation and Granger causality to

build the economic network; these measures tend to overestimate the number of linkages, are

static in nature and tied to linear Gaussian settings, which makes them of limited value for

systemic risk measurement in dynamic contexts (see e.g. Forbes and Rigobon 2000, Ahelegbey,

Billio, and Casarin 2014, and Diebold and Yilmaz 2014). In this paper, we propose a system-

wide inference scheme based on an underlying undirected Graphical model, that allows to

simultaneously consider all of the possible linkages among institutions in a large dimensional

dynamic setting via parametric and conditional independence constraints.2

Also, we fully acknowledge the fact that parameters are uncertain. Existing methodologies

extract the network structure assuming the parameters of the model are constant in repeated

samples. As a result, the derived inference is thus to be read as contingent on the econometrician

having full confidence in his parameters estimates. Yet, alternative conceivable values of the

parameters will typically lead to different networks. In this paper, we provide a robust finite-

sample Bayesian estimation framework which helps generate posterior distribution of virtually

any function of the model parameters, as well as sufficient statistics for the underlying economic

network. Such posterior estimates allow to test hypothesis on the nature and structure of the

network linkages in a unified setting, which the earlier literature did not provide. Following

2See Whittaker (1990); Dawid and Lauritzen (1993), Lauritzen (1996), Carvalho and West (2007), Wang and
West (2009) and Wang (2010) for more detailed discussions on graphical models and their applications.
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previous research, we take into account the fact that contagion and systemic risk are more

shift concepts than steady states (e.g. Forbes and Rigobon 2000, Billio et al. 2012 and Diebold

and Yilmaz 2014). Based on this intuition we suggest the presence of distinct unobserved

regimes driving the dynamics of network connectivity. Regimes are identified on the basis of

a weighted eigenvector centrality measure, which allows to effectively separate states according

to the density of the network.

Empirically, the paper focuses on a set of 100 blue-chip companies from the S&P100 Index.

We consider those institutions with more than 15 years of historical data. We are left with 83

firms. Returns are computed on a daily basis, dollar-valued and taken in excess of the risk-free

rate. The sample is 10/05/1996-31/10/2014 (4821 observations for each institution), for a total

of more than 400,000 firm-day observations. Our emphasis on stock returns is motivated by the

desire to incorporate the most current information for systemic risk measurement; stocks returns

reflect information more rapidly than non-trading-based measures such as accounting variables,

deposits, credits and loans, especially considering such information is mostly not available on a

daily frequency.

We also consider the impact of common sources of systematic risk such as, for instance, the

return of aggregate financial wealth in excess of the T-Bill rate, i.e. the CAPM. Specifying a

factor model does not imply that we take a stand on the mechanism that transfers fundamentals

shocks into cross-sectional dependence. Of course, given its residual nature, any statements on

systemic risk will be conditional on a correct specification of the factor model (see, e.g. Bekaert

et al. 2014). Our methodology is rather general and can be applied to any linear factor pricing

model. To mitigate the model selection bias we consider other popular theory-based factor

pricing models. In addition to the CAPM, we consider the three-factor model proposed by

Fama and French (1993), and an implementation of the Merton (1973) intertemporal extension

of the CAPM (I-CAPM) including shocks to aggregate dividend yield and both default- and

term-spreads as state variables, in addition to aggregate wealth (see Petkova 2006). The results

are robust across different factor model specifications. Data are from the Center for Research in

Security Prices (CRSP), the FredII database of the St. Louis Federal Reserve Bank, Ibbotson

Associates, and Kenneth French’s website.
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Our empirical findings show that we can identify two regimes of network connectivity,

with high systemic risk characterizing financial markets across the period 1999/2003 (e.g.

Gramm-Leach-Bliley act, dot.com bubble, Financial scandals), and the great financial crisis

of 2008/2009. Few financial firms such as JP Morgan, Bank of America and Bank of New York

Mellon turn out to play a key role for systemic risk management, as they heavily outweigh other

firms within the economic network. This pattern holds also at the industry level, with industries

classified according to the Global Industry Classification Standard (GICS) developed by MSCI.

In fact, while the Energy sector is key within periods of low systemic risk, the financial sector

is central for the propagation of firm-specific shocks when the economic network is dense. This

evidence is in line with Barigozzi and Brownlees (2014) and Diebold and Yilmaz (2014).

Also, a simple cross-sectional regression analysis and rank-correlation coefficients show that

firms that are central in the economic network do not have the highest average market value.

We provide evidence that companies with higher network centrality, are more likely to suffer

significant average maximum percentage losses when aggregate connectivity is bigger. In this

respect, our network centrality measure is similar to the marginal expected shortfall (MES)

originally proposed by Acharya et al. (2011), which tracks the sensitivity of firm ith’s return to

a systemic extreme event, thereby providing a market-based measure of firms fragility.

Finally, we show that both unexplained returns and exposures to sources of systematic risks

changes across different regimes of aggregate network connectivity. For instance, the Jensen’s

alpha on financial firms tend to be lower when aggregate systemic risk is high, which corresponds

to an increase in the exposures to market risk. By using a Probit regression analysis we show

that our model-implied aggregate systemic risk measure is positively correlated with the business

cycle.

The remainder of the paper proceeds as follows. Section 2 introduces Graphical models.

Section 3 lays out our modeling setting. Section 4 discusses the data, the prior elicitation and

reports the main empirical results. The relationship between systemic risk and value losses is

investigated in Section 5. Section 6 investigates how network centrality relates to proxies for

the business cycle. Section 7 concludes. We leave to the Appendix derivations details, results

on a simulated dataset, and a set of convergence diagnostics.
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2 Background on Gaussian Graphical Models

Graphical models are statistical objects that summarize the marginal and conditional indepen-

dences within a set of random variables by means of graphs. A graph is characterized by the pair

Gt = (V,Et) where V is the vertex set of N nodes and Et defines the edge-set, where the nodes

represent the variables of the system and the edges define the nature of the interconnections.

Let Xt = (X1,t, · · · , XN,t) ∈ RN ∼ N (0,Σt), where Xi,t is the realization of the ith variable at

time t. If the vertices V of this graph are put in correspondence of each firm, the edge set Et

induces conditional independence relationships on Xt via a Markov property of the nodes (see

Erdös and Rényi 1959, Dempster 1972, Dawid and Lauritzen 1993, Giudici and Green 1999 and

Carvalho and West 2007 for more details).

More precisely, the Markov property determined by Gt states that, for all 1 ≤ i < j ≤ N ,

eij,t = 0 ⇔ Xi,t⊥Xj,t|XV \{i,j}

Therefore, the correlation betweenXi,t andXj,t conditionally on the remaining variablesXV \{i,j}

is null as far as the structure implied by the graph Gt = (V,Et) constrain an edge to be equal

to zero. Figure 1 shows an example of an undirected graph in which V = {1, 2, 3, 4, 5, 6, 7, 8},

and linkages are represented by covariance terms Et = {σ12, σ13, σ23, σ45, σ46, σ56, σ78}.

[Insert Figure 1 about here]

Such sparse structure allows to decompose the conditional covariance structure of Xt reducing

a high-dimensional problem to a collection of local linkages. Using the framework of Dawid

and Lauritzen (1993), Giudici and Green (1999) and Carvalho and West (2007), we can define

Σt as an Hyper-Inverse Wishart (HIW) distribution, with hyper-parameters (d,D) denoted by

Σt|Gt, d,D ∼ HIW (Gt, d,D), if for Σt ∈ M(Gt) the set of all positive-definite symmetric

matrices with elements equal to zero for all (i, j) /∈ Et;

p (Σt|Gt, d,D) =

∏
c∈C p (Σ

c
t |dc, Dc)∏

s∈S p (Σ
s
t |ds, Ds)

, (1)
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where for each c ∈ C, Σc
t ∼ IW (dc, Dc) and s ∈ S, Σs

t ∼ IW (ds, Ds) (see Hammersley and

Clifford 1971 and Dempster 1972).

3 A Markov Regime-Switching Factor Pricing Approach

We assume systematic risk factors are common across institutions, and consider a seemingly

unrelated regression (SUR) model. Let yit represents the excess returns on the ith institution

at time t, and xit the ni-dimensional vector of systematic risk factors with possibly a constant

term for individual i at time t ; the model dynamics can be summarized as

yt = X ′
tβ̃t + εt, εt ∼ NN

(
0, Σ̃t

)
(2)

t = 1, . . . , T , where yt = (y1t, . . . , yNt)
′ is a N -dimensional vector of returns in excess of the risk-

free rate, Xt = diag{(x′
1t, . . . ,x

′
Nt)} a p×N matrix of explanatory variables plus intercept, with

p =
∑N

i=1 ni, εt = (ε1t, . . . , εNt)
′ the vector of normal random errors, and β̃t =

(
β̃1t, . . . , β̃Nt

)′

the p−dimensional vector of betas at time t. The dynamics described in (2) is fairly general

since represents an approximation of a reduced-form stochastic discount factor where the risk

factors are assumed to capture business cycle effects on investors’ beliefs and/or preferences

(see Liew and Vassalou 2000, Cochrane 2001, and Vassalou 2003).

The variance-covariance matrix Σ̃t is consistent with the restrictions implied by the under-

lying undirected graph Gt, and thus reflects the level of network connectivity at time t.3 We

assume that the vector of exposures to systematic risks β̃t, the covariance matrix Σ̃t, and the

network Gt have a Markov regime-switching dynamics. They are driven by an unobservable

state st ∈ {1, . . . ,K}, t = 1, . . . , T , that takes a finite number K of values and represents net-

work system-wide connectedness, namely systemic risk. Such state st evolves as a Markov chain

process, where the transition probability πij , of going from the ith to the jth state in one step

is time-invariant (see, e.g. Hamilton 1994), that is P (st = i|st−1 = j) = πij , i, j = 1, . . . ,K, for

all t = 1, . . . , T .

