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Abstract

This paper demonstrates that all rank test statistics are functions of implicit null space

estimators. The paper proposes a novel theory of null space estimation that allows for both

standard and cointegration asymptotics. The paper then proves that the behaviour of rank

test statistics is completely governed by the implicit null space estimators through a plug–in

principle. This allows for a general theory of rank testing that simplifies the asymptotics of

rank test statistics, clarifies the relationships between the various rank test statistics, makes

use of important results in the numerical analysis literature, and motivates numerous new

rank test statistics. A brief Monte Carlo study illustrates the results.
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Carvalho, Kristoffer Nimark, Gábor Lugosi, Sergi Jiménez, Christian Brownlees, Barbara Rossi, Peter Boswijk,

Herman van Dijk, Andrew Harvey, Luis Martins, Søren Johansen, Natercia Fortuna, Vladas Pipiras, Alan Izenman,

anonymous referees, and to seminar participants at Universitat Pompeu Fabra, Universidad Carlos III de Madrid,

Universidade do Minho, and Universidade do Porto, for helpful comments and suggestions. The author takes sole

responsibility for any remaining errors. Research for this paper was supported by Spanish Ministry of Economy and

Competitiveness project ECO2012-33247.

1



1 Introduction

Rank testing is ubiquitous in empirical data analysis. Examples of its applications include,

demand systems (Lewbel, 1991), identification in GMM (Cragg & Donald, 1993; Wright, 2003;

Arellano et al., 2012), identification robust inference (Kleibergen, 2005), cointegration (Dolado

et al., 2001; Hubrich et al., 2001), model reduction (Velu et al., 1986; Camba-Mendez et al.,

2003), Granger causality testing (Al-Sadoon, 2014), growth curve statistics (Reinsel & Velu,

1998), linear systems theory (Markovsky, 2012), and machine learning (Hastie et al., 2001).

See Camba-Mendez & Kapetanios (2009) for a comprehensive review.

Much of this progress has taken place in spite of the difficulty of the asymptotics of these

tests. Indeed the tests often involve the asymptotics of eigenvectors, matrix inverses, and

other complicated objects. For example, Cragg & Donald (1996) have proven that some of

the asymptotics of Gill & Lewbel (1992) are incorrect. The asymptotics are indeed so difficult

that little is known about the behaviour of rank test statistics under local alternatives or under

misspecification. The only paper in the standard asymptotics literature that touches on the

issue of local power is Cragg & Donald (1997) and the only one that treats misspecification is

Robin & Smith (2000). In both cases, the results relate to specific tests and do not generalize

to all rank tests. In cointegration, the local power of the Johansen trace test is considered in a

handful of papers surveyed in Hubrich et al. (2001). Caner (1998) and Cavaliere et al. (2010b)

consider the effect of misspecifying the innovation process of a cointegrated VAR, while Aznar

& Salvador (2002) and Cavaliere et al. (2014) consider the effect of misspecifying its lag order.

Again, these results refer only to specific statistics and do not tell us how, for example, the

Kleibergen & Paap (2006) might behave under these local alternatives or misspecifications.

Thus, there is no clear general principle that unifies and generalizes all of the results above.

Moreover, although this literature has proposed a number of tests of rank, it is not clear

what the relationships are between some of these statistics. The statistics of Cragg & Donald

(1996) and Cragg & Donald (1997) are known to be asymptotically equivalent. However, it is

not clear how the statistics of Anderson (1951), Kleibergen & Paap (2006), and some of the

statistics in Robin & Smith (1995) relate to these or to each other. It is also not clear how the

Kleibergen & Paap (2006), Kleibergen & van Dijk (1994), and Johansen (1988) cointegration

statistics relate to each other or to the standard asymptotics rank testing statistics. There is

therefore a need for a general framework that encompasses all of these tests.
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This literature has also developed in parallel to a much larger and older literature in nu-

merical analysis, which has proposed a battery of algorithms for detecting rank (see the survey

in Hansen (1998)). The econometric and statistical literature has made minimal use of these

algorithms (see Appendix A). For example, the most popular algorithm, the QR decompo-

sition with pivoting, has never been used in a rank test. The Cholesky decomposition has

also been absent from statistical tests as well as the multitude of variations on the algorithms

commonly used in statistics and econometrics. It would be useful to have a theory general

enough to allow the researcher to take any of these algorithms and convert it into a rank test.

This paper addresses all of the issues above by developing a general theory of rank testing

that clarifies the asymptotics of the tests under the various alternatives (null, local, and

global), the asymptotics under misspecification, the relationships between the various rank test

statistics in the literature, all while taking full advantage of the numerical analysis literature.

The approach is more general than that proposed by Reinsel & Velu (1998) and Massmann

(2007), which nest some of the likelihood–based tests but not many of the Wald–type tests.

This is accomplished in a number of steps.

First, the paper describes the general structure of all rank test statistics. The paper

demonstrates that all rank test statistics are functions of implicit estimators of the null spaces

of the matrix which is being tested.

Next, the paper conducts a detailed study of null space estimation. The approach is more

general than that employed by Dufour & Valery (2011) in that it applies to general matrices

rather than just the positive semi–definite ones and does not restrict itself to eigenprojections.

The theory of null space estimation proposed in this paper has a number of novelties. First, it

is identification–free in that it works with projection matrices rather than arbitrarily identified

bases for the estimated subspaces. Second, it encompasses both standard and cointegration

asymptotics. Third, it allows the researcher to employ any algorithm proposed in the numerical

analysis literature for the detection of rank. This theory is applicable not just in rank testing

but should be useful for factor analysis, model reduction, and machine learning applications.

Finally, it is proven that the behaviour of rank test statistics is completely governed by the

implicit null space estimators. A plug–in principle is shown to hold, whereby every rank test

statistic mimics the asymptotic behaviour of an infeasible statistic that plugs in null spaces

related to the population value of the matrix under study.
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The plug–in principle greatly simplifies the asymptotics of rank test statistics under the

various alternatives as well as misspecification. Under the null hypothesis or the local al-

ternative, one can simply ignore the fact that the null spaces are estimated and derive the

asymptotics as if the appropriate null spaces were known. Under the global alternative, the

rank test statistic diverges whenever the associated infeasible statistic diverges and under cer-

tain conditions (conjectured to be generic) both statistics are proven to diverge at the same

rate. These results hold regardless of correct specification or misspecification. Theorem 2 and

Corollaries 3 and 4 are shown to imply the asymptotics of almost all of the rank test statistics

in the literature, with the handful of exceptions demonstrably satisfying a weaker form of the

plug–in principle (see the discussion in Section 4).

Because the standard asymptotics and cointgration literatures have traditionally been

viewed as separate, our development proceeds from the standard setting in Section 3 to the

more general one that allows for cointegration and more general asymptotics in Section 4.

This gradual approach facilitates the development and illuminates the continuity between the

two literatures. However, even though the results of Section 4 completely encompass those of

Section 3, there is almost no overlap between the proofs of the results of each section.

It is important to note two aspects of the plug–in principle that have been well known in

the rank testing literature. First, as far back as Stock & Watson (1988) and as recently as

Boswijk et al. (2015), researchers have relied on the idea that the cointegration vector, being

super–consistent, is as good as known in determining the asymptotics of rank test statistics.

This paper demonstrates that this idea does not hold in general (see Examples 13 and 14)

and proposes the necessary modifications. Second, the proofs of the asymptotics of rank test

statistics under the null in standard asymptotics sometimes involved an implicit use of the

plug–in principle (e.g. Cragg & Donald (1996) and Robin & Smith (2000)). However, these

results concern specific rather than generic rank testing statistics and did not recognize the

plug–in principle as an overarching framework that elucidates the asymptotics of rank test

statistics in general.

In terms of practical recommendations for practitioners, the following results emerge: (i)

Monte Carlo results fail to show a uniformly best performing statistic and so the researcher can

safely base their choice of statistic on convenience, (ii) test statistics based on the QR and LU

RRAs (e.g. Cragg & Donald (1996)) are recommended for high intensity computing such the
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bootstrap as they are numerically less expensive than the alternatives, (iii) fixed–b rank test

statistics (based on Vogelsang (2001) and Kiefer & Vogelsang (2002a,b, 2005)) yield significant

improvements in size in small samples and should be employed by those researchers who are

concerned with the problem of over–rejection, (iv) researchers interested in rank estimation

need no longer rely on the Cragg & Donald (1997) index, which is difficult to compute, but may

utilize any other convenient statistic in its place, and (v) the paper proposes a number of new

rank test statistics, which include: (a) extensions of the likelihood ratio statistic of Anderson

(1951) and the maximum eigenvalue statistic of Johansen (1991), (b) statistics based on the

QR and Cholesky decompositions, and (c) some new statistics for testing common trends.1

We mention finally that some of the results of this paper were part of the author’s PhD

thesis (Al-Sadoon, 2010). Specifically, Chapter 5 of the thesis included special cases of Lemma

2 (iv), Lemma 3 (i), and Corollary 1 of this paper as well as an early draft of Appendix A.

The paper is organized as follows. Section 2 develops the notation of the paper. Section 3

develops the theory of rank testing under standard asymptotics. Section 4 develops the theory

of rank testing under general asymptotics. Section 5 provides Monte Carlo evidence. Section

6 concludes. Appendix A develops some of the necessary results from numerical analysis as

well as containing some useful derivations. Appendix B consists of proofs.

2 Notation

Rn×m denotes the set of n × m real valued matrices and Gn×m is the subset of matrices

of full rank. Pm+ ⊂ Pm ⊂ Sm denote the set of positive definite, positive semi–definite, and

symmetric matrices in Rm×m respectively. The ij–th element of B is denoted by B(i,j). vec(B)

is the vector formed by vertically stacking the columns of B and vech(B) is the one formed

by vertically stacking the elements below and including the diagonal elements of B. The

mat operator is defined as the inverse to the vec operator (its range will be evident from the

context). The Euclidean norm of B ∈ Rn×m is defined as ‖B‖ = (vec′(B)vec(B))1/2. The

Mahalanobis norm is defined as ‖B‖Θ = (vec′(B)Θ−1vec(B))1/2 for Θ ∈ Pnm+ . The L2 norm

is defined as ‖B‖2 = maxx∈Rm,‖x‖=1 ‖Bx‖. The singular values of B are denoted by σ1(B) ≥

1Practitioners may also wish to consult the Matlab tutorial accompanying this paper, Tutorial.m, which is

included in the compressed file, rank.rar, available on the author’s website.
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σ2(B) ≥ · · · ≥ σm(B) ≥ 0. The condition number of B is defined as cond(B) = σ1(B)/σr(B),

where r = rank(B). The Moore–Penrose inverse of B is denoted by B†. For any B ∈ Gn×m

with n > m, an orthogonal complement B⊥ is any matrix in Gn×(n−m) satisfying B′⊥B = 0.

The column space of B is denoted by span(B). The orthogonal projection onto span(B) is

denoted by PB. For B ∈ Sm, we denote the eigenvalues of B as λ1(B) ≥ λ2(B) ≥ · · · ≥ λm(B).

The duplication matrix Dm is the mapping vech(B) 7→ vec(B) over B ∈ Sm.2

Finally, we say that a sequence of random matrices XT ∈ Rn×m indexed by T is bounded

away from zero in probability if for all ε > 0, there exists a δε > 0 and a Tε ≥ 0 such that the

probability that ‖XT ‖ > δε is at least 1− ε for all T ≥ Tε. It is easy to show that ‖XT ‖−1 is

bounded away from zero in probability if and only if XT = Op(1). This suggests the notation

XT = O−1
p (1). The product of two O−1

p (1) sequences is again O−1
p (1) and aT ‖XT ‖

p→ ∞ for

any non–random sequence aT →∞. The deterministic version, O−1(1), is defined similarly.

3 Rank Testing Under Standard Asymptotics

In this section, we will study the general structure of all rank tests under standard asymptotics.

We will show that their behaviour is completely governed by implicit null space estimators.

The behaviour of null space estimators is studied in great detail. We then turn to its applica-

tion to rank testing. Before we do that, however, we must fix a few ideas.

We will draw inference on matrices B in either Rn×m, Sm, or Pm. The particular parameter

space will be evident from the context. For 0 ≤ r < min{n,m}, we will be interested in testing

the hypothesis

H0(r) : B = B∗, rank(B∗) = r

against the global alternative

H1(r) : B = B∗, rank(B∗) > r

as well as the local alternative

HT (r) : B = B∗ +D/
√
T , rank(B∗) = r.

2The matrix analysis utilized in this paper derives mainly from Horn & Johnson (1985, 1991), Stewart & Sun

(1990), and Golub & Van Loan (1996). Research for this paper also relied heavily on Dennis Bernstein’s magnificent

treatise (Bernstein, 2009) although only primary sources are cited in this paper.
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The matrix D is assumed to be an element of the parameter space. H0(r) is considered the

special case of HT (r) where D = 0. The distinction between B and B∗ is necessary under

the local alternative as B will typically have a higher rank than B∗ for a fixed T . For future

reference, the reader may wish to keep in mind that B∗ refers to an unknown matrix of

determined rank.

3.1 Preliminary Examples

The next few examples, review the core statistics in the literature and form the basis of our

investigation. The technical details are relegated to Appendix A.

Example 1 (Anderson (1951)). Suppose {εt : t ≥ 1} is an i.i.d. sequence of N(0,Σ) random

vectors with Σ ∈ Pn+. Let {xt : t ≥ 1} be a non–random sequence of vectors such that

Γ̂ = T−1
∑T

t=1 xtx
′
t ∈ Pm+ for T ≥ m and limT→∞ Γ̂ = Γ ∈ Pm+ . Now define

yt = Bxt + εt, t = 1, . . . , T.

Let B̂ and Σ̂ be the maximum likelihood estimators of B and Σ and recall that the asymptotic

variance of
√
Tvec(B̂−B) is Ω = Γ−1⊗Σ, which we estimate by Ω̂ = Γ̂−1⊗ Σ̂. The likelihood

ratio statistic for testing the hypothesis H0(r) against H1(r) derived by Anderson (1951) is

T
∑min{n,m}−r

i=1 log
(

1 + λr+i

(
Σ̂−1B̂Γ̂B̂′

))
and can be expressed as

LR
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= T

min{n,m}−r∑
i=1

log
(

1 + σ2
i

(
(P

N̂r
Σ̂P

N̂r
)†/2P

N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
))

,

where N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) specify directions along which y is least predictable

by x (Reinsel & Velu, 1998). Anderson (1951) also noticed that under H0(r), LR has the same

limiting distribution as the statistic

A
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= T

∥∥∥(P
N̂r

Σ̂P
N̂r

)†/2P
N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
∥∥∥2
,

known as the trace statistic. In the context of cointegration (although it applies equally well

here) Johansen (1991) proposed the maximum eigenvalue statistic

J
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= T

∥∥∥(P
N̂r

Σ̂P
N̂r

)†/2P
N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
∥∥∥2

2
.

These new expressions for LR, A, and J illustrate two important features of rank test statistics.

First, they are functions of matrices N̂r and M̂r that estimate the null spaces of B (we
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give a precise definition later on). Second, they are functions of a standardized P
N̂r
B̂P

M̂r
.

To see this more clearly, simply note that vec
(

(P
N̂r

Σ̂P
N̂r

)†/2P
N̂r
B̂P

M̂r
(P

M̂r
Γ̂−1P

M̂r
)†/2
)

=(
(P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)†/2

vec(P
N̂r
B̂P

M̂r
).

When the data is heteroskedastic and/or autocorrelated, the asymptotic variance of B̂ in

Example 1 is no longer of Kronecker product form and the limiting distribution of the statistics

above are no longer pivotal. Robin & Smith (2000) prove this for the LR and A statistics

and we will prove this for the J statistic later on. This has motivated a variety of alternative

statistics, the first of which was the following.

Example 2 (Cragg & Donald (1996)). H0(r) holds if and only if the application of the LU

decomposition with complete pivoting to B produces an upper triangular matrix whose lower

right (n− r)× (m− r) block consists of zeros. Heuristically then, the same algorithm applied

to B̂ should produces an Op(T
−1/2) matrix that is asymptotically normal and centred at the

(n− r)× (m− r) zero matrix. As the algorithm is performed by row and column operations,

there exists matrices N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) such that N̂ ′rB̂M̂r ∈ R(n−r)×(m−r)

is the matrix produced by the algorithm. Cragg & Donald (1996) then propose the statistic

Tvec′(N̂ ′rB̂M̂r){(M̂r ⊗ N̂r)
′Ω̂(M̂r ⊗ N̂r)}−1vec(N̂ ′rB̂M̂r),

where Ω̂ is an estimator of the asymptotic variance of B̂. With a bit of simple algebra, one

can rewrite the statistic as

F
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
= Tvec′(P

N̂r
B̂P

M̂r
){(P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)}†vec(P

N̂r
B̂P

M̂r
).

Note that N̂r and M̂r have the same functions as in Example 1. They estimate the null

spaces of B. Note that A
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
= F

(
B̂, Γ̂−1 ⊗ Σ̂, P

N̂r
, P

M̂r

)
so that F is a

generalization of A.

The statistics proposed by Robin & Smith (1995), Robin & Smith (2000), and Kleibergen

& Paap (2006) are all of the form F . We will show in the next subsection that the minimum

distance statistic proposed by Cragg & Donald (1997) is also of the F form.
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Example 2 suggests the following modifications to LR and J ,

LRA
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
= T

min{n,m}−r∑
i=1

log
(

1 + σ2
i

(
mat

(
((P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
))†/2vec(P

N̂r
B̂P

M̂r
)
)))

JA
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
= T

∥∥∥mat
(

((P
M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
))†/2vec(P

N̂r
B̂P

M̂r
)
)∥∥∥2

2
.

These statistics are robust to heteroskedasticity and autocorrelation under correct specification

and simplify to the LR and J respectively when Ω̂ is of Kronecker product form.3

Example 3 (Donald et al. (2007)). Suppose B ∈ Sm in Example 1 and is estimated subject

to the symmetry restriction so that B̂ ∈ Sm. Donald et al. (2007) apply the same idea as in

Example 2, except that they preserve symmetry by applying identical operations to the rows

and columns to produce M̂ ′rB̂M̂r. They then propose the test statistic

Tvech′(M̂ ′rB̂M̂r){D†m−r(M̂r ⊗ M̂r)
′DmΨ̂D′m(M̂r ⊗ M̂r)D

†
m−r

′}−1vech(M̂ ′rB̂M̂r),

where Ψ̂ is an estimator of the asymptotic covariance of vech(B̂) and Dm is the duplica-

tion matrix. This statistic may be written as F
(
B̂,DmΨ̂D′m, PM̂r

, P
M̂r

)
(see Appendix A).

Camba-Mendez & Kapetanios (2005) construct a similar statistic.

When B ∈ Pm, Donald et al. (2007) reason that H0(r) holds if and only if the sum of the

m− r smallest eigenvalues of B is zero and therefore propose the statistic
√
T
∑m

i=r+1 λi(B̂).

If we collect the eigenvectors associated with the m− r smallest eigenvalues in the matrix M̂r,

then we can express this statistic as
√
T tr(P

M̂r
B̂P

M̂r
). We may also standardize it as

t
(
B̂, Ψ̂, P

M̂r

)
=

√
T tr(P

M̂r
B̂P

M̂r
)√

vec′(Im)(P
M̂r
⊗ P

M̂r
)DmΨ̂D′m(P

M̂r
⊗ P

M̂r
)vec(Im)

.