3Given the residual nature of systemic risk with respect to sources of systematic risk, we assume the graph
is undirected, meaning there is no particular direction in the conditional dependence structure among firms.
However, directed graphical models can be also accomplished within our modeling framework and we leave that
for future research.
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The choice of a Markov regime-switching dynamics is motivated by the common definition of

contagion and systemic risk as abrupt increases in the cross-sectional dependence structure of in-

stitutions/sectors/countries after a shock (see e.g. Forbes and Rigobon 2000). Also, the Markov

regime-switching nature of the covariance structure allows to acknowledge the heteroskedastic-

ity bias highlighted in Forbes and Rigobon (2002).4 As typical in SUR models we assume that

the exogenous shocks are possibly contemporaneously correlated, but not autocorrelated, i.e.

we assume the graph structure Gt is undirected. The Markov-switching graphical model spec-

ification in equation (2) makes the exposures to sources of systematic risk time varying and

directly depending on the regime of systemic risk;

β̃t =
K∑
k=1

βkI{k}(st) (3)

with I{k} (st) the indicator function which takes value one when the state st takes value k at time

t and zero otherwise. The state-specific covariance matrix Σk is constrained by a sate-specific

graph Gk, that is

Σ̃t =
K∑
k=1

Σk (Gk) I{k}(st), G̃t =
K∑
k=1

GkI{k}(st) (4)

with Σk ∈ M(Gk) and M(Gk) the set of all positive-definite symmetric matrices with elements

equal to zero for all (i, j) /∈ E, given the state st = k. In the model, contagion is generated by

both the number of edges in G̃t when st = k, and the magnitude of the dependence between

nodes measured by the covariance terms. Traditional connectedness measures do not distinguish

between these two sources and therefore may result in biased estimates. Also, the features of

the state-specific graph Gk play a crucial role in the estimation of our regime-switching model,

since they allow us to identify the regimes of low and high systemic risk exposure.

4Markov regime-switching models are popular in the finance literature since Ang and Bekaert (2002), Guidolin
and Timmermann (2007), and Guidolin and Timmermann (2008), as they allows for both statistical identification
and economic interpretation of different market phases.
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3.1 Network Connectivity Measures

In this paper, we assume that a connectivity measure q = h(Gk) is a map function h from

the graph space G to the set of the real numbers Q ⊂ R. These measures can be used to

measure risk relying on the network structure and to identify systemic risk regimes. Different

concentration measures have been proposed in the literature. These include average degree,

closeness, betweenness, and eigenvector centrality. To use the correct measure for systemic risk

purposes, we must first consider the consistency of the assumptions underlie each measure with

the concept of systemic risk. Although making generalization of the propagation mechanism of

exogenous shocks is problematic, one can make few reasonable assumptions about how shocks

can flow from one firm to another within the economic system.

First, regardless of the inherent definition of an economic shock, they are unlikely to follow

the shortest path between two nodes. Only shocks with known destination follow the shortest

possible distance (e.g. tag a recipient with twitter). Economic shocks are unlikely to be re-

stricted to follow specific paths but likely have feedback effects. For instance, a liquidity shock

on a single firm could affect the ability to repay a loan to a bank, that could prevent the bank to

allow for credit line to another firm, that in turns can no longer afford to pay for supply debits,

which eventually could flaw back to the original firm if there is a trade relationship. According

to Borgatti (2005), this means that closeness and betweenness centrality are inappropriate for

economic shocks since they implicitly assume a pre-determined path.

Second, linkages among firms are not all equal. Firms in large sectors such as “industrials”

are likely highly connected to other firms through supply relationships. This implies that

the average number of linkages of the industrial sector could be high by definition. However,

this does not imply that a demand shock to Fedex is necessarily more systemical important

than a liquidity shock to JP Morgan. This rules out average degree centrality. Indeed, such

measure gives a simple count of the number of connections a company has, without effectively

discriminating the relative importance of these connections with respect to the whole network.

Based on this, we propose a weighted centrality measure based on the adjacency matrix At

explained above, where the weights are defined by the covariance terms. Eigenvector centrality is

closely related to “PageRank” used in web search engines and acknowledges the fact that cross-
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firms connections are not all equal, considering the actual influence of a company in the economic

network. By weighing for the covariance terms we can compute the marginal contribution of a

single firm to aggregate systemic risk as a function of the quality of its connections with other

firms, and the magnitude of the linkages expressed by the covariance terms. For the ith firm,

weighted eigenvector centrality is defined to be proportional to the sum of centralities of the

vertex’s neighbours, so that the firm can acquire higher centrality by being connected to a lot

of other firms or by being connected to others that themselves are highly central;

xi,k =
1

λk

n∑
j=1

aij,kxj,k =
1

λk

∑
j∈N(i,k)

σij,kxj,k (5)

where N(i, k) ⊂ V the set of neighbours of i given the state st = k, that is N(i, k) = {j ∈ V :

aijk = 1}. Equation (5) can be rewritten in a more compact form as Akxk = λkxk, such that

qE,k = xj∗,k, with Ak the adjacency matrix in which each entry denoted aij,k , for row i column

j and state k, records the existence and strength of linkages between the institution i and j5;

aij,k =

{
σij,k if i and j are connected in state k

0 otherwise
(6)

with x = (x1, x2, . . . , xp), and j
∗ = argmax{λj , j = 1, . . . , n} is the index corresponding to the

greatest Laplacian eigenvalue, λj , j = 1, . . . , n, are the Laplacian eigenvalues.6 For this measure

Q = R with larger values indicating higher centrality. Firm-specific eigenvector centrality can

be generalized at the industry level by averaging xi,k within a certain industry. For instance,

the weighted eigenvector centrality for the financial sector can be approximated as

xf,k =
1

nf

∑
i∈Vf

xi,k (7)

with nf = |Vf |, and Vf ⊂ V the set of nodes associated to firms classified as “financials”

according to the GICS. If the adjacency matrix has non-negative entries, a unique solution is

guaranteed to exist by the Perron-Frobenius theorem. Our weighted eigenvector centrality is

5Intuitively, As allows to compute firm-specific systemic risk contributions based on direct connections a firm
has and to which other firms these connections are made.

6The Laplacian eigenvalues are the eigenvalues arranged in non-increasing order of the Laplacian matrix,
L = D−A, where D = diag{d1, . . . , dn} is a diagonal matrix with the vertex degree on the main diagonal. Here,
zj , j = 1, . . . , n, are the corresponding Laplacian eigenvectors.
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also related to a standard principal component analysis (PCA) (see e.g. Billio et al. 2012). Just

as PCA analysis our measure identify the concentration of the economic system weighing for

the cross-sectional variance-covariance matrix of the firms. To summarize, (5) measures not

only the likelihood that an exogenous shock transmits to the ith firm, but also the magnitude

of the effect of the shock on itself. For the sake of completeness, in the following we also report

the results based on a standard eigenvector centrality measure which does not weight for the

covariance terms.

3.2 Inference on Networks and Parameters

Our estimation approach generalizes earlier literature and consider a joint inference scheme on

networks, covariances and factor model parameters in a large dimensional time series setting.

Given the fairly relevant complexity and non-linearity of the model, we opted for a Bayesian

estimation scheme of the network Gk and the structural parameters θk = (βk,Σk,πk), with πk

the kth row of the transition matrix Π for the latent state, st = k. Also, by using Bayesian tools

we can generate posterior distributions of virtually any sufficient statistics for the underlying

network, as well as for any of the structural parameters of the linear factor pricing model.

3.3 Prior Specification

For the Bayesian inference to work, we need to specify the prior distributions for the network

and the structural parameters. For a given graph Gk and state st = k the prior structure

is conjugate and the model dynamics (2) reduces to a standard SUR model (e.g., see Chib

and Greenberg 1995). This makes Bayesian updating straightforward and numerically feasible.

As far as the systemic risk state transition probabilities are concerned we choose a Dirichlet

distribution:

(πk1, . . . , πkK) ∼ Dir (δk1, . . . , δkL) (8)

with δki the concentration parameter for πki, and Πk = (πk1, ..., πkK) the kth row of the tran-

sition matrix Π. The role of the covariance structure Σk is one of the most important in

the SUR model specification. The non-diagonal structure of the residual covariance matrix
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improves parameter estimation by exploiting shared features of the p−dimensional vector of

excess returns. However, an increasing p makes complexity unfeasible to be managed. In this

context we take advantage of natural restrictions induced by the network structure (Carvalho

and West 2007,Carvalho, West, and Massam 2007, and Wang and West 2009).

The prior over the graph structure is defined as a Bernoulli distribution with parameter ψ

on each edge inclusion probability as an initial sparse inducing prior. That is, a p node graph

Gk = (Vk, Ek) with |Ek| edges has a prior probability

p(Gk) ∝
∏
i,j

ψeij (1− ψ)(1−eij)

= ψ|Ek| (1− ψ)T−|Ek| (9)

with eij = 1 if (i, j) ∈ Ek. This prior has its peak at Tψ hedges, with T = p(p − 1)/2 , for

an unrestricted p node graph, providing a flexible way to directly control for the prior model

complexity. A uniform prior alternative might be used. However as pointed out in Jones,

Carvalho, Dobra, Hans, Carter, and West (2005), a uniform prior over the space of all graphs

is biased towards a graph with half of the total number of possible edges. As the number

of possible graphs for a p node structure is, for large p, the uniform prior gives priority to

those models where the number of edges is quite large. To induce sparsity and hence obtain

a parsimonious representation of the interdependence structure implied by a graph, we choose

ψ = 2/(p− 1) which would provide a prior mode at p edges.

Conditional on a specified graph Gk and state st = k, the hyper inverse-Wishart is denoted

as

Σk ∼ HIWGk
(dk, Dk) (10)

with dk and Dk respectively the degrees of freedom and the scale hyper-parameters. This

distribution is the unique conjugate “local prior” for any covariance Σt (Gt) with marginals for

the cliques which are inverse Wishart distributed (see Appendix A). The prior for the betas is
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independent on the covariance structure,

βk ∼ Np (mk,Mk) (11)

with mk andMk the location and scale hyper-parameters, respectively.7 The choice of the prior

hyper-parameters is discussed in Section 4.

3.4 Posterior Approximation

In order to find a Bayesian estimation of the parameters, the graphs and the latent states we

follow a data augmentation principle (see Tanner and Wong 1987) which relies on the complete

likelihood function, that is the product of the data and state variable densities, given the

parameters and the graphs. Let us denote with zs:t = (zs, . . . , zt), s ≤ t, a collection of

vectors zu. The collections of graphs and parameters are defined as G = (G1, . . . , GK) and

θ = (θ1, . . . ,θK), respectively, where θk = (βk,Σk,πk), k = 1, . . . ,K, are the state-specific

parameters. The completed data likelihood is

p (y1:T , s1:T |θ, G) =
K∏

k,l=1

T∏
t=1

(2π)−n/2 |Σ̃t|−n/2 exp

(
−1

2

(
yt −X ′

tβ̃t

)′
Σ̃−1
t

(
yt −X ′

tβ̃t

))
p
Nkl,t

kl

(12)

with Nkl,t = I{k} (st−1) I{l} (st). Combining the prior specifications (8)-(11) with the complete

likelihood (12), we obtain the posterior density

p (θ, G, s1:T |y1:T ) ∝ p (y1:T , s1:T |θ, G) p(θ, G) (13)

Since the joint posterior distribution is not tractable the Bayesian estimator of the parameters

and graphs cannot be obtained in analytical form, thus we approximate the posterior distri-

bution and the Bayes estimator by simulation. The random draws from the joint posterior

distributions are obtained through a Gibbs sampler algorithm (Geman and Geman 1984). We

propose a collapsed multi-move Gibbs sampling algorithm (see e.g. Roberts and Sahu 1997

7Notice that the fact that priors for the covariance structure and the betas are independent does not mean they
are sample independently in the Gibbs sampler. Indeed, in the sampling scheme they are sampled conditionally
on each other iteratively, and therefore can be thought as coming from the same joint distribution asymptotically.
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and Casella and Robert 2004), where the graph structure, the hidden states and the parameter

are sampled in blocks. More specifically we combine forward filtering backward sampling (see

Frühwirth-Schnatter 1994 and Carter and Kohn 1994 for more details) for the hidden states,

an efficient sampling algorithm for the covariance structure (see Carvalho and West 2007, Car-

valho et al. 2007 and Wang and West 2009), and multi-move MCMC search for graph sampling

(see e.g. Giudici and Green 1999 and Jones et al. 2005). At each iteration the Gibbs sampler

sequentially cycles through the following steps:

1. Draw s1:T conditional on θ, G and y1:T .

2. Draw Σk conditional on y1:T , s1:T , Gk and βk.

3. Draw Gk conditional on y1:T , s1:T and βk.

4. Draw βk conditional on y1:T , s1:T and Σk.

5. Draw πk conditional on y1:T , s1:T .

From step 2 to 3 the Gibbs sampler is collapsed as Gk is drawn without conditioning on Σk

since they are conditionally independent. In fact, the graph Gk is sampled marginalizing over

the covariance structure Σk (see Carvalho and West 2007, Carvalho et al. 2007 and Wang and

West 2009). A detailed description of the Gibbs sampler is given in the Appendix.

Inference on Markov-switching models, requires dealing with the identification issue aris-

ing from the invariance of the likelihood function to permutations of the hidden state vari-

ables. Different solutions to this problem have been proposed in the literature (see Frühwirth-

Schnatter 2006 for a review). In this paper, we contribute to this stream of literature providing

a way to identify regimes through graphs. More specifically we suggest to identify the regimes

by imposing the following constraints on the state-specific graphs. We consider the following

identification constraints q(G1) < . . . < q(GK), where q is the average weighted eigenvector

centrality, i.e. 1
N

∑N
i=1 x̃i,k for k = 1, ...,K. This constraint allows us to interpret the first

regime as the one associated with the lowest systemic risk level and the last regime as the one

associated with the highest risk. In context where the eigenvector centrality is not sufficient to

achieve a characterization of the regimes, then a complexity measure (see, e.g. Newman 2003,

Emmert-Streib and Dehemer 2012), which combines information from different network mea-

sures, can be employed. From a practical point of view, we find in our empirical applications
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that eigenvector centrality ordering works as well as degree centrality constraint for the regime

identification.

Given the prior distribution assumption and the Graphical model defined above, it is possible

to define a posterior distribution of the graph p(Gk|y1:T ) and to assess the statistical properties

of the network measures by employing the distribution defined by the transform q = h(Gk). We

develop a Gibbs sampling to generate samples from the graph posterior distribution, which can

be used to approximate also the connectedness measure distribution;

pJ(qk|y1:T ) =
1

J

J∑
j=1

δ
qjk
(qk) (14)

where qjk = h(G
(j)
k ) and G

(j)
k is the jth sample from the graph posterior distribution for the state

st = k, and J is the number of Gibbs iterations. Usually, once a graph is estimated the network

measure is applied to this graph, thus all information about graph uncertainty are lost. In this

paper we propose to account for the uncertainty associated with the graph Gk, and suggest the

following integrated measure and its MCMC approximation

∫
Gk

h(Gk)p(Gk|y1:T )dGk ≈
∫
Q
qk pJ(qk|y1:T )dqk

which is the empirical average of the sequence of measures qjk, j = 1, . . . , J , associated with the

MCMC graph sequence. As a whole, from the Bayesian scheme we can make robust hypothesis

testing on the network structure as we are able to approximate, at least numerically, the entire

distribution of networks conditioning on the state of contagion.

4 Empirical Analysis

As empirical application we measure systemic risk for a large set of companies. Systemic risk

is jointly considered with sources of systematic risk which are assumed to capture investors’

beliefs on the business cycle (see Liew and Vassalou 2000, Cochrane 2001, Vassalou 2003, and

Campbell and Diebold 2009). In particular, while the exposure to sources of systematic risk

(i.e. betas) depends on the state of systemic risk, the latter directly depends on the betas given
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its residual nature. As such, although conditionally independent, systematic and systemic risks

are not mutually exclusive. In order to mitigate the selection bias for systematic risk factors we

considered alternative theory-based leading factor pricing model specifications. However, our

methodology is rather general and can be easily applied to any linear factor pricing model.

4.1 Data and Factor Pricing Models

We focus on the 100 blue chip companies that compose the S&P100 Index. We consider those

institutions with more than 15 years of historical available data at the daily frequency, for a total

of 83 companies. Table 1 summarize the firms in our dataset and the corresponding industry

classification according to the Global Industry Classification Standard (GICS), developed by

MSCI. Returns are dollar-valued and computed daily in excess of the risk-free rate. The sample

period is 05/10/1996-10/31/2014, for a total of more than 400,000 firm-day observations. Our

emphasis on stock returns is motivated by the desire to incorporate the most current information

in the network analysis; stocks returns reflect information more rapidly than non-trading-based

measures such as accounting variables.

[Insert Table 1 about here]

We analyse three representative asset pricing models starting from the simple CAPM, which

implies a unique risk factor represented by the excess return (in excess of the 1-month T-Bill

rate) on the aggregate value-weighted NYSE/AMEX/NASDAQ index, taken from the Center

for Research in Security Prices (CRSP). The return on the 1-month T-Bill rate is taken from

Ibbotson Associates.

The second model considered is the well-known three-factor model initially proposed in Fama

and French (1993). This model includes two empirically motivated risk factors in addition to

the simple CAPM; the return spread between portfolios of stocks with small and large market

capitalization, i.e. SMB, and the return difference between “value” and “growth” stocks, namely

portfolios of stocks with high and low book-to-market ratios, i.e. HML.

Next, we consider an implementation of the Merton (1973) intertemporal CAPM. Based

on Campbell (1996), who argues that innovations in state variables that forecasts changes in
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investment opportunities should serve as risk factors, we use aggregate dividend yield and both

default- and term-spreads as state variables, in addition to aggregate wealth (see Petkova 2006

for an example). Default spread is computed as the difference between the yields of long-

term corporate Baa bonds and long-term government bonds. The term spread is measured the

difference between the yields of 10- and 1-year government bonds. Data on bonds and treasuries

are taken from the FredII database of the Federal Reserve Bank of St.Louis.

We adopt the approach of Campbell (1996) and compute the changes in risk factors as the

innovations of a first order Vector Auto-Regressive (VAR(1)) process. Thus, for each collection

of the CRSP aggregate value-weighted market portfolio and the candidate set of risk factors

ht = (rm,t, x′t)
′, we estimate ht = B0+B1ht−1+et for t = 1, . . . , T . Following Petkova (2006),

the innovations et are orthogonalized from the excess return on the aggregate wealth and scaled

to have the same variance.

4.2 Prior Choices and Parameters Estimates

Realistic values for different prior distributions obviously depend on the problem at hand. For

the transition mechanism of systemic risk the prior hyper-parameters of the Dirichlet distribu-

tion are taken such that a priori systemic risk is persistent. Such prior belief is mainly based

on the common wisdom that increasing network connectedness is not a quickly mean-reverting

process (see e.g. Forbes and Rigobon 2002).

Given the large dimensional setting of the model, training the priors with firm-specific

information is prohibitive. We take an agnostic perspective in setting the hyper-parameters of

the betas across institutions. The prior location parameter mk = 0 for each k = 1, ...,K. The

corresponding prior scale is set equal to Mk = 1000Ip across states. Notice we do not force

posterior estimates in any direction across states as the prior structure does not differ across

low vs high systemic risk states.