Note that t
(
B̂, 1

m−r (D′mDm)−1, P
M̂r

)
yields the non–standardized statistic. We name this

the t statistic because it is obtained from B̂ by straightforward multiplication, just like the t

statistic for scalars. It is interesting to note that for general matrices, it is impossible to form

t statistics that yield consistent tests of H0(r) against H1(r) when r < min{n,m}− 1 because

3One can avoid the computation of the projection matrices and the Moore–Penrose inverse in the LRA and JA

statistics by expressing them as T
∑min{n,m}−r
i=1 log

(
1 + σ2

i

(
mat

(
((M̂r ⊗ N̂r)′Ω̂(M̂r ⊗ N̂r))−1/2vec(N̂ ′rB̂M̂r)

)))
and T

∥∥∥mat
(

((M̂r ⊗ N̂r)′Ω̂(M̂r ⊗ N̂r))−1/2vec(N̂ ′rB̂M̂r)
)∥∥∥2

2
respectively.
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the number of degrees of freedom in this case is greater than one.4 t tests are possible for

positive semi–definite matrices because the parameter space is restricted and positive semi–

definite matrices behave much like scalars (Horn & Johnson, 1985, Chapter 7).5 It is important

to note, however, that t statistics are not invariant to conformable rescaling of B̂ and Ω̂, thus

even a change of units can result in a different statistic.6

We will see that the asymptotic behaviour of rank test statistics in standard asymptotics

is completely governed by the behaviour of P
N̂r

and P
M̂r

. In particular, for every rank test

statistic T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
), we will see that its asymptotics mimic those of an infeasible

statistic T θτ(B̂, Ω̂, PNr , PMr), where Nr and Mr are population parameters.7

3.2 Estimating the Null Spaces

In this section, we will be concerned with estimating the null spaces of B∗ ∈ Rn×m. We will

maintain the assumption that B̂ ∈ Gn×m. This is guaranteed if vec(B̂) is a non–degenerate

random vector (i.e. it has a continuous probability density function). It is also guaranteed if

vech(B̂) is non–degenerate when the parameter space is Sm or Pm.8

Definition 1 (Null Space Estimators). For 0 ≤ r < min{n,m}, the random matrices N̂r ∈

Rn×(n−r) and M̂r ∈ Rm×(m−r) are respectively left and right null space estimators of a rank–r

matrix in Rn×m if they are both almost surely of full rank. When there is no possibility of

confusion, we will refer to them simply as null space estimators. A matrix of full rank defines

a unique column space, which in turn defines a unique orthogonal projection matrix (Rudin,

1986, Theorem 4.11), thus we will refer to P
N̂r

and P
M̂r

as null space estimators as well.

4For r = min{n,m} − 1, we can formulate a t statistic based on the smallest singular value of B̂ as it can be

obtained from B̂ by straightforward multiplication.
5Using t, we may also consider one–sided hypothesis tests, where the null hypothesis of positive definite B is

tested against the alternative that the last m− r eigenvalues of B are negative.
6Note that t(I2, I3, I2) =

√
T whereas t(R′I2R,D

†
2(R⊗R)′D2I3D

′
2(R⊗R)D†2

′, I2) =
√
T a2+1√

a4+1
when R = [ a 0

0 1 ].
7Previous versions of this paper termed the infeasible statistics classical statistics and the rank test statistics

stochastic statistics. Thanks are due to Peter Boswijk for suggesting the change of terminology.
8The set of matrices in Rn×m of rank r is a submanifold of Rnm of dimension nm− (n− r)(m− r) (Guillemin &

Pollack, 1974, p. 27). It therefore has measure zero in Rnm for r < min{n,m} (Guillemin & Pollack, 1974, p. 45) and

so the set of rank–deficient matrices in Rn×m is of measure zero. By a similar argument, the set of rank–deficient

matrices in Sm (resp. Pm) is of measure zero in Rm(m+1)/2.

10



The problem of estimating null spaces has a long history in the numerical analysis literature

(Stewart, 1993; Golub & Van Loan, 1996; Hansen, 1998). The basic idea is illustrated in the

following example.

Example 4. Suppose {ε1, ε2} ⊂ (0, 1) and consider the set of matrices

B̂ =


1 0 0

0 ε1 0

0 0 ε2

 , B̂RRA
2 =


1 0 0

0 ε1 0

0 0 0

 , B̂RRA
1 =


1 0 0

0 0 0

0 0 0

 , B̂RRA
0 =


0 0 0

0 0 0

0 0 0

 .

When ε2 is very small relative to ε1 and 1, we may approximate B̂ by B̂RRA
2 and estimate

the null spaces by M̂2 = N̂2 = [ 0 0 1 ]′. When both ε1 and ε2 are small, we may approx-

imate B̂ by B̂RRA
1 and estimate the null spaces by M̂1 = N̂1 = [ 0 1 0

0 0 1 ]
′
. Finally, the rank–0

approximation of B̂ is the zero matrix and we may estimate the null spaces by N̂0 = M̂0 = I3.

Notice that the rank–2 approximation depends on the relative sizes of ε1 and ε2. If ε1 is

very small relative to ε2 and 1, we estimate the null spaces by M̂2 = N̂2 = [ 0 1 0 ]′ instead.

This implies that as ε1, ε2 → 0, the null space estimators may fluctuate between [ 0 0 1 ]′

and [ 0 1 0 ]′ with no definite limit, although they will always be in the yz plane. This

implies that null space estimators are nested.

If ε1 = 1 and ε2 → 0, then the rank–1 approximation is not unique. One may choose either

[ 0 1 0
0 0 1 ]

′
or [ 1 0 0

0 0 1 ]
′
as the estimated null spaces. In either case, P

N̂1
B̂P

M̂1
remains bounded away

from zero as ε2 → 0.

Finally, as ε1, ε2 → 0, it is clearly not possible for B̂RRA
0 to approximate B̂ well in any

meaningful sense and P
N̂0
B̂P

M̂0
remains bounded away from zero as ε1, ε2 → 0.

Thus, to estimate the null spaces of the rank–r matrix B∗ based on B̂, we think of the

latter as a perturbation of the former. If we can find a reduced–rank approximation (RRA),

B̂RRA
r , of rank r that approximates B̂ well enough, then B̂RRA

r will also approximate B∗

and we may obtain consistent estimates of the null spaces of B∗ as the null spaces of B̂RRA
r .

Alternatively, if i > r and B̂RRA
i continues to approximate B̂ well, then we may expect it

to be consistent for B∗ and we may expect the spans of the null space estimators to merge

into the null spaces of B∗, although we cannot, in general, expect the null space estimators

to converge. Finally, if i < r, then B̂RRA
i cannot possibly converge to B∗ and a good RRA

should ensure that P
N̂i
B̂P

M̂i
is bounded away from zero.
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There are essentially two types of RRAs: decomposition–based approximations and norm–

based approximations. We discuss them briefly in turn. A more detailed discussion is relegated

to Appendix A.

Definition 2 (Decomposition–based Approximations). For B̂ ∈ Gn×m, let B̂ = Û ŜV̂ ′, where

Ŝ =
[
Ŝ11 Ŝ12

0 Ŝ22

]
∈ Rn×m is upper triangular and Û and V̂ and their inverses are bounded. We

further assume that if Ŝ11 ∈ Rr×r, then:

(i) There is a K1 > 0, not dependent on B̂, such that σr(Ŝ11) ≥ K1σr(B̂).

(ii) There is a K2 > 0, such that σ1(Ŝ22) ≤ K2σr+1(B̂) and K2 = O(1) for any B̂ satisfying

B̂ − B̂∗ → 0 with B̂∗ = O(1), rank(B̂∗) = r, and σr(B̂
∗) = O−1(1).

The RRA suggested by this decomposition is then

B̂DBA
r = Û

Ŝ11 Ŝ12

0 0

 V̂ ′.
We refer to this RRA as a decomposition–based approximation (DBA).

The idea behind DBAs is to apply elementary well–conditioned matrices (e.g. permu-

tations, reflections, rotations, Gaussian elimination matrices) to B̂ to produce a triangular

matrix that concentrates the effect of B̂ into the submatrix Ŝ11 and leaves as little as possible

in Ŝ22. We will see in the process of proving Lemmas 3 and 6 that condition (i) guarantees

power of our rank tests, while (ii) guarantees approximability of B̂ as it approaches a rank–r

matrix B̂∗, hence size. In this section B̂∗ will be fixed to B∗, however the definition is given

more generally to allow for a sequence B̂∗ that varies with B̂ as this will be necessary for more

general asymptotics. Existence and measurability of B̂DBA
r is guaranteed typically as a prop-

erty of the algorithm used (e.g. LU and QR) but can also follow from analytic considerations

(e.g. the spectral decomposition). Uniqueness may fail, although this will have no effect on

our results as any solution will do.

The most important DBA is the singular value decomposition approximation, which takes

Û and V̂ to be orthogonal and Ŝ to be diagonal with non–negative elements in descending

order. This RRA is utilized in Ratsimalahelo (2003), Kleibergen & Paap (2006), and Donald

et al. (2007). We will refer to this RRA as the SVD approximation and denote it by B̂SV D
r .

In the LU decomposition with complete pivoting, utilized by Cragg & Donald (1996), Û is

the product of a well–conditioned lower triangular matrix and a permutation matrix, while V̂
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is permutation matrix. Donald et al. (2007) use a similar LU algorithm with pivoting designed

for symmetric matrices. We will refer to the collection of these RRAs by B̂LU
r . Related to this

is the block Gaussian elimination utilized in Kleibergen & van Dijk (1994), which is similar to

the LU decomposition and satisfies the two conditions of Definition 2 if the pivoting matrix

is nonsingular.9 We will refer to these RRAs by B̂BLU
r .

When B̂ ∈ Sm, we may also make use of the Spectral Decomposition Theorem, where Ŝ is

diagonal and Û = V̂ is orthogonal. When the diagonal elements of Ŝ are ordered by absolute

value, we obtain B̂SV D
r . If the diagonal elements of Ŝ are put in descending order we obtain

a different DBA, which we denote by B̂EIG
r . This RRA satisfies the conditions of Definition

2 if B̂ approaches Pm in the limit. Donald et al. (2007) utilize both DBAs in their statistics.

There are also a number of DBAs that have never been used in the literature. The QR

algorithm with pivoting produces an orthogonal matrix Û and a permutation matrix for V̂ and

is the most computationally efficient of all of the algorithm surveyed in this paper (Hansen,

1998, Section 2.2.1). When B̂ ∈ Pm+ , we may employ the Cholesky decomposition, which has

Ŝ diagonal and Û = V̂ a row permutation of a lower triangular matrix. There are also many

variations on the aforementioned algorithms in the numerical analysis literature (see Hansen

(1998) for a survey).

Example 5. Suppose B̂ =
[

1 0.5
−1 0.5

]
. The SVD of B̂ is given by

[
0.71 0.71
−0.71 0.71

]
[ 1.41 0

0 0.71 ] [ 1 0
0 1 ] so

that B̂SV D
1 =

[
1 0
−1 0

]
. The LU decomposition with complete pivoting is

[
1 0
−1 1

]
[ 1 0.5

0 1 ] [ 1 0
0 1 ] so

B̂LU
1 =

[
1 0.5
−1 −0.5

]
. Finally, the QR decomposition with pivoting is

[−0.71 0.71
0.71 0.71

] [−1.41 0
0 0.71

]
[ 1 0

0 1 ]

so B̂QR
1 =

[
1 0
−1 0

]
. All three DBAs produce the same left null space estimators although the

LU decomposition produces a different right null space estimators to the other two.

Finally, we should note that not every matrix decomposition satisfies conditions (i) and

(ii) of Definition 2. For example, the Jordan canonical form for general matrices, the LU

decomposition with partial or no pivoting, and the QR decomposition with no pivoting all fail

to satisfy the conditions of Definition 2. The fact that all of the other DBAs surveyed above

satisfy conditions (i) and (ii) is demonstrated in Appendix A.

We now present some general results that apply to all DBAs.

9Chapter 8 of Lucas (1996) provides an insightful discussion of this condition.
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Lemma 1. Let B̂ ∈ Gn×m, B∗ ∈ Rn×m, rank(B∗) = r, and let N̂i and M̂i span the left and

right null spaces of B̂DBA
i respectively.

(i) rank(B̂DBA
i ) = i.

(ii) As B̂ −B∗ → 0, ‖B̂ − B̂DBA
i ‖ = O(‖B̂ −B∗‖) for all i ≥ r.

(iii) (In − PN̂r)PN̂i = 0 and (Im − PM̂r
)P

M̂i
= 0 for all i ≥ r.

Lemma 1 (i) guarantees the existence of null space estimators N̂i ∈ Gn×(n−i) and M̂i ∈

Gm×(m−i) spanning the left and right null spaces of B̂DBA
i . Lemma 1 (ii) proves that B̂DBA

i

approximates B̂ well if i is greater than the rank of B∗ and B̂ approaches B∗. Lemma 1

(iii) states that the estimated null spaces are nested in the sense that span(N̂i) ⊂ span(N̂r)

and span(M̂i) ⊂ span(M̂r) whenever i > r. This result will allow us to prove dominance

relationships between the various rank testing statistics.

Definition 3 (Norm–based Approximations). For B̂ ∈ Gn×m, let

B̂CDA
r ∈ argmin{‖B̂ −A‖Θ : A ∈ Rn×m, rank(A) ≤ r},

where Θ ∈ Pnm+ . We term this the Cragg and Donald approximation (CDA), after Cragg &

Donald (1997), who first proposed it in econometrics.10

The idea behind the CDA is quite simply to find the closest rank–r matrix according

to the Mahalanobis metric. Cragg & Donald (1997) restrict attention to the case where Θ

is an estimator of the asymptotic covariance of B̂. We place no such restriction. Θ is to be

understood simply as a weighting matrix. The existence of the CDA can be proven by standard

methods (Cragg & Donald, 1997). Measurability also follows from standard methods (White,

1994, Theorem 2.11). Uniqueness, on the other hand, may not hold, although again this will

have no bearing on our results.

The CDA nests a number of other RRAs as special cases. When Θ is the identity matrix

we obtain the SVD approximation. More generally, when Θ is a Kronecker product of an

m×m and an n×n matrix, we obtain the RRAs implicit in Bartlett (1947), Anderson (1951),

and Izenman (1975). This RRA receives its most explicit treatment in Robin & Smith (2000)

and so we will refer to it as the Robin and Smith decomposition (RSD) approximation and

10A precursor to this RRA is the one proposed by Gabriel & Zamir (1979), although they take Θ to be diagonal.
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denote it by B̂RSD
r . The null space estimators in Example 1 are obtained from B̂ by an RSD

with Θ = Γ̂−1 ⊗ Σ̂.

When Θ is not of Kronecker product form, there are no known analytical solutions. How-

ever, a novel iterative scheme for obtaining the CDA can be found in Appendix A, which

works quite well in numerical experiments.

Example 6. Suppose B̂ = [ 1 0
0 ε ], Θ = I4, and |ε| < 1, then B̂CDA

1 = [ 1 0
0 0 ]. Suppose now that

Θ =
[
I3 0
0 δ2

]
, with |δ| < ε, then the higher relative weight on B̂(2,2) compensates for its smaller

relative size in the approximation and so B̂CDA
1 = [ 0 0

0 ε ].

Next, we provide general results that apply to all CDAs.

Lemma 2. Let B̂ ∈ Gn×m, B∗ ∈ Rn×m, rank(B∗) = r, Θ ∈ Pnm+ , and let N̂i and M̂i span the

left and right null spaces of B̂CDA
i respectively.

(i) For all i, rank(B̂CDA
i ) = i.

(ii) If cond(Θ) = O(1) as B̂ −B∗ → 0, then ‖B̂ − B̂CDA
i ‖ = O(‖B̂ −B∗‖) for all i ≥ r.

(iii) If cond(Θ) = O(1) as B̂ − B∗ → 0, then (In − PN̂r)PN̂i = O(‖B̂ − B̂CDA
r ‖) and (Im −

P
M̂r

)P
M̂i

= O(‖B̂ − B̂CDA
r ‖) for all i ≥ r.

(iv) For all i, T‖B̂ − B̂CDA
i ‖2Θ = F

(
B̂,Θ, P

N̂r
, P

M̂r

)
.

As before, Lemma 2 (i) implies that the null space estimators obtained from DBAs are well

defined. Lemma 2 (ii) states that so long as i is greater than the rank of B∗ and Θ does not

give disproportionate weights in the approximation, B̂CDA
i is a good approximation for B̂ as B̂

approaches B∗. Lemma 2 (iii) proves that the null space estimators are asymptotically nested

as B̂ approaches B∗ in the sense that span(N̂i) merges into span(N̂r) and span(M̂i) merges

into span(M̂r) as B̂ approaches B∗ and rank(B∗) = r < i. This is a somewhat weaker result

than Lemma 1 (iii) but will still allow us to prove asymptotic dominance results.11 Finally,

Lemma 2 (iv) tells us that the Cragg & Donald (1997) statistic is an F statistic. Markovsky

& Van Huffel (2007) find a similar representation.

To summarize, Table 1 lists the implicit null space estimators in a selection of rank test

statistics in the literature. We are now able to extract the following lemma which describes

the asymptotics of null space estimators in general.

11In fact, (B̂CDAi )CDAr 6= B̂CDAr for i > r in general. The two known exceptions to this are the SVD and RSD as

these can also be considered DBAs.
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Table 1: Reduced–Rank Approximations Utilized in Rank Test Statistics.

Paper Statistic RRA Paper Statistic RRA

Bartlett (1947) F RSD Anderson (1951) LR RSD

Anderson (1951) A RSD Johansen (1988) F RSD

Stock & Watson (1988) NA† EIG Johansen (1991) J RSD

Kleibergen & van Dijk (1994) F BLU Robin & Smith (1995) A BLU

Cragg & Donald (1996) F LU Yang & Bewley (1996) F RSD

Yang & Bewley (1996) J RSD Cragg & Donald (1997) F CDA

Bierens (1997) J RSD Lucas (1997) NA† BLU

Lucas (1998) NA† BLU Caner (1998) F RSD

Quintos (1998) F RSD Gonzalo & Pitarakis (1999) κ‡ RSD

Lütkepohl & Saikkonen (1999) F RSD Robin & Smith (2000) κ‡ RSD

Nyblom & Harvey (2000) t EIG Boswijk & Lucas (2002) NA† BLU

Breitung (2002) t EIG Kleibergen & Paap (2006) F SVD

Donald et al. (2007) F LU Donald et al. (2007) F SVD

Donald et al. (2007) F CDA Donald et al. (2007) t EIG

Avarucci & Velasco (2009) F SVD Cavaliere et al. (2010a) F RSD

Cavaliere et al. (2010b) F RSD Nielsen (2010) t EIG

Johansen & Nielsen (2012) NA† RSD Cavaliere et al. (2014) F RSD

†These statistics are not of any form we have considered in this paper. They are discussed in Section 4.

‡These statistics satisfy Assumptions K.

Lemma 3. Let B̂ be an estimator of B∗ ∈ Rn×m such that B̂ ∈ Gn×m, and
√
T (B̂ − B∗) =

Op(1). Let rank(B∗) = r and let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left and right

null spaces of B∗ respectively. Let the RRAs {B̂RRA
i : 0 ≤ i < min{n,m}} be either DBAs or

CDAs. In the latter case, we assume that cond(Θ) = Op(1).

(i)
√
T (B̂ − B̂RRA

r ),
√
T (P

N̂r
− PNr), and

√
T (P

M̂r
− PMr) are Op(1).

(ii) If 0 ≤ i < r then P
N̂i
B̂P

M̂i
= O−1

p (1). If n = m and B∗ ∈ Pm, then P
M̂i
B̂P

M̂i
= O−1

p (1)

and P
N̂i
B̂P

N̂i
= O−1

p (1).

(iii) If 0 ≤ i < r and the rank–i RRA is continuous at B∗, then P
N̂i
− PN∗i = op(1) and

P
M̂i
− PM∗i = op(1), where N∗i and M∗i span the left and right null spaces of (B∗)RRAi

respectively.

Lemma 3 (i) establishes the rate of convergence of CDAs and DBAs. It also establishes

the rate of convergence of the null space estimators. It is well known that the L2 norm of the

difference of two orthogonal projection matrices is the sine of the largest angle between the two

subspaces, while the Euclidean norm of this difference is the Euclidean norm of the vector of
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Figure 1: Convergence of a Two Dimensional Null Space Estimator in R3.

span(M̂r)

span(Mr)

Mr⊥
M̂r⊥

Op(T
−1/2)

sines of all of the canonical angles between the two subspaces (Stewart & Sun, 1990; Gohberg

et al., 2006). Thus, Lemma 3 (i) proves that the canonical angles between the estimated and

population null spaces converge to zero at a rate of
√
T (see Figure 1). Dufour & Valery

(2011) obtain similar results for the special case of B∗, B̂ ∈ Pm, and B̂EIG
i , whereas Lemma 3

(i) applies more generally to non–definite and non–symmetric matrices as well as any RRA.

Lemma 3 (ii) states that the null space estimators successfully capture non–vanishing

components of B̂ when the rank is underestimated. In the case of positive semi–definite

B∗ the left and right null space estimators are equally capable of capturing non–vanishing

components of B̂. This will impart power to rank tests under H1(r).