The prior degrees of freedom and scale of the Hyper-Inverse Wishart distribution for the

conditional covariance matrix are set to be dk = 3 and Dk = 0.0001Ip, respectively. This is

also a fairly vague, albeit proper, prior distribution. Finally, the prior for the graph space is

a Bernoulli distribution. We have chosen an hyper-parameter equal to ψ = 2/ (p− 1) which
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would provide a prior mode at p edges. We could alternatively use a uniform prior over the

space of all graphs. However as pointed out in Jones et al. (2005), a uniform prior would be

biased towards a graph with half of the total number of possible edges. For large p, the uniform

prior gives priority to those models where the number of edges is quite large.

In order to further reduce the sensitivity of posterior estimates to the prior specification,

we use a burn-in sample of 2,000 draws storing every other of the draws from the residuals

10,000 draws (see e.g. Primiceri 2005). The resulting auto-correlations of the draws are very

low. A convergence analysis in Appendix C shows that this guarantees accurate inference in

our network based linear factor model.

Figure 2 shows the systemic risk probability over the testing sample, computed from the

CAPM (top-left panel), the Fama-French three-factor model (bottom-left panel) and the I-

CAPM implementation with default-, term-spread and the aggregate dividend yield in addition

to aggregate wealth as risk factors (top-right panel). The gray area represents the systemic risk

probability, while the blue line shows the NBER recession indicator for the period following the

peak of the recession to the through.

[Insert Figure 2 about here]

The figure makes clear that high systemic risk characterized the period 2001/2002 (i.e. dot.com

bubble, 9/11 attacks, Financial scandals, Iraq war), and the great financial crisis of 2008/2009.

Although there is mis-matching with respect to the business cycle indicator across the period

1998-2002, the NBER recession and high systemic risk tend to overlap across the recent great

financial crisis.

Bottom-right panel shows the transition probabilities across models. The first (last) three

columns represent the probability of staying in a state of low (high) systemic risk. Systemic

risk persists with an average probability of πhh = 0.93, implying that the duration of a period

of high systemic risk is around 1/ (1− πhh) = 14 days, while the long run probability of high

systemic risk is equal to (1− πll) / (2− πhh − πll) = 0.33. This means that, in our sample tend

the economy tend to be affected by high systemic risk for about a third of trading days, uncon-

ditionally. Figure 3 shows changes in abnormal returns and exposures to sources of systematic
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risks from low to high systemic risk, computed from the Fama-French three-factor model. For

the sake of exposition, results are labeled according to the GISC industry classification. Top

left panel shows the difference in the intercepts across companies. The figure makes clear that

the Jensen’s alphas do not change across different regimes of systemic risk in a significant way.

Indeed, the zero line never falls outside the 95% confidence interval of the model estimates.

Interestingly, the differences in exposures to the aggregate wealth risk factor is significantly

negative for financial firms. This implies that the exposure to market risk of financial firms

increases when systemic risk is higher. The only exception within the financial sector is the

Berkshire Hathaway Inc. of Warren Buffett.

[Insert Figure 3 about here]

Similarly, financial firms are more exposed to value risk when systemic risk is higher. Two

exceptions are again Berkshire Hathaway Inc., together with Morgan Stanley. Also Citigroup,

although has negative difference on the HML beta, it is not statistically significant. The Indus-

trial and Materials sectors also show an increasing exposure to value premium when systemic

risk is higher. Figure 4 shows changes to the conditional betas on shocks to macroeconomic

risk factors in the I-CAPM implementation. As we would expect, the behavior of the betas on

market risk is consistent with the Fama-French three-factor model. The only exception is again

Berkshire Hathaway Inc., although the difference in the beta is negative, on average.

[Insert Figure 4 about here]

Interestingly, the Energy sector shows the opposite path with respect to Financials. In fact, the

exposure to market risk of energy stocks tend to be lower when systemic risk is higher. Bottom

left panel shows the change of exposures to default risk from low vs. high systemic risk. On

average, exposure to default risk is higher when systemic risk is higher, although for a large

fraction of the sample such negative delta is not statistically significant. In the financial sector,

AIG, Morgan Stanley, Bank of America, and American Express tend to be more exposed to

default risk when systemic risk increases. In the technology sector Microsoft, IBM, Intel and

Oracle are more exposed to default risk during market turmoils. Bottom right panel shows that
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Energy and Financials are less exposed to the aggregate dividend yield when systemic risk is

high.

4.3 Financial Networks

Thus far we have introduced tools to measure systemic risk. We now put those tools at work and

investigate the evolution of networks connectedness over time. Figure 5 shows the connectivity

of firms inferred from the residuals of the CAPM. The size and the color of the nodes are

proportional to their relevance in the network measured by weighted eigenvector centrality (5).

The darker (bigger) the color (size) of the node, the higher its marginal contribution to aggregate

systemic risk.

[Insert Figure 5 about here]

Left panel shows the network in regime one. Figure 5 makes clear that Energy companies

such as ConocoPhillips (COP), Apache (APA), Occidental Ptl. (OXY), Exxon (XOM) and

Schlumberger (SLB) are central for the economic system when the aggregate systemic risk is

low. Interestingly, few consumer companies such as Wal Mart (WMT), Costco (COST), Target

(TGT), and Lowe’s (LOW) are tightly link to each other, although completely disconnected

from the rest of the economy. The financial sector turns out to be less relevant than the energy

sector. Financial firms such as JP Morgan (JPM), AIG, Bank of America (BAC) and Wells

Fargo (WFC), although present a significant weighted centrality, are not as relevant as, for

instance, Exxon Mobil.

Right panel of Figure 5 shows how the network structure changes when aggregate systemic

risk is high. The financial sector becomes a key factor in the transmission mechanism of ex-

ogenous shocks with firms such as JP Morgan and Citigroup playing a major role. Figure 2

and Figure 5 combined, confirm that during market turmoils, the systemic importance of the

financial sector substantially increases. The marginal importance of each firm on the economic

system as a whole might be uniquely driven by their relative market size, or valuation. Figure 6

address this issue by showing the network connectivity measured from residuals of a the three-

factor Fama-French model which explicitly condition on size and book-to-market as aggregate
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sources of systematic risks.

[Insert Figure 6 about here]

Left panel shows network connectivity when aggregate systemic risk is low. Figure 6 confirms the

key role of the Energy sector. Exxon (XOM) and Schlumberger (SLB) carry a relevant fraction

of systemic risk. Interestingly, by controlling for size and value, the role of the financial sector

when systemic risk is low decreases relatively to other sectors such as Healthcare and Materials.

Also, the economic network is now more sparse with lots of missing linkages. The energy and

the financial sectors seem to create a sub-network themselves. Consistent with Figure 5, right

panel of Figure 6 shows the key role of the financial sector in the network connectedness when

aggregate systemic risk increases.

Finally, Figure 7 shows the network computed from the residuals of the I-CAPM implemen-

tation including default and interest rate risks, in addition to aggregate wealth and dividend

yield. Left panel shows connectivity when aggregate systemic risk is low. The results confirm

what shown above. The Energy sector turns out to be most systemically important sector.

Interestingly, by conditioning on macroeconomic risk factors, Health Care becomes more im-

portant. Johnson & Johnson (JNJ) is as important as major firms of the Material sector.

Abbot Labs (ABT), Eli Lilly (LLY), and Merck & Company (MKR), are as important as Bank

of America (BAC), AIG, JP Morgan (JPM) and Wells Fargo (WFC) in terms of individual

contribution to aggregate systemic risk.

[Insert Figure 7 about here]

As shown in Figure 5, few consumer discretionary and staples companies such as Wal Mart

(WMT), Costco (COST), Target (TGT), Lowe’s (LOW) and CVS are tightly link to each other,

although disconnected from the rest of the economy. Similarly, Industrials such as 3M, United

Tech (UTX), Boeing (BA), Honeywell Intl. (HON), Union Pacific (UNP), and Caterpillar

(CAT) are disjoint from the rest of the economy although highly relevant in terms of aggregate

systemic risk and connected to each other. Right panel shows the network connectedness when

aggregate systemic risk is high. The Energy and Health Care sectors decrease their relevance.

Financials such as Bank of America (BAC), AIG, JP Morgan (JPM), Wells Fargo (WFC),
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Citigroup (C), and Bank of New York Mellon (BK) are now key for the transmission mechanism

of individuals exogenous shocks to the whole economy. Consumer discretionary and staples are

now connected to the rest of the economy through Procter & Gamble (PG). As a whole, Figures

5-7, together with Figure 2 make clear that Financials are systemically important when the

network connectivity is high. As such, as an exogenous shocks on these institutions can quickly

and heavily affect the entire economic system.

4.3.1 Firm-Level Network Centrality. We now focus our attention to the contribution

of single firms to aggregate systemic risk. Figure 8 shows the top 20 institutions ranked accord-

ing to their median weighted eigenvector centrality (5), which defines a measure of systemic

importance of the single firm in the transmission mechanism of firm-specific exogenous shocks

to the whole economic system. The median is computed across posterior simulations of the

network structure as provided by equation (14). The red line (blue line) with circle (square)

marks shows the centrality measure across companies when aggregate network connectedness is

low (high).

[Insert Figure 8 about here]

Panel A shows the results conditioning on aggregate financial wealth as a unique source of

systematic risk (i.e. CAPM). Energy companies such as Exxon Mobil (XOM) and Occidental

Ptl. (OXY) show the highest weight under a regime of low network connectivity (red line, circle

marks). Given the overall lower level of connectedness, the corresponding centrality measures

are low in magnitude albeit significant. Financial firms such as Bank of New York (BK) and

JP Morgan (JPM) rank 10th and 13th, respectively. The insurance sector giant AIG does not

seem to be systemically important ranking 19th when systemic risk is low. Consistently with

Figures 5-7 the systemic importance of Financials increases when network aggregate network

connectivity increases. Now, JP Morgan (JPM) and Bank of New York (BK) turns out to

be highly important for the economic system. Also, AIG now ranks 6th and carries a large

weighted centrality for the economic network.

Panel B of Figure 8 shows the same weighted eigenvector centrality computed conditioning

on size and value measured by book-to-market ratio, in addition to aggregate wealth. Energy

stocks such as Exxon Mobil (XOM) shows a large weight when aggregate systemic risk is
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relatively low. In the second state, Financials are again key for systemic risk management.

Bank of America (BAC), for instance, is weighted more than the double of Exxon Mobil (XOM)

and for times more than ConocoPhillips (COP). Also, Panel B shows that the network is much

more concentrated around financial firms. This is consistent with the idea that systemic risk and

systematic risks, although are not directly depending on each other, are not mutually exclusive.

For instance, the average, median, eigenvector centrality under high systemic risk is around

0.017 with the three-factor Fama-French model, against the modest 0.009 obtained from the

CAPM.

Bottom panel of Figure 8 shows median weighted eigenvector centrality computed from the

I-CAPM implementation with shocks to macroeconomic risk factors. Interestingly, Johnson

& Johnson carries the highest systemic risk. This is consistent with idea that by considering

macroeconomic factors lowers the marginal contribution of Energy companies which are likely

to be correlated with the business cycle. Energy companies such as Anadarko Ptl. (APC),

ConocoPhillips (COP), Occidental Ptl. (OXY), Apache (APA), and Schlumberger (SLB) show

now a much lower centrality in the economic network. The magnitude of the median weighted

eigenvector centrality for other sectors is relatively low. When aggregate systemic risk is higher

(blue line), the weight of Financials tend to dominate other industries. Consistently with the

CAPM and the three-factor Fama-French model, financial companies such as JP Morgan (JPM),

Bank of America (BAC), Bank of New York Mellon (BK), AIG, Citigroup (C), and Wells Fargo

(WFC) are now highly systemically important.

For the sake of completeness, Figure 9 reports the top 20 institutions ranked in both aggre-

gate regimes according to their median eigenvector centrality. The median is computed across

posterior simulations of the network structure as provided by equation (14). The red line (blue

line) with circle (square) marks shows the centrality measure across companies when aggre-

gate network connectedness is low (high). Top panel shows the ranking computed from the

residuals of benchmarking CAPM model. When aggregate network connectivity is low, Energy

companies tend to be central for systemic risk management purposes. Exxon Mobil (XOM),

Occidental Ptl. (OXY), Schlumberger (SLB), and ConocoPhillips (COP) fills the top of the

ranking in terms of centrality within the network. Consistently with top panel of Figure 8 the

systemic importance of Financials increases when the network becomes more dense, with JP
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Morgan (JPM), Bank of New York (BK) and Bank of America (BAC) bearing most of systemic

risk.

[Insert Figure 9 about here]

The same path is confirmed for both the three-factor Fama-French model (mid panel), and the

implementation of the I-CAPM model (bottom panel). Interestingly, Figures 8-9 make clear a

separation between states of high vs low systemic risks. As a matter of fact, for instance for

the three-factor model, the average weighted eigenvector centrality of the top 20 institutions is

0.017 with high systemic risk, against an average median value of 0.0055 when contagion is low.

The separation across regimes is robust across factor models and connectivity measures.

4.3.2 Industry-Level Network Centrality. In this section we aggregate the results across

sectors to obtain evidences on network centrality at the industry level. Firms are classified in sec-

tors according to the Global Industry Classification Standard (GICS), developed by MSCI. The

industry-level centrality measures are obtained by taking the median of firm-specific measures

averaged out within industries. For the sake of completeness we report the results computed

from both our weighted centrality measure (5) and the standard eigenvector centrality. Fig-

ure 10 shows the results. Top left (right) panel shows the results for the weighted eigenvector

centrality for the low (high) aggregate network density.

[Insert Figure 10 about here]

As we would expect from firm-level network centrality evidences, both the financial and the

energy sector tend to dominates across aggregate systemic risk conditions. Top-right panel

shows that when aggregate connectedness is high, the systemic importance of industries such

as Utilities, Telecomm, Healthcare, Consumer Staples and Discretionary are almost negligible.

This is so as the network is mostly concentrated around few firms of both the financial and

the energy sector. Bottom left (right) panel shows the results for the standard eigenvector

centrality for the low (high) aggregate systemic risk. The fact that such measure does not take

into account the strength of the linkages (i.e. covariance terms), makes other sectors such as

Healthcare, Tech and Consumer Staples relatively important for the transmission mechanism of
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exogenous shocks. This difference is more evident when considering the regime of low aggregate

connectivity (bottom left panel). While the energy sector still makes the top of the ranking in

terms of systemic importance, Consumer Staples and Technology now rank second and third,

respectively. This makes clear that by weighing existing linkages with covariance terms can lead

to have clear cut evidences on the network centrality at the industry level.

4.4 The Relationship with Market Valuations

One may argue that network centrality of a firm/industry is directly linked to its corresponding

relative market valuation. The relative weight of the financial sector drops from 20% in 2006

to less than 10% across the great financial crisis of 2008/2009, when network connectedness is

high (see Figure 2). This implies an opposite relationship between the centrality of the financial

sector and its corresponding market value. The opposite is true for the Energy sector. The

relative market value of the energy sector increases across the sample and tend to be high

when aggregate connectivity is high as well. The same positive relationship can be seen for

Telecommunication Services while Industrial and Materials do not display a clear mapping with

aggregate systemic risk. Also, the relative market value of the Technology industry spikes during

late 90s and bounce back beginning of 2000. This is the well known dot.com bubble.

We now formally test the existence of any significant relationship between firm-level network

centrality and market values across regimes. To this end we estimate a set of univariate cross-

sectional regressions where the dependent variable is the centrality measure for each firm in

regime k, i.e. x̃i,k, and the independent variable is the corresponding market value averaged

across the periods identified by regime k. We compute such regression for each factor pricing

model, different regimes and considering both our weighted centrality measure (5) and standard

eigenvector centrality. For each regression, we report the regression coefficient, the t-statistic

and the adjusted R2. We also compute a rank-correlation coefficient as in Kendall (1938). We

first rank firms according to their centrality within the network, then we rank firms according

to their average market value across regimes. The coefficient τ measures the correspondence of

the ranking. Table 2 shows the results.

[Insert Table 2 about here]
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We find evidence that systemic risk and market value are not correlated. Top panel shows the

results for our weighted centrality measure. The delta coefficient is low in magnitude and not

statistically significant across regimes. The t-statistics are anywhere below the 5% significance

threshold, and the adjusted R2 is below 2% across models and regimes. Bottom panel shows the

results for the standard eigenvector centrality measure. Again, the regression coefficients are

low in magnitude and nowhere significant with t-statistics far below the significance threshold.

Also, adjusted R2 reaches the negligible upper bound of 2.3% for network centrality computed

from the residuals of an I-CAPM model within the low aggregate connectedness regime. Also,

the Kendall (1938) rank-correlation coefficient does not show any sensible mapping between

rankings, namely, those firms that are more central to the network does not not have the

highest average market value.

5 Systemic Risk and Value Losses

One important implication for any systemic risk measure is its ability to act as an early warning

signal for regulators and the public. To this end, we test the null that those firms more exposed

to systemic risk are those that tend to experience higher losses, by using a set of cross-sectional

regression. For each model and regime we regress the average maximum percentage financial

loss (AM%L henceforth) onto the network centrality measure for i = 1, ..., N firms.8 The results

are reported in Table 3 for both out weighted and the standard eigenvector centrality measures.

[Insert Table 3 about here]

Panel A shows the results ranking firms according to the weighted centrality measure (5). We

find that companies more exposed to the overall risk of the system, i.e. those with higher

weighted eigenvector centrality, are more likely to suffer significant losses when aggregate sys-

temic risk is larger. In this respect, our centrality measure is similar to the marginal expected

shortfall (MES) originally proposed by Acharya et al. (2011), which tracks the sensitivity of

8Suppose that a regime of high systemic risk lasts from t to t + h. The maximum percentage loss for a
firm is defined to be the maximum difference between the market capitalization of an institution at time t and
t + h dividend by its market capitalization at time t. The average measure is computed by averaging out such
maximum percentage loss across those periods identified by the hidden state st.
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firm ith’s return to a system-wide extreme event, thereby providing a market-based measure of

firms fragility. Top panel shows that institutions that are more contemporaneously intercon-

nected are those that experience major losses in terms of market valuation. The cross-sectional

regression coefficient is significant at standard confidence levels and the adjusted R2 is around

10% across models. However, such positive correlation between network centrality and market

losses is less significant when aggregate connectedness decreases. The results computed from

the standard eigenvector centrality measure (Panel B) mainly confirms this patter.

Table 3 also reports a rank-correlation coefficient as in Kendall (1938). We rank firms

from 1 to N according to their centrality first and then according to their AM%L suffered

across regimes. The rank correlation coefficient τ measures the correspondence of the ranking.

The results confirm that there is a significant relationship between network centrality and

value losses across firms, especially during periods of high aggregate systemic risk. The rank-

correlation coefficients are all significant at the 5% significance level, i.e. more exposed firms

will face larger losses on average. This is consistent with previous evidence in Billio et al. (2012),

Diebold and Yilmaz (2014) and Ahern (2015).

6 Systemic Risk and the Business Cycle

At the outset of the paper we clarify that we do not take any stake in any particular underlying

causal structure of an increasing network connectedness; rather, we take it as given and seek

to measure systemic risk from an agnostic point of view. However, understanding systemic risk

is of interest to understand financial crisis, and their relationship with the business cycle (see

Giglio et al. 2015 for a related discussion).

In this section we take a reduced form approach and investigate if variables which arguably

proxy the business cycle are related to systemic risk. Also, we investigate any early warning

feature of our aggregate systemic risk probability. We use several macro-financial variables to

capture business cycle effects on changes in the investment opportunity set. We consider the

term-, default- and credit-yield spreads, the aggregate dividend yield and price-earnings ratio,

the VIX index, the Market Uncertainty index proposed by Baker, Bloom, and Davis (2013),
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and the Financial Stress Index held by the Federal Reserve Bank of St. Louis.9

We formally investigate the relationship between systemic risk and macro-financial variables

by estimating a Probit model considering different combinations of the above macro-financial

predictors as the set of independent variables Zt. The dependent variable st is the systemic risk

state which takes value 1 if the filtered probability of being in a regime of high connectedness

is greater than 0.5. First, we consider the contemporaneous relationship between changes in

state variables and aggregate systemic risk. Indeed, some of the independent variables such as

aggregate dividend yield and default spread are not stationary. Table 4 reports the estimates

of the betas and the marginal effect of each independent variable.