When the RRA is continuous at B∗, Lemma 3 (iii) states that the non–vanishing com-

ponents of B̂ can be estimated consistently as P
N̂i
B̂P

M̂i

p→ PNiB
∗PMi 6= 0. Unfortunately,

continuity of an RRA at a given matrix can fail for a variety of reasons including lack of

uniqueness but also for reasons that have to do with the algorithm used for its computation

(e.g. multiple pivots in the LU and QR algorithms). However, continuity is known to be

generic for the SVD, RSD, and EIG RRAs (Stewart & Sun, 1990; Markovsky, 2012) and it

can also be shown to be generic for simple DBAs such as the LU, Cholesky, and QR RRAs. No

results are available for the general CDA, although one might well conjecture that continuity

is generic for all RRAs.

3.3 The Plug–in Principle

We are now in a position to see how null space estimation affects rank test statistics. Consider

first the following set of assumptions, which will be useful for analysing the asymptotics of
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rank test statistics for general matrices.

Assumptions A. B∗ ∈ Rn×m. B̂ ∈ Rn×m and Ω̂ ∈ Snm are estimators indexed by T . Each

vec(B̂) ∈ Rnm is a non–degenerate random vector. Ω̂ ∈ Pnm+ almost surely.
√
T (B̂ − B∗), Ω̂,

and Ω̂−1 are Op(1).

Assumptions A arises in the context of Examples 1 and 2. They also arise in much more

general settings.

Example 7. In standard GMM or ML estimation, we have an estimator B̂, satisfying
√
T (B̂−

B)
d→ N(0,Φ). Usually, Ω̂ is a consistent estimator for Φ. However, Assumptions A also

permit Ω̂ to converge in probability to a different matrix than Φ, allowing for misspecification

analysis à la White (1994). Note in particular that, just as in Robin & Smith (2000), Φ need

not be positive definite.

Example 8. Consider Example 2, where Ω̂ is a nonparametric kernel–based estimator of

the type considered in den Haan & Levin (1997) and Cushing & McGravey (1999). These

estimators require the specification of a bandwidth that diverges to infinity but at a slower

rate than the sample size. A recent literature has considered allowing the bandwidth to grow

proportionally to the sample size. In that case, Ω̂ fails to converge in probability although

t and F statistics are asymptotically pivotal (Kiefer et al., 2000; Vogelsang, 2001; Kiefer

& Vogelsang, 2002b,a, 2005). These fixed–bandwidth asymptotics are also allowed under

Assumptions A. They are often called “fixed–b” to distinguish them from the “small–b” theory

of Example 7. We illustrate these asymptotics in Section 5.

We will also want to prove results for symmetric matrices, in which case, we will rely on

the following set of assumptions.

Assumptions B. B∗ ∈ Sm. B̂ ∈ Sm and Ψ̂ ∈ Sm(m+1)/2 are estimators indexed by T .

Each vech(B̂) ∈ Rm(m+1)/2 is a non–degenerate random vector. Ψ̂ ∈ Pm(m+1)/2
+ almost surely.

√
T (B̂ −B∗), Ψ̂, and Ψ̂−1 are Op(1). In this context, we will set Ω̂ = DmΨ̂D′m.

Assumptions B were satisfied in the context of Example 3. They also arise naturally in

the variety of contexts considered in Examples 7 and 8 (Donald et al., 2007).

Assumptions A and B, which are remarkably minimal, will allow us to prove that all rank

test statistics satisfy the following plug–in principle.
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Definition 4 (The Plug–in Principle in Standard Asymptotics). Suppose B̂ ∈ Rn×m and

Ω̂ ∈ Pnm are estimators indexed by T and let B∗ ∈ Rn×m. For a given 0 ≤ r < min{n,m}

and RRA scheme, let N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) span the left and right null spaces

of B̂RRA
r respectively. The weak plug–in principle for rank test statistics is said to hold for

the rank test statistic T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
) relative to the null spaces of B∗ if

(i) Under either H0(r) or HT (r), T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
)− T θτ(B̂, Ω̂, PNr , PMr) = Op(T

−1/2),

where Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left and right null spaces of B∗

respectively.

(ii) Under H1(r), then |τ(B̂, Ω̂, P
N̂r
, P

M̂r
)| = O−1

p (1) if |τ(B̂, Ω̂, PNr , PMr)| = O−1
p (1), where

Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left and right null spaces of (B∗)RRAr

respectively.

It is said to satisfy the strong plug–in principle relative to the null spaces of B∗ if additionally

(iii) Under H1(r), τ(B̂, Ω̂, P
N̂r
, P

M̂r
)− τ(B̂, Ω̂, PNr , PMr) = op(1), where Nr ∈ Gn×(n−r) and

Mr ∈ Gm×(m−r) span the left and right null spaces of (B∗)RRAr respectively.

Condition (i) requires that the feasible and infeasible statistics differ from each other by

no more than Op(T
−1/2) under H0(r) and HT (r). This is much stronger than asymptotic

equivalence in large sample statistics, which requires only that the two have the same limiting

distribution (Lehmann & Romano, 2005, p. 577). We will see, however, that it is easily

satisfied. Condition (ii) ensures that a rank test has power against H1(r) if the associated

infeasible test has power. Condition (iii) strengthens (ii) in that it requires the feasible and

infeasible statistics to diverge at the same rate under the global alternative.

The variant of the plug–in principle we will prove applies to the class of rank test statis-

tics of the form T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
) = T θκ

(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

, where κ

satisfies the following set of assumptions.

Assumptions K. P ⊆ X ⊆ Rn×m. P is closed and convex. Y ⊆ Rnm×nm. κ : X ×Y → R is

a measurable function and satisfies:

(i) There exist measurable functions L1 and L2 such that for all X, X̂ ∈ X and Y, Ŷ ∈ Y,

|κ(X̂, Ŷ )− κ(X,Y )| ≤ L1(X̂,X, Ŷ , Y )‖X̂ −X‖+ L2(X̂,X, Ŷ , Y )‖Ŷ − Y ‖.
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Figure 2: The P Set of the t Statistic.

λ2(X)

λ1(X)

tr(X) = c > 0

P

For θ > 0, L1(X̂,X, Ŷ , Y ) = O(‖X‖2θ−1) and L2(X̂,X, Ŷ , Y ) = O(‖X‖2θ) if ‖Y †‖ =

O(1) as ‖X̂ −X‖+ ‖Ŷ − Y ‖ → 0.

(ii) For every C1 > 0 and C2 > 0 there exists a C > 0 such that for all X ∈ P and Y ∈ Y

with vec(X) ∈ span(Y ), ‖X‖ ≥ C1 and ‖Y ‖ ≤ C2 imply that |κ(X,Y )| ≥ C.

The Lipschitz inequality in condition (i) of Assumptions K allows the weak plug–in princi-

ple to hold under the null and local alternatives. It also allows the strong plug–in principle to

hold under the global alternative. The boundedness condition in (ii) allows the feasible and

infeasible rank tests to have power against H1(r). Note that boundedness of κ away from zero

is only ensured on P ×Y rather than the potentially larger set X ×Y. This is to allow for the

t test of Example 3, which has power against positive semi–definite matrices of rank higher

than r but not against general matrices of rank higher than r. That is, the t statistic diverges

under H1(r) not just because P
M̂r
B̂P

M̂r
= O−1

p (1) but also because P
M̂r
B̂P

M̂r
approaches

Pm. Figure 2 illustrates the case of m = 2 where P
M̂0
B̂P

M̂0
= B̂ is initially non–definite but

converges along the dotted curve to a rank–1 matrix in P and stays bounded away from the

origin. Another possibility is for convergence to proceed into the interior of P and away from

the origin, when rank(B∗) = 2.

It is easily verified that the class of all rank test statistics where Assumptions K are satisfied

includes all of the statistics we have considered so far (see Table 2) and many more.

Example 9. Robin & Smith (2000) take κ(X,Y ) = ‖Y †/2vec(X)‖2 + O(‖Y †/2vec(X)‖3) as
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Table 2: Examples of Rank Testing Statistics in the Literature.

τ θ P X Y κ(X,Y )

LR 1 Rn×m Rn×m Pm ⊗ Pn
∑min{n,m}−r
i=1 log(1 + σ2

i (mat(Y †/2vec(X))))

LRA 1 Rn×m Rn×m Pnm
∑min{n,m}−r
i=1 log(1 + σ2

i (mat(Y †/2vec(X))))

A 1 Rn×m Rn×m Pm ⊗ Pn ‖Y †/2vec(X)‖2

F 1 Rn×m Rn×m Pnm ‖Y †/2vec(X)‖2

J 1 Rn×m Rn×m Pm ⊗ Pn ‖mat(Y †/2vec(X))‖22
JA 1 Rn×m Rn×m Pnm ‖mat(Y †/2vec(X))‖22
t 1

2 Pm Sm×m Pm(m+1)/2 tr(X)
vec′(Im)Y vec(Im)

Y †/2vec(X)→ 0. This class of statistics is asymptotically equivalent to the class of statistics

satisfying Assumptions K with θ = 1, P = X = Rn×m, and Y = Pnm. The advantage of this

class is that it yields χ2 asymptotic distributions under the usual conditions.

Example 10. We can take any norm ϕ on Rnm and formulate a rank test statistic with

κ(X,Y ) = ϕ2(Y †/2vec(X)). Here, θ = 1, P = X = Rn×m, and Y = Pnm. Rank test statistics

in this class are either bounded in probability for every norm ϕ or divergent for every ϕ.12

The asymptotic distributions based on this choice of κ will not generally be standard (e.g. the

limit of J in Example 1). However, under the usual assumptions, it will be asymptotically

pivotal and therefore obtainable either analytically or by simulation.

We can now state and prove the first main theorem of the paper.

Theorem 1. Suppose Assumptions K hold along with either Assumptions A or B. Suppose

the null space estimators N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) are obtained by either a DBA

or a CDA with cond(Θ) = Op(1). Suppose the following inclusions hold almost surely

PNrB̂PMr ∈ X , (PMr ⊗ PNr)Ω̂(PMr ⊗ PNr) ∈ Y,

P
N̂r
B̂P

M̂r
∈ X , (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
) ∈ Y,

and suppose the following conditions hold

inf
X∈P
‖PNrB̂PMr −X‖ = op(1), inf

X∈P
‖P

N̂r
B̂P

M̂r
−X‖ = op(1).

Then T θτ(B̂, Ω̂, P
N̂r
, P

M̂r
) = T θκ

(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

satisfies the weak

plug–in principle for rank test statistics. If, additionally, the RRA is continuous at B∗, then

the statistic satisfies the strong plug–in principle.

12All norms on a finite dimensional vector spaces are equivalent (Horn & Johnson, 1985, Corollary 5.4.5).
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A number of comments are in order.

First, it follows from Theorem 1 that all of the rank testing statistics of the standard

asymptotics literature (and the many more we have listed above) satisfy the weak plug–in

principle; when the underlying RRA is continuous at the population matrix (a feature we

have conjectured to be generic for all RRAs), they also satisfy the strong plug–in principle.

Second, it also follows from Theorem 1 that statistics that utilize different null space

estimators differ from each other by Op(T
−1/2) under H0(r) and HT (r). Thus, the Cragg &

Donald (1996), Cragg & Donald (1997), and Kleibergen & Paap (2006) statistics do not only

have the same limiting distribution under H0(r) and HT (r), but they are in fact asymptotically

the same statistic. When Ω̂ is of Kronecker product form, we may add to the list the statistics

of Anderson (1951), Robin & Smith (1995), and Robin & Smith (2000). Thus, tests based

on these statistics will exhibit the same asymptotic size and local power. In the symmetric

case, we have additionally that all three F statistics proposed by Donald et al. (2007) are

asymptotically the same statistic with the associated tests having equivalent asymptotic size

and local power.

Third, as there are no first–order asymptotic differences between statistics that use differ-

ent null space estimators, the practitioner must rely on either small sample performance or

numerical convenience in choosing the right test. In the latter case, we note that the CDA

with non–Kronecker product weighting matrix is the most computational expensive of the

RRAs considered in this paper. Next are the RSD, SVD, and EIG RRAs, which although

much faster than the CDA, are not the most efficient computationally. The fastest available

algorithms are the LU and QR algorithms (Hansen, 1998; Golub & Van Loan, 1996). There-

fore, these latter algorithms are the recommended algorithms for high intensity computations

such as the bootstrap.

Fourth, an immediate corollary of Theorem 1 is that the test for identification proposed by

Wright (2003) does not have to be conducted using the Cragg & Donald (1997) statistic but

can instead be done using the much simpler to compute Cragg & Donald (1996) or Kleibergen

& Paap (2006) statistics. The same statistic can also be avoided in the rank estimator proposed

by Cragg & Donald (1997) (we will say more about this in Section 4).

Fifth, the weak plug–in principle simplifies the asymptotics of rank test statistics tremen-

dously. It allows us to immediately see the asymptotic distribution under H0(r) and HT (r) –
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we simply derive the asymptotic distribution as if the population null spaces were known. It

also allows us to obtain the asymptotics under H1(r) and misspecification. The strong plug–in

principle, in turn, allows us (under possibly generic conditions) to obtain precise estimates of

the rates of divergence of the statistics under H1(r). See Examples 15 and 16 for a Monte

Carlo illustration of the weak and strong plug–in principles in standard asymptotics.

Sixth, the
√
T consistency of the null space estimators is sufficient but not necessary for

the plug–in principle to hold. If we are willing to relax condition (i) of the plug–in principle

from Op(T
−1/2) to op(1), then only one of the null space estimators need be

√
T–consistent

if the other is consistent (the proof of Theorem 1 makes this quite evident). However, one

cannot do away with
√
T–consistency altogether as we demonstrate in the following example.

Example 11. Consider the non–standardized F statistic F
(
B̂, Inm, PN̂r , PM̂r

)
under As-

sumptions A. Even if the null space estimators are consistent under H0(r), if their convergence

rate is slow enough, then the F statistic will diverge. Take for example B = [ 1 0
0 0 ] and null

space estimators N̂1 =
[

sin(ρT )
cos(ρT )

]
and M̂1 =

[
sin(νT )
cos(νT )

]
, where ρT , νT → 0 as T → ∞. Then

F
(
B̂, Inm, PN̂1

, P
M̂1

)
= (
√
T sin(ρT ) sin(νT )B̂(1,1)+Op(1))2. But |

√
T sin(ρT ) sin(νT )B̂(1,1)| ≥

|B̂(1,1)|
√
T |ρT νT |/2 for small enough ρT and νT . Thus if ρT and νT converges slowly enough

that
√
T |ρT νT | → ∞ (e.g. ρT = νT = T−1/5), then the F statistic diverges to infinity.

Finally, we may relax the condition that Ω̂−1 = Op(1) (resp. Ψ̂−1 = Op(1)) under Assump-

tions A (resp. B). Here, there are two cases to consider: reducible singularity, which can be

treated by rescaling (this is taken up in the next section), and irreducible singularity, which

requires regularization (the terminology is due to Dufour & Valery (2011)). In the latter case,

we may pursue the approach of Moore (1977) if we can ensure that (PMr ⊗PNr)Ω̂(PMr ⊗PNr)

satisfies the conditions of Andrews (1987). If not, we will need to substitute Y † in Table

2 with one of the regularized inverses proposed by Lütkepohl & Burda (1997) or Dufour &

Valery (2011). Recently, Duplinskiy (2014) has proposed avoiding regularization altogether

and simply bootstrapping the non–standardized test statistics. Donald et al. (2014) consider

this problem in greater detail.

As an application of the plug–in principle, we explicitly derive the limiting distributions

of some of the statistics we have considered above.

Corollary 1. Suppose Assumptions K and A hold and suppose we have null space esti-

mators N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with
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cond(Θ) = Op(1). Under H0(r) or HT (r), let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span

the left and right null spaces of B∗ respectively. Then if T θτ
(
B̂, Ω̂, PNr , PMr

)
d→ ζ, then

T θτ
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ζ. In particular, if

(√
Tvec(N ′rB̂Mr), (Mr ⊗Nr)

′Ω̂(Mr ⊗Nr)
)

d→ (ξr,Ωr),

then we have

LRA
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

F
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

JA
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖mat(Ω−1/2

r ξr)‖22.

Corollary 1 implies that, in the context of Example 7, where
√
T (B̂−B)

d→ N(0,Φ) and Ω̂

converges to a constant positive definite matrix, then LRA and F converge in distribution to a

quadratic form in (n−r)(m−r) normal random variables, while JA converges to the square of

the L2 norm of a random matrix with normal entries. Under correct specification (i.e. Ω̂
p→ Φ)

and H0(r), F
d→ χ2((n − r)(m − r)) and JA

d→ ‖Z‖22, where vec(Z) ∼ N(0, I(n−r)(m−r)).

Under correct specification and HT (r), F
d→ χ2

(
(n− r)(m− r), ‖N ′rDMr‖2(Mr⊗Nr)′Φ(Mr⊗Nr)

)
and JA

d→
∥∥Z + mat((Mr ⊗Nr)

′Φ(Mr ⊗Nr))
†/2vec(N ′rDMr)

∥∥2

2
, with Z as before. For the

limiting distribution of LRA and F under H0(r) and HT (r) and incorrect specification (i.e.

Ω̂
p→ Ω 6= Φ), the reader is referred to Lemma 8.2 of White (1994). The limiting distributions

of JA under H0(r) and HT (r) and incorrect specification is non–standard and does not appear

to simplify further than what is stated in the result above. Under fixed–b asymptotics Ω̂ does

not converge in probability although, under the usual assumptions, the limiting distributions

of the statistics above are pivotal. The reader is referred to the literature cited in Example 8

for the limiting distributions (see also Examples 15 and 16).

Corollary 1 generalizes the misspecification results of Robin & Smith (2000), who consider

the asymptotics of only the A statistic. It also generalizes the local power result of Cragg &

Donald (1997), who consider only the F statistic that employs the CDA null space estimator.

Finally, it allows for more general functional forms of κ than previously used in the literature.

Corollary 2. Suppose Assumptions K and B hold and suppose we have a null space estimator

M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with cond(Θ) = Op(1). Under H0(r)
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or HT (r), let Mr ∈ Gm×(m−r) span the null space of B∗. Then if T θτ
(
B̂, Ω̂, PMr , PMr

)
d→ ζ,

then T θτ
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ζ. In particular, if

(√
Tvech(M ′rB̂Mr), D

†
m−r(Mr ⊗Mr)

′Ω̂(Mr ⊗Mr)D
†
m−r

′
)

d→ (ξr,Ωr),

then we have

LRA
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

F
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

JA
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖mat(Dm−rΩ

−1/2
r ξr)‖22,

and if Mr is chosen to have orthogonal columns then

t
(
B̂, Ψ̂, P

M̂r

)
d→ tr(mat(Dm−rξr))

(vec′(Im−r)Dm−rΩrD′m−rvec(Im−r))1/2
.

It follows from Corollary 2 that if vech(B̂ −B)
d→ N(0,Φ) and Ψ̂ converges in probability

to a positive definite matrix, then LRA and F converge in distribution to a quadratic form in

(m− r)(m− r+ 1)/2 normal random variables, JA converges to the square of the L2 norm of

a random matrix with normal entries, and t converges to a normal random variable. Under

correct specification (i.e. Ψ̂
p→ Φ) and H0(r), F

d→ χ2((m−r)(m−r+1)/2), JA
d→ ‖Z‖22, where

Z = Z ′ and vech(Z) ∼ N(0, I(m−r)(m−r+1)/2), and t
d→ N(0, 1). Under correct specification

and HT (r), F
d→ χ2

(
(m− r)(m− r + 1)/2, ‖vech(M ′rDMr)‖2D†m−r(Mr⊗Mr)′Φ(Mr⊗Mr)D

†
m−r

′

)
,

JA
d→
∥∥∥Z + mat(Dm−r((D

†
m−r(Mr ⊗Mr)

′Φ(Mr ⊗Mr)D
†
m−r

′)−1/2vech(M ′rDMr)))
∥∥∥2

2
, with Z

the same as before, and t
d→ N

(
tr(M ′rDMr)

vec′(Im−r)(Mr⊗Mr)′Φ(Mr⊗Mr)vec(Im−r)
, 1
)

. For the limiting

distribution of F and t under H0(r) and HT (r) and incorrect specification (i.e. Ψ̂
p→ Ψ 6= Φ),

the reader is referred again to Lemma 8.2 of White (1994). The limiting distributions of

JA under H0(r) and HT (r) and incorrect specification is, again, not amenable to further

simplification. For fixed–b asymptotics, the reader is referred to the literature cited in Example

8 (see also Example 17).