[Insert Table 4 about here]

Interestingly, credit and default spreads show a significant explanatory power and are positively

correlated with systemic risk, with a pseudo R2 of 0.03 and 0,12, respectively. Changes to

aggregate financial distress are positively (0.424) and significantly (p-value= 0.001) correlated

with aggregate network connectivity. As a whole Table 4 shows that credit and default spreads,

as well as aggregate financial distress conditions are sensibly and positively correlated with the

level of connectedness of the economy as a whole.

7 Conclusions

Systemic risk measurement have become overwhelmingly important over the last few years.

After the great financial crisis the main question has been to what extent the economic system

is robust to a shock to the financial sector. In the language of network analysis this translates

to estimate the connectedness of financial firms with the rest of the economy. We believe we

contribute to answer this question by providing a useful and intuitive model for systemic risk

measurement.

9Default spread is computed as the difference between the yields of long-term corporate Baa bonds and
long-term government bonds. The term spread is measured the difference between the yields of 10- and 1-year
government bonds. Credit spread is computed as the difference between the yields of long-term Baa corporate
bonds and long-term Aaa corporate bonds. Data on bonds, treasuries and financial distress are taken from
the FredII database of the Federal Reserve Bank of St.Louis. The data for the 1-month T-Bill are taken from
Ibbotson Associates.
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We take an asset pricing perspective and infer the network structure system-wide from the

residuals of a linear factor pricing model. By conditioning on different sources of systematic risk

we implicitly recognize that systematic and systemic risk might be conditional independent but

not mutually exclusive. For the sake of completeness we consider different sources of systematic

risks such as aggregate financial wealth, size, value and shocks to macroeconomic risk factors.

We estimate the model by developing a Markov Chain Monte Carlo (MCMC) scheme, which

naturally embeds parameter uncertainty. This is not a minor advantage. Indeed, in a full in-

formation framework any inference on the economic network must be read as contingent on

having full confidence in the parameters point estimates. This is rarely the case especially in

high dimensional time series settings. Moreover, alternative conceivable values of the parame-

ters will typically lead to different networks. We address this situation by providing an exact

finite-sample Bayesian estimation framework which helps generate the posterior distribution of

virtually any function of the linear factor model parameters/statistics.

An empirical application on daily returns of a large dimensional set of blue chip stocks,

shows that financial firms and sector play indeed a crucial role in systemic risk measurement,

beyond their relative market values. Also, we find that companies more exposed to the overall

risk of the system, i.e. those with higher weighted eigenvector centrality, are more likely to

suffer significant losses when aggregate systemic risk is larger. In this respect, our centrality

measure is similar to popular systemic risk measures such as the marginal expected shortfall.
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Appendix

A The Gibbs Sampler

The completed data likelihood is

p (y1:T , s1:T |θ, G) =

K∏
k,l=1

T∏
t=1

(2π)−n/2 |Σ̃t|−n/2 exp

(
−1

2

(
yt −X ′

tβ̃t

)′
Σ̃−1

t

(
yt −X ′

tβ̃t

))
p
Nkl,t

kl (A.15)

with Nkl,t = I{k} (st−1) I{l} (st). Combining the prior specifications (8)-(11) with the complete likelihood (A.15),

we obtain the posterior density

p (θ, G, s1:T |y1:T ) ∝ p (y1:T , s1:T |θ, G) p(θ, G) (A.16)

Since the joint posterior distribution is not tractable the Bayesian estimator of the parameters and graphs cannot

be obtained in analytical form, thus we approximate the posterior distribution and the Bayes estimator by

simulation. The random draws from the joint posterior distributions are obtained through a collapsed multi-

move Gibbs sampling algorithm (see e.g. Roberts and Sahu 1997 and Casella and Robert 2004), where the graph

structure, the hidden states and the parameter are sampled in blocks. At each iteration the Gibbs sampler

sequentially cycles through the following steps:

1. Draw s1:T conditional on θ, G and y1:T .

2. Draw Σk conditional on y1:T , s1:T , Gk and βk.

3. Draw Gk conditional on y1:T , s1:T and βk.

4. Draw βk conditional on y1:T , s1:T and Σk.

5. Draw πk conditional on y1:T , s1:T .

A.1 Sampling s1:T

In order to draw the unobservable state at each time and iteration we use a forward filtering backward sampling

(FFBS) algorithm (see Frühwirth-Schnatter 1994 and Carter and Kohn 1994). As the state st is discrete valued

the FFBS is applied in its Hamilton form. The Hamilton filter iterates in two steps, namely prediction and

updating. The prediction step at each time t is

p (st+1 = j|θ,y1:t) =

K∑
k=1

pkjp (st = k|θ,y1:t) (A.17)

The updating step can be easily derived as

p(st+1 = j|θ,y1:t+1) =
p(yt+1|st+1 = j,θ,y1:t)p(st+1 = j|y1:t,θ)

p (yt+1|y1:t,θ)
(A.18)

where the normalizing constant is the marginal predictive likelihood defined as

p (yt+1|y1:t,θ) =

K∑
k=1

p (yt+1|st+1 = k,θ,y1:t) p (st+1 = k|θ,y1:t) (A.19)

The draw p(s1:T |y1:T ,θ) can then be obtained recursively and backward in time by using the smoothed proba-

bilities as

p(s1:T |y1:T ,θ) = p (sT |y1:T ,θ)

T−1∏
t=1

p (st|st+1,y1:t,θ) (A.20)
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where for instance

p (st = k|st+1 = j,y1:t,θ) =
pkjp (st = k|y1:t,θ)

p (st+1 = j|θ,y1:t)
(A.21)

A.2 Sampling Σk

Graphical structuring of multivariate normal distributions is often referred to covariance selection modelling

(Dempster 1972). In working with covariance selection models, Dawid and Lauritzen (1993) defined a family of

Markov probability distributions suitable for covariance matrices on decomposable graphs called Hyper-Inverse

Wishart. From a Bayesian perspective, for each state st = k and graphical structure Gk the hyper-inverse Wishart

turns out to be conjugate locally (see Carvalho et al. 2007 for a more detailed discussion).

Let Sk = {S1, . . . , SnS} and Pk = {P1, . . . , PnP } be the set of separators and of prime components, re-

spectively, of the graph Gk. By generating the tree representation of the prime components the density of the

hyper-inverse Wishart for Σk conditional con Gk writes as

p(Σk) =

nP∏
j=1

p(ΣPj ,k)

nS∏
i=1

(p(ΣSi,k))
−1 (A.22)

where

p(ΣPj ,k) ∝ |ΣPj ,k|
−(dk+2Card(Pj))/2 exp

{
−1

2
tr(Σ−1

Pj ,k
Dk,j)

}
(A.23)

where DPj ,k is the j-th diagonal block of Dk corresponding to ΣPj ,k.

Let Tk = {t : st = k} and Tk = Card(Tk). By using the sets Sk and Pk then the posterior for Σk factorizes

as follows

p (Σk|y1:T ,θ, s1:T ,βk) ∝ (A.24)

∝
T∏

t=1

(2π)−n/2 |Σ̃t|−1/2 exp

(
−1

2

(
yt −X ′

tβ̃t

)′
Σ̃−1

t

(
yt −X ′

tβ̃t

))
p(Σk)

∝
∏
t∈Tk

|Σk|−1/2 exp

(
−1

2

(
yt −X ′

tβk

)′
Σ−1

k

(
yt −X ′

tβk

))
p(Σk)

∝ |Σk|−Tk/2 exp

−1

2

∑
t∈Tk

(
yt −X ′

tβk

)′
Σ−1

k

(
yt −X ′

tβk

) p(Σk)

∝
nP∏
j=1

|ΣPj ,k|
−Tk/2 exp

(
−1

2
Σ−1

Pj ,k
D̂Pj ,k

)
nP∏
j=1

∝ |ΣPj ,k|
−(dk+2Card(Pj))/2 exp

{
−1

2
tr(Σ−1

Pj ,k
DPj ,k)

}
(A.25)

nS∏
j=1

∝ |ΣSj ,k|
−(dk+2Card(Sj))/2 exp

{
−1

2
tr(Σ−1

Sj ,k
DSj ,k)

}
(A.26)

∝
nP∏
j=1

∝ |ΣPj ,k|
−(dk+2Card(Pj)+Tk)/2 exp

{
−1

2
tr(Σ−1

Pj ,k
(DPj ,k + D̂Pj ,k)

}
(A.27)

nS∏
j=1

∝ |ΣSj ,k|
−(dk+2Card(Sj))/2 exp

{
−1

2
tr(Σ−1

Sj ,k
DSj ,k)

}
(A.28)

∝ HIWGk

dk + Tk, Dk +
∑
t∈Tk

etke
′
tk

 (A.29)

where D̂Pj ,k is the block of D̂k =
∑

t∈Tk
etke

′
tk corresponding to ΣPj ,k and etk = yt −X ′

tβk.
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A.3 Direct Network Search: Sampling Gk

In order to learn the Graph structure Gk conditional on the state k we apply a Markov chain Monte Carlo

for multivariate graphical models (see, e.g. Giudici and Green 1999 and Jones et al. 2005). This relies on

the computation of the unnormalized posterior over graphs pk(Gk|y1:T , s1:T ) ∝ p(y1:T , s1:T |Gk)p(Gk), for any

specified state k. It is easy to check that due to the prior independence assumption of the parameters across

regimes,

pk (y1:T , s1:T |Gk) =

∫ ∫ ∏
t∈Tk

(2π)−n/2 |Σk|−n/2 exp

(
1

2

(
yt −X ′

tβk

)′
Σ−1

k

(
yt −X ′

tβk

))
p(βk)p(Σ|Gk)dβkdΣk

(A.30)

This integral cannot be evaluated analytically. We apply a Candidate’s formula along the line of Chib (1995) and

Wang (2010). Such an approximation gives the value of the marginal likelihood via the identity pk (y1:T , s1:T |Gk) =

pk (y1:T , s1:T , Gk,βk,Σk) /p(Σk,βk|y1:T , s1:T ). As pointed out in Wang (2010), two different approximations may

be viable by integrating over disjoint subsets of parameters.