Donald et al. (2007) proved the H0(r) and H1(r) results for F and t in the case of correct

specification. Thus Corollary 2 extends their results in the direction of local power, misspeci-

fication, fixed–b asymptotics, and more general functional forms of the rank test statistics.

25



4 Rank Testing Under General Asymptotics

In this section, we will extend the basic theory to more general settings. Just as before, we

consider some well–known examples in the literature before proceeding to generalize null space

estimation and the plug–in principle.

4.1 Preliminary Examples

Cointegration presents some truly fascinating anomalies for rank testing. In the next couple

of examples we will show that the framework of Section 3 cannot be applied verbatim. The

examples will, however, point to the necessary generalization.

Example 12 (Johansen (1988)). Let {εt : t ≥ 1} be i.i.d. N(0,Σ), Σ ∈ Pm+ , y0 = 0, and

∆yt = Byt−1 + εt, t = 1, . . . , T.

We assume that the roots of the characteristic polynomial of the system are either outside

the unit circle or else at 1. Assume for the moment that the model generates data of order

of integration no higher than 1 (see Theorem 4.2 of Johansen (1995a) for the conditions).

Then r = rank(B) < m is the number of cointegration relationships. Let Nr ∈ Gm×(m−r) and

Mr ∈ Gm×(m−r) span the left and right null spaces of B respectively. Let B̂ be the maximum

likelihood estimator of B and let Ω̂ = Γ̂−1 ⊗ Σ̂, where Σ̂ and Γ̂ are as in Example 1.

It is easy to check that Johansen’s (1988) trace statistic is A
(
B̂, Σ̂, Γ̂, P

N̂r
, P

M̂r

)
, where

the null space estimators are the RSD estimators, and has the same limiting distribution as

that of A
(
B̂, Σ̂, Γ̂, PNr , PMr

)
. This suggests that the plug–in principle holds for cointegration.

Unfortunately, however, Ω̂ converges to a singular matrix so Assumptions A fail. In particular,

Ω̂(Mr ⊗ In) converges in probability to zero. On closer inspection, however, we find that Ω̂’s

rate of convergence along its asymptotic null space is exactly equal to B̂’s rate of convergence

along its asymptotic right null space. That is, Ω̂(Mr ⊗ In) and B̂Mr are each Op(T
−1). This

counterbalancing of the accelerated rates of convergence is of crucial importance in the theory

of cointegration rank testing.

Now suppose that the order of integration is no higher than 2 (see Theorem 4.6 of Johansen

(1995a) for the conditions). Then Johansen (1995b) finds that Mr = [ Mr1 Mr2 ], where

Ω̂(Mr1 ⊗ In) and B̂Mr1 are Op(T
−1) and Ω̂(Mr2 ⊗ In) and B̂Mr2 are Op(T

−2). Thus, there
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Figure 3: Convergence of a Column of B̂ in Example 12.
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may be heterogenous rates of accelerated convergence that need to be taken into account. A

hypothetical column of B̂ might converge along the dotted curve in Figure 3.

The phenomenon illustrated in Example 12 is well known in cointegration (Johansen,

1995a) and in regressions with polynomial trends (Hamilton, 1994, Chapter 16). B̂ and Ω̂

shrink to zero along certain direction at exactly offsetting rates. Thus, all that is required

to evaluate the asymptotics of the infeasible rank test statistic is to rescale B̂ and Ω̂ by

the appropriate power of T along the appropriate directions (provided the rank test statistic

is invariant to such rescaling). For this reason, Dufour & Valery (2011) refer to the limiting

singularity of Ω̂ as reducible singularity. We will show that if the rank test statistic is invariant

to such rescaling, then the feasible statistic continues to mimic the infeasible statistic, thus

proving the plug–in principle. This will require a deeper analysis of the behaviour of null space

estimators in the context of accelerated and possibly heterogeneous rates of convergence.

Example 13 (Nyblom & Harvey (2000)). Let {(ε′t, u′t)′ : t ≥ 1} be a 2m–dimensional sequence

of i.i.d. N
(
[ 0

0 ] ,
[

Σ 0
0 B

])
random vectors, Σ ∈ Pm+ , x0 = 0, and

yt = xt + εt

xt = xt−1 + ut

t = 1, . . . , T.

The rank of B ∈ Rm×m determines the number of stochastic trends in the model. Let Mr ∈

Gm×(m−r) span the null space of B. Let y = T−1
∑T

t=1 yt, Σ̂ = T−2
∑T

t=1(yt−y)(yt−y)′ ∈ Pm+ ,

and Γ̂ = T−4
∑T

t=1

∑t
s=1(ys − y)

∑t
s=1(ys − y)′. We will work with B̂ = Σ̂−1/2Γ̂Σ̂−1/2.
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Figure 4: Convergence of a Column of B̂ in Example 13.
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Nyblom and Harvey show that B̂ converges in distribution to a random matrix whose

null space is exactly the span of Mr. As [ Mr⊥
√
TMr ]′ B̂ [ Mr⊥

√
TMr ] converges

in distribution to an almost surely positive definite matrix, they propose the test statistic

tr(TP
M̂r
B̂P

M̂r
), where M̂r is the eigenvalue null space estimator based on B̂. Experience

would then suggest that this statistic should mimic tr(TPMrB̂PMr). Surprisingly, however,

this is not the case. It would seem then that the plug–in principle fails.

In fact, the plug–in principle still holds but for a different matrix than Mr. One can check

that B̂Mr = Op(T
−1/2). On the other hand, the Poincaré Separation Theorem implies that the

smallest m− r eigenvalues of B̂ are Op(T
−1). Thus, normalizing and collecting the associated

eigenvectors in MrT ∈ Gm×(m−r), we have that B̂MrT = Op(T
−1). Therefore we find the

surprising fact that Mr fails to capture the appropriate rate of convergence of B̂ to singularity

and there are other directions along which B̂ converges faster (a hypothetical column of B̂

might converge along the dotted curve in Figure 4, although it does not converge along Mr⊥).

Another, simpler, example of this is MrT =
√
T Σ̂1/2(Im−Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr, which

is bounded in probability and satisfies B̂MrT = Op(T
−1). The algebraic intuition behind this

choice is that it performs a Gaussian elimination of the troublesome (because of its slow

convergence) off diagonal block M ′r⊥Γ̂Mr from [ Mr⊥ Mr ]′ Γ̂ [ Mr⊥ Mr ]. In both cases,

B̂ converges faster along MrT than it does along Mr, even though PMrT
converges to PMr .

13

13From the perspective of matrix perturbation theory (Stewart & Sun, 1990), there is nothing surprising about

this at all. By the Almost Sure Representation Theorem (Lehmann & Romano, 2005, Theorem 11.2.19), we may

think of B̂ as a perturbation of its probability limit, which has the null space span(Mr). This null space can be
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The crucial point to note here is that any reasonable subspace estimators will detect MrT

rather than Mr. Thus, the plug–in principle continues to hold, albeit for MrT rather than Mr

and the limiting distribution of tr(TPMrT
B̂PMrT

) is precisely the limiting distribution of the

Nyblom and Harvey statistic.14

Example 13 suggests two additional features of cointegration. First, B̂ need not be consis-

tent for B, so we must allow for statistics of varying rates of convergence. Second, rescaling

should be allowed to occur along possibly random and T–varying directions.

Examples 12 and 13 show that rank test statistics have a slightly different scaling factor

than in standard asymptotics. In standard asymptotics, we scaled by T θ, where θ was deter-

mined by the curvature of the test statistic at the origin. Here, we must take into account

accelerated rates of convergence to the origin and so we scale by T 2γθ, where θ is determined

by the curvature of τ and γ is the minimal rate of convergence along NrT and MrT . In Ex-

ample 12, γ = 1
2 , while in Example 13, γ = 1. In short, the appropriate rank test statistics in

general asymptotics are of the form T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
).

Using these statistics, we will be interested in testing H0(r) against H1(r) and HT (r),

which is now defined as

HT (r) : B = B∗ + T−γ−ωD, rank(B∗) = r,

where the faster rate of convergence imposed by ω ≥ 0 ensures that the local alternative does

not stray too far away from B∗ because B̂ can converge at a faster rate than T−γ along certain

rows and/or columns. In Example 12 the appropriate ω is 1
2 for the I(1) case and 3

2 for the

I(2) case. In Example 13, the appropriate ω is 1.

4.2 Estimating the Null Spaces

For an RRA to produce good null space estimates based on a matrix B̂ that is converging

at different rates along different (potentially non–constant) linear combinations of the rows

and/or columns towards a matrix of reduced rank, it must (i) be a good approximation to B̂

and (ii) match the accelerated rates of convergence of B̂ along its columns and/or rows. We

perturbed arbitrarily, as an invariant subspace, and does not have to remain constant as in the setting of Example

12. Thus, the real surprise is that the phenomenon of Example 13 does not occur more frequently.
14The technical details of these asymptotics can be found in the appendix.
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will first prove that the DBA and CDA are capable of delivering these two properties, then

demonstrate the implications for subspace estimation.

Lemma 4. Let B̂ ∈ Gn×m. Let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) and suppose there

are sequences NrT ∈ Gn×(n−r) and MrT ∈ Gm×(m−r), whose singular values are bounded

away from zero, such that PNrT → PNr and PMrT
→ PMr as B̂T − B̂∗T → 0, where B̂T =

[ Nr⊥ NrT ]′B̂[ Mr⊥ MrT ] and B̂∗T =
[
N ′r⊥B̂Mr⊥ 0

0 0

]
. Assume, moreover, that B̂∗T = O(1)

and σr(B̂
∗
T ) = σr(N

′
r⊥B̂Mr⊥) is bounded away from zero as B̂T−B̂∗T → 0. Then as B̂T−B̂∗T →

0 and for all i ≥ r, B̂ − B̂DBA
i , B̂DBA

i MrT , and N ′rT B̂
DBA
i are O(‖B̂T − B̂∗T ‖).