Following Jones et al. (2005) we apply a local-move Metropolis-Hastings based on the conditional poste-

rior pk(Gk|y1:T , s1:T ). A candidate G
′
k is sampled from a proposal distribution q(G

′
k|Gk) and accepted with

probability

α = min

{
1,

pk(G
′
k|y1:T , s1:T )q(Gk|G

′
k)

pk(Gk|y1:T , s1:T )q(G
′
k|Gk)

}
= min

{
1,

pk(G
′
k|y1:T , s1:T )p(G

′
k)q(Gk|G

′
k)

pk(Gk|y1:T , s1:T )p(Gk)q(G
′
k|Gk)

}

This add/delete edge move proposal is accurate despite entails a substantial computational burden.

A.4 Sampling βk

Conditional on s1:T , Σk and Gk, the posterior for the regime-dependent betas βk is conjugate and defined as

p (βk|Σk,y1:T , s1:T ) ∝ Np

M∗
k

∑
t∈Tk

XtΣ
−1
k (Gk)yt +M−1

k mk

 ,M∗
k

 (A.31)

with M∗
k =

(∑
t∈Tk

XtΣ
−1
k (Gk)X

′
t +M−1

k

)−1

, and Σ−1
k (Gk) the inverse of the covariance matrix given the

underlying graph structure Gk.

A.5 Sampling the Transition Matrix Π

As regards the transition probabilities πk = (πk1, . . . , πkK), for the state st = k, the conjugate Dirichlet prior

distribution (8) updates as

(πk1, . . . , πkK |y1:T , s1:T ) ∼ Dir (δk1 +Nk1, . . . , δkK +NkK) (A.32)

with Nkl =
∑T

t=1 I{k} (st) I{l} (st−1) the empirical transition probabilities between the kth and the lth state.

B Testing the Number of Regimes

Our Markov regime-switching factor pricing model outlined in Section 2 implies that network connectivity is state

dependent with a finite number of regimes. Economic theory assumes that contagion and firms connectedness is

more a shift concept than a steady state justifying our choice of K = 2. One may argue, however, that two states

are not enough to capture the dynamic features of the network. Therefore, it is sensible to effectively test the

null hypothesis of H0 : K = 2 against the alternative H1 : K = 1, 3. As usual in the Bayesian literature we based
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hypothesis testing on Bayes factors comparing the model with i regimes Mi against a model with j regimes Mj .

Bayes factors are based on marginal likelihoods (see Kass and Raftery 1995); comparing, the two-state vs. the

three-state model can be accomplished by computing

Bij =
p(y1:T |Mi)p (Mi)

p(y1:T |Mj)p (Mj)
, (A.33)

Marginal likelihoods are computed by integrating out both parameter and state uncertainty;

p(y1:T |Mi) =

∫ ∑
S

p (y1:T |θ, G, s1:T ;Mi) p (θ, G, s1:T |y1:T ;Mi) dθdG, (A.34)

with S and G the set of states and networks, and the posterior distribution p (θ, G, s1:T |y1:T ) obtained from

the Gibbs sampler (see Appendix A). Table B.1 shows the marginal likelihoods and corresponding Bayes factors

across factor pricing models;

[Insert Table B.1 about here]

The marginal likelihood however, is not available in closed form and can be approximated numerically as in

Chib (1995). We assume p (Mi) = p (Mj). Panel A shows the marginal likelihood is anywhere higher for a

model with two regimes. Panel A shows that the empirical evidence provided by Bayes factors in log scale is

strongly in favor of a model with two regimes vs. three or one states.

C MCMC Convergence Diagnostics

We report the results of a set of convergence diagnostics of our MCMC algorithm outlined in Section 2 and

Appendix A, and with respect to the CAPM specification with K = 2. The convergence diagnostics concern the

computation a set of inefficiency factors and t-tests for equality of the means across sub-samples of the MCMC

chain (see Geweke 1992, Primiceri 2005, Justiniano and Primiceri 2008, and Clark and Davig 2011).

For each individual parameter and latent variable, the inefficiency factor defines the amount of information

do we effectively have about the parameters, and is measured as (1 + 2
∑∞

f=1 ρf ), where ρf is the fth order

auto-correlation of the chain of draws. This inefficiency factor equals the variance of the mean of the posterior

draws from the MCMC sampler, divided by the variance of the mean assuming independent draws. If there are

some correlation between successive samples, then we might expect that our sample has not revealed as much

information of the posterior distribution of our parameter as we could have gotten if the samples draws were

independent. As standard in convergence diagnostics, when estimating the inefficiency factor, we use the Bartlett

kernel as in Newey and West (1987), with a bandwidth set to 4% of the sample of draws. The inefficiency factor is

computed for all the model parameters and applied on a range of choices for the total number of posterior draws

as well as burn-in period lengths and thinning for the main model specification. Table C.1 shows the inefficiency

factor and the effective sample size for each block of parameters for the CAPM specification;

[Insert Table C.1 about here]

Tables C.1 shows that, for most parameters, the MCMC sampler is rather efficient and requires less than 5000

retained posterior draws to be able to do a reasonably accurate inferential analysis. In case of the time-invariant

parameters for the high network connectivity regime the sampler is less efficient. This is likely due to the lower

amount of information we have in-sample corresponding to the second state. Nonetheless, the corresponding

inefficiency factors suggest on average a minimum number of draws of less than 5000 to achieve an accurate

analysis of these parameters. Based on this comparison, we set the number of posterior draws equal to 10000

and thinning value equal to 2, obtaining 5000 draws from the posterior distribution in order to have a fairly

satisfactory performance.

We also compute the p-value of the Geweke (1992) t-test for the null hypothesis that the average draws

computed with the first 20 percent and last 40 percent of the sample of retained draws are statistically equivalent.
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For this particular convergence diagnostic test, we compute the variances of the respective means using the Newey

and West (1987) heteroskedasticity and autocorrelation robust variance estimator with a bandwidth set to 4% of

the utilized sample sizes. Such test is computed still considering our initial CAPM specification with two states.

[Insert Table C.2 about here]

The convergence diagnostic tests in Table C.2 mainly confirms the efficiency of the MCMC sampler. For example,

in the case of the alphas αk parameters the null hypothesis of equal means across sub-samples of the retained

draws is hardly ever rejected at the 5% confidence interval. Thus, inference in the factor model appears to be

reasonably accurate when based posterior inference on 10000 draws with a burn-in of 2000 and thin value of 2.

Such a choice of the number of draws keeps the computational burden affordable, without penalizing significantly

inference precision.

36



Figure 1. Weighted Network Structure

Example of a weighted network structure. This figure shows the network structure implied by an underlying
undirected graphical model. Circles indicate the node and the lines are the edges between nodes. Each dashed
circle of the junction tree represents a clique while vertices shared by adjacent nodes of the tree define the
separators. In this graph {(1, 2, 3), (4, 5, 6), (7, 8)} is the set of cliques and {(2, 4)} the separator set. The σij

covariance terms represents the weights associated to the edges.
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Figure 8. Weighted Eigenvector Centrality

Weighted eigenvector centrality, median values. This figure plots the median weighted eigenvector centrality
sorted for the top 20 institutions for both low and high systemic risk. The weighted eigenvector centrality
measures the systemic importance of each industry within the economic network, incorporating the strength
of the linkages measured by the covariances. The sample period is 05/10/1996-10/31/2014, daily. The network
structure is computed conditioning on aggregate wealth (CAPM, top panel), then adding size and value risk fators
(Fama-French, mid panel), and conditioning on shocks to financial state variables (I-CAPM, bottom panel).
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Figure 9. Standard Eigenvector Centrality

Eigenvector centrality, median values. This figure plots the median eigenvector centrality sorted for the top
20 institutions for both low and high systemic risk. Standard eigenvector centrality measures the systemic
importance of each industry within the economic network. The sample period is 05/10/1996-10/31/2014, daily.
The network structure is computed conditioning on aggregate wealth (CAPM, top panel), then adding size and
value risk fators (Fama-French, mid panel), and conditioning on shocks to macro-finance state variables (I-CAPM,
bottom panel).
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Table 1. Company List

This table summarize the companies in our dataset and the corresponding industry classification according to
the Global Industry Classification Standard (GICS), developed by MSCI. These companies represent the subset
of the blue chip stocks constitute the S&P100 for which we have at least 15 years of daily data. The S&P100
composition listing is taken as of December 2014.