Lemma 4 generalizes Lemma 1 (ii) and obtains the rate of convergence of B̂DBA
i along NrT

and MrT . Note that the rates of convergence are determined by ‖B̂T − B̂∗T ‖, which measures

the minimal rate of convergence of B̂ along NrT and MrT . The generalized assumptions of

Lemma 4 specialize to those of Lemma 1 when NrT = Nr and MrT = Mr span the null

spaces of B∗ and B̂ → B∗, in which case O(‖B̂ −B∗‖) = O(‖B̂T − B̂∗T ‖). These assumptions

accommodate the two features we have documented in Examples 12 and 13. First, B̂ is allowed

to converge along NrT and MrT at arbitrary rates. In that regard, the condition that NrT

and MrT have singular values bounded away from zero is important in order to to ensure

that they specify proper directions along which B̂ goes to zero.15 Second, B̂ is only required

to converge along NrT and MrT but its components along Nr⊥ and Mr⊥ are not required to

converge at all. This allows for the scenario we witnessed in Example 13, where B̂ converges

in distribution, but not in probability, along Nr⊥ and Mr⊥. In this regard, the lower bound

on σr(N
′
r⊥B̂Mr⊥) is necessary in order to ensure B̂ has an r × r asymptotically surviving

component even as its components along NrT and MrT are vanishing. When B̂ converges to

a fixed rank–r matrix, as in Example 12 or Section 3, this lower bound is redundant.

Under the assumptions of Lemma 4, the CDA also continues to perform well provided Θ

matches the accelerated rates of convergence of B̂ along NrT and MrT .

Lemma 5. Let B̂, Nr⊥, Mr⊥, NrT , MrT , B̂T , and B̂∗T be as in Lemma 4. Let Θ ∈ Pnm+ ,

let ΘT = Z ′TΘZT , where ZT = [ Mr⊥ MrT ] ⊗ [ Nr⊥ NrT ], and assume cond(ΘT ) =

O(1) as B̂T − B̂∗T → 0. Then as B̂T − B̂∗T → 0 and for all i ≥ r, B̂ − B̂CDA
i , B̂CDA

i MrT ,

15Otherwise, B̂MrT → 0 could occur not because B̂ is converging to zero along MrT but because certain line

combinations of MrT itself are shrinking.
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N ′rT B̂
CDA
i , (In − P

N̂rT
)P

N̂iT
, and (Im − P

M̂rT
)P

M̂iT
are O(‖B̂T − B̂∗T ‖), where N̂i and M̂i

span the left and right null spaces of B̂CDA
i respectively, N̂iT = [ Nr⊥ NrT ]−1N̂i, and

M̂iT = [ Mr⊥ MrT ]−1M̂i.

The intuition behind the restriction, cond(ΘT ) = O(1), in Lemma 5 is that the fast–

converging components of B̂ must receive higher weight in the approximation B̂CDA
r ; other-

wise, the CDA may miss important features of B̂. Lemma 5 additionally generalizes Lemma 2

(iii), which will be important for dominance results to be discussed at the end of this section.

Based on these results, we may now generalize Lemma 3 as follows.

Lemma 6. Let B̂ be an estimator indexed by T such that B̂ ∈ Gn×m almost surely and

B̂ = Op(1). Let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) and suppose there exists sequences of

possibly random matrices NrT ∈ Gn×(n−r) and MrT ∈ Gm×(m−r), whose singular values are

bounded away from zero in probability, PNrT
p→ PNr and PMrT

p→ PMr , and, for γ > 0,

σr(N
′
r⊥B̂Mr⊥) = O−1

p (1), T γN ′rT B̂ = Op(1), T γB̂MrT = Op(1), T γN ′rT B̂MrT = Op(1).

Let the RRAs {B̂RRA
i : 0 ≤ i < min{n,m}} be either DBAs or CDAs. In the latter case, we

assume that cond(ΘT ) = Op(1), where ΘT = Z ′TΘZT and ZT = [ Mr⊥ MrT ]⊗[ Nr⊥ NrT ].

Finally, set B̂∗ = [ Nr⊥ NrT ]−1′
[
N ′r⊥B̂Mr⊥ 0

0 0

]
[ Mr⊥ MrT ]−1.

(i) T γ(B̂−B̂RRA
r ), T γ(B̂−B̂∗), T γ(P

N̂r
−PNrT )[ Nr⊥ NrT ], and T γ(P

M̂r
−PMrT

)[ Mr⊥ MrT ]

are Op(1).

(ii) If 0 ≤ i < r and the null spaces are estimated by the DBA, then P
N̂i
B̂P

M̂i
= O−1

p (1). If,

on the other hand, the null spaces are estimated by CDA, then P
N̂iT

B̂TPM̂iT
= O−1

p (1)

and [ Nr⊥ NrT ]′P
N̂i
B̂P

M̂i
[ Mr⊥ MrT ] = O−1

p (1). Here N̂iT = [ Nr⊥ NrT ]−1N̂i,

M̂iT = [ Mr⊥ MrT ]−1M̂i, and B̂T = [ Nr⊥ NrT ]′B̂[ Mr⊥ MrT ].

If n = m, Nr⊥ = Mr⊥, NrT = MrT , and infX∈Pr ‖M ′r⊥B̂Mr⊥ − X‖ = op(1), then

P
M̂i
B̂P

M̂i
= O−1

p (1) and P
N̂i
B̂P

N̂i
= O−1

p (1) for the DBA and P
M̂iT

B̂TPM̂iT
= O−1

p (1)

and P
N̂iT

B̂TPN̂iT = O−1
p (1) for the CDA.

(iii) If, for 0 ≤ i < r and the distance between B̂∗ and the set of discontinuity points of

the rank–i RRA is bounded away from zero in probability, then P
N̂i
− P

N̂∗i
= op(1) and

P
M̂i
− P

M̂∗i
= op(1), where N̂∗i and M̂∗i span the left and right null spaces of (B̂∗)RRAi

respectively.
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Lemma 6 generalizes Lemma 3 and establishes the behaviour of null space estimators under

general asymptotics. Its assumptions are the probabilistic counterparts of the assumptions

of Lemmas 4 and 5. They specialize to the assumptions of Lemma 3 when NrT = Nr and

MrT = Mr span the left and right null spaces of B∗ respectively and
√
T (B̂ − B∗) = Op(1)

so that γ = 1
2 . In the I(1) case of Example 12, γ = 1

2 , NrT = Nr, and MrT = T 1/2Mr, while

in the I(2) case MrT = [ T 1/2Mr1 T 3/2Mr2 ]. In Example 13, on the other hand, we have

γ = 1 and NrT = MrT can be chosen as
√
T Σ̂1/2(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr. Thus γ

in Lemma 6 is the minimal rate of convergence of B̂ along NrT and MrT . It is important to

emphasize that γ need not be restricted to integer multiples of 1
2 but can take any positive

value in general. For cointegrated stable processes (Caner, 1998) and fractionally cointegrated

processes (Johansen & Nielsen, 2012), for example, γ can take any value in the interval
(

1
2 ,∞

)
.

Lemma 6 (i) may seem peculiar compared to its counterpart in Lemma 3 (i). In fact,

it is more general in two important respects. First, it allows for the estimated subspaces to

converge at a potentially faster rate than the overall convergence rate of B̂. For example,

the lemma implies that the right null space estimator in the I(1) case of Example 12 satisfies

T (P
M̂r
Mr −Mr) = Op(1) and, utilizing a similar argument to that used in the proof of the

lemma, this then implies that T (P
M̂r
− PMr) = Op(1). The left null space estimator, on

the other hand, has a standard rate of convergence
√
T (P

N̂r
− PNr) = Op(1). Second, it

allows the subspaces of span(M̂r) to converge at different rates. In the I(2) case of Example

12, T (P
M̂r
Mr1 − Mr1) = Op(1) and T 2(P

M̂r
Mr2 − Mr2) = Op(1). Thus, it is possible to

decompose M̂r as [ M̂r1 M̂r2 ] with T (P
M̂r1
−PMr1) = Op(1) and T 2(P

M̂r2
−PMr2) = Op(1).

Geometrically, the canonical angles between M̂r and Mr converge to zero at different rates

(see Figure 5). The rates given in Lemma 6 (i) are therefore more parsed descriptions of the

rates of convergence of the estimated subspaces.

Lemma 6 (ii) is different than Lemma 3 (ii) for the CDA in that we are only ensured

the weaker result that P
N̂iT

B̂TPM̂iT
= O−1

p (1), which implies the even weaker result that

[ Nr⊥ NrT ]′P
N̂i
B̂P

M̂i
[ Mr⊥ MrT ] = O−1

p (1). That is, we are only ensured that a rescaled

version of P
N̂i
B̂P

M̂i
is bounded away from zero in probability. However, when NrT and

MrT are bounded in probability we still have that P
N̂i
B̂P

M̂i
is bounded away from zero in

probability and when NrT and MrT are unbounded, we will see that the CDA is still capable

of delivering power in rank tests based on statistics invariant to rescaling.
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Figure 5: Heterogeneous Rates of Null Space Convergence in R3.
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Lemma 6 (iii) differs from its counterpart in Lemma 3 in that the comparison is to a

sequence B̂∗ rather than the probability limit of B̂, which may not be defined (e.g. Example

13). For this reason, the strong plug–in principle for general asymptotics will apply to a more

general non–vanishing component of B̂ than it did for a standard asymptotics.

4.3 The Plug–In Principle

Consider the following generalizations of Assumptions A and B.

Assumptions C. B∗ ∈ Rn×m. B̂ ∈ Rn×m and Ω̂ ∈ Snm are estimators indexed by T . Each

vec(B̂) ∈ Rnm is a non–degenerate random vector and B̂ = Op(1). Ω̂ ∈ Pnm+ almost surely. If

Nq ∈ Gn×(n−q) and Mq ∈ Gm×(m−q) span the left and right null spaces of B∗ respectively, there

exists sequences of possibly random matrices NqT ∈ Gn×(n−q) and MqT ∈ Gm×(m−q), whose

singular values are bounded away from zero in probability, PNqT
p→ PNq and PMqT

p→ PMq ,

and, for γ > 0,

σq(N
′
q⊥B̂Mq⊥) = O−1

p (1), T γN ′qT B̂ = Op(1), T γB̂MqT