ID Ticker Company Name GICS Sector ID Ticker Company Name GICS Sector

1 MMM 3M Industrials 42 HAL Halliburton Energy

2 T AT&T Tel. Services 43 HPQ Hewlett-Packard Technology

3 ABT Abbot Labs Health Care 44 HD Home Depot Cons. Disc

4 ALL All State Financials 45 HON Honeywell Intl Industrials

5 MO Altria Group Cons. Stap. 46 INTC Intel Technology

6 AXP American Exp Financials 47 IBM International Bus Mchs Technology

7 AIG American Intl Gp. Financials 48 JPM JP Morgan Chase Financials

8 AMGN Amgen Health Care 49 JNJ Johnson & Johnson Health Care

9 APC Anadarko Petroleum Energy 50 LLY Eli Lilly Health Care

10 APA Apache Energy 51 LMT Lockheed Martin Industrials

11 AAPL Apple Technology 52 LOW Lowe’s Comp. Cons. Disc

12 BAC Bank of America Financials 53 MCD McDonald’s Cons. Disc

13 BAX Baxter Intl Health Care 54 MDT Medtronic Health Care

14 BRKB Berkshire Hathaway Financials 55 MKR Merck & Company Health Care

15 BIIB Biogen Idec Health Care 56 MSFT Microsoft Technology

16 BA Boeing Industrials 57 MS Morgan Stanley Financials

17 BMY Bristol Myers Squibb Health Care 58 NKE Nike Cons. Disc

18 CVS CVS Health Cons. Stap. 59 NSC Norfolk Southern Industrials

19 COF Capital One Finl. Financials 60 OXY Occidential Plt. Energy

20 CAT Caterpillar Industrials 61 ORCL Oracle Technology

21 CVX Chevron Energy 62 PEP PepsiCo Cons. Disc

22 CSCO Cisco System Technology 63 PFE Pfizer Health Care

23 C Citigroup Financials 64 PG Procter & Gamble Cons. Stap.

24 KO Coca Cola Cons. Stap. 65 QCOM Qualcomm Technology

25 CL Colgate-Palm. Cons. Stap. 66 RTN Raytheon Industrials

26 CMCSA Comcast Cons. Disc 67 SLB Schlumberger Energy

27 COP ConocoPhillips Energy 68 SPG Simon Property Grp. Financials

28 COST Costco Cons. Stap. 69 SO Southern Utilities

29 DVN Devon Energy Energy 70 SBUX Starbucks Cons. Disc

30 DOW Dow Chemical Materials 71 TGT Target Cons. Disc

31 DD DuPont Materials 72 TXN Texas Instruments Technology

32 EMC EMC Technology 73 BK Bank of New York Mellon Financials

33 EMR Emerson Elect. Industrials 74 TWX Time Warner Cons. Disc.

34 EXC Exelon Utilities 75 USB US Bancorp Financials

35 XOM Exxon Mobil Energy 76 UNP Union Pacific Industrials

36 FDX Fedex Industrials 77 UTX United Tech Industrials

37 F Ford Motor Cons. Disc 78 UNH UnitedHealth Grp Health Care

38 FCX Freeport-McMoran Materials 79 VZ Verizon Tel. Services

39 GD General Dynamics Industrials 80 WMT WalMart Cons. Stap.

40 GE General Electric Industrials 81 WAG Walgreen Cons. Stap.

41 GILD Gilead Sciences Health Care 82 DIS Walt Disney Cons. Disc.

83 WFC Wells Fargo Financials

47



Table 2. Network Centrality and Market Values

Centrality measures and market value. This table report the results from a robust regression analysis where the
dependent variable is the centrality measure computed for each firm. The independent variable is the company
specific corresponding market value. The regression is run for both regimes of systemic risk. Kendall (1938)
rank-correlation coefficient is computed by first ranking firms according to their centrality within the network.
Second we rank firms according to their average market value across the identified regimes. The rank correlation
coefficient τ measures the correspondence of the ranking. Panel A shows the results obtained using the median
weighted centrality measure as dependent variable. Panel B shows the results obtained using the median standard
centrality measure as dependent variable. Standard errors are corrected for heteroskedasticity and autocorrelation
in the residuals (Newey-West HAC). Rank-correlation that are significant at the 5% significance level are displayed
in bold.

Panel A: Weighted Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.012 0.908 0.002 0.054 0.001 0.649 0.001 0.061 0.011 0.654 0.003 0.045

Low 0.015 1.072 0.016 0.084 0.041 0.871 0.006 0.085 0.032 1.032 0.004 0.055

Panel B: Standard Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.099 0.861 0.011 0.062 0.003 0.123 0.003 0.059 0.021 0.782 0.012 0.048

Low 0.021 1.592 0.021 0.091 0.002 0.231 0.008 0.085 0.042 1.321 0.023 0.052
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Table 3. Network Centrality and Value Losses

Value losses and exposure to systemic risk. This table report the results from a robust regression analysis
where the dependent variable is the ranking of firms on the basis of their average maximum percentage financial
loss suffered across the two separate regimes. The independent variables are the network centrality measures
explained in Section 2. Kendall (1938) rank-correlation coefficient is computed by first ranking firms according
to their centrality within the network. Second we rank firms according to their average maximum percentage
financial loss. The rank correlation coefficient τ measures the correspondence of the ranking. Panel A shows the
results obtained using the median weighted centrality measure as dependent variable. Panel B shows the results
obtained using the median standard centrality measure as dependent variable. Standard errors are corrected for
heteroskedasticity and autocorrelation in the residuals (Newey-West HAC). Rank-correlation that are significant
at the 5% significance level are displayed in bold.

Panel A: Weighted Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.551 2.061 0.091 0.211 0.671 2.194 0.101 0.205 0.891 1.981 0.112 0.198

Low 0.213 1.651 0.045 0.181 0.391 1.691 0.062 0.171 0.691 1.759 0.061 0.169

Panel B: Standard Eigenvector Centrality

CAPM Fama-French I-CAPM

Coeff t-stat R2 τ Coeff t-stat R2 τ Coeff t-stat R2 τ

High 0.421 1.951 0.078 0.191 0.671 1.981 0.083 0.198 0.521 1.931 0.08 0.185

Low 0.172 1.761 0.055 0.188 0.401 1.641 0.051 0.185 0.301 1.761 0.054 0.160
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Table 4. Network Connectivity and Changes in Macro-Financial Variables

Systemic risk and changes in standard predictors. This table report the results from a Probit regression analysis
where the dependent variable is the model implied systemic risk indicator st. The set of independent variables
are changes from t − 1 to t of the term yield spread (TERM, the difference between the 10-year interest rate
and the 1-month T-Bill rate), the default spread (DEF, the difference between the 30-year treasury yield and
the yield on a Baa corporate bond), the aggregate market dividend yield (DY), the credit spread (Credit, the
difference between the Baa and the Aaa corporate bond yields), the financial distress index (Distress, a synthetic
indicator of financial distress in the U.S.), the aggregate price-earnings ratio (PE), the market uncertainty index
(Mkt Unc) from Baker et al. (2014), and the VIX index. Data are from the FredII database of the St Louis
Fed and the Chicago Board Options Exchange (CBOE). The sample period is 05/10/1996-10/31/2014, daily.
Panel A shows the estimated betas and Panel B the marginal effects. ***means statistical significance at the 1%
confidence level, ** significance at the 5% confidence level and * significance at the 10% level.

Panel A: Betas

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Intercept −0.335∗∗∗ −0.332∗∗∗ −0.335∗∗∗ −0.334∗∗∗ −0.334∗∗∗ −0.332∗∗∗ −0.325∗∗∗ −0.332∗∗∗ −0.335∗∗∗ −0.335∗∗∗ −0.330∗∗∗

Term 0.656∗∗∗ 0.738∗∗∗ 0.701∗∗∗

Credit 2.321∗∗∗ 2.451∗∗∗

Default 1.998∗∗∗ 2.147∗∗∗

DY 0.306 0.891

PE -0.021 -0.067

VIX -0.002 -0.012 -0.006 0.001

Distress 0.424∗∗∗

Mkt Unc 0.001 -0.002

Pseudo R2 0.01 0.03 0.12 0.01 0.01 0.02 0.09 0.01 0.14 0.15 0.01

Panel B: Marginal Effects

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Term 0.248 0.281 0.264

Credit 0.875 0.927

Default 0.798 0.812

DY 0.115 0.336

PE -0.008 -0.025

VIX -0.001 -0.005 -0.002 0.001

Distress 0.261

Mkt Unc 0.001 -0.001
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Table B.1. Testing the Number of Regimes

Testing the number of regimes. This table reports the results of a formal test for the number of regimes for each
factor pricing model specification. We report the (log) marginal likelihoods and the corresponding Bayes factor
in log-scale comparing the model with K = 1, 2, 3. The sample period is 05/10/1996-10/31/2014, daily.

Panel A: Log Marginal Likelihoods

CAPM Fama-French I-CAPM

K = 1 −1.84e+ 06 −1.86e+ 06 −1.87e+ 06
K = 2 −1.75e+ 05 −1.63e+ 05 −1.56e+ 05
K = 3 −1.60e+ 06 −1.62e+ 06 −1.63e+ 06

Panel B: Log10 Bayes Factors

CAPM Fama-French I-CAPM

B2,3 6.2223 6.2302 6.2346
B2,1 6.1547 6.1632 6.1680

Table C.1. Inefficiency Factors

The table summarizes the convergence results, for the posterior values of the model parameters. The
sample period is 05/10/1996-10/31/2014, daily. The estimated inefficiency factors are based on the
Bartlett kernel as in Newey and West (1987) with a bandwidth equal to 4% of the 10000 retained draws.
Panel A shows the inefficiency factor. This measures define the amount of information do we effectively
have about the parameters.

Parameters Mean Median Min Max 5% 95%

α1 83 2.9191 2.9299 2.4766 3.5318 2.6046 3.3032
α2 83 3.7976 3.8472 2.4247 6.6805 2.8534 5.3942
β1 83 2.1821 7.1531 2.5054 9.9405 2.6542 14.9968
β2 83 4.0833 7.1225 2.7312 13.3890 3.1195 11.0579
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Table C.2. Testing Differences in Sample Means

The table summarizes the convergence results, for the posterior values of the model parameters. For
each of these, we compute the p-value of the Geweke (1992) t-test for the null hypothesis of equality of
the means computed for the first 20% and the last 40% of the retained 5000 draws. The variances of
the means are estimated with the Newey and West (1987) variance estimator using a bandwidth of 4%
of the respective sample sizes.

Parameters 5% Reject Rate 10% Reject Rate

α1 83 0.0057 0.0093
α2 83 0.0083 0.0113
β1 83 0.0101 0.0145
β2 83 0.0123 0.0167
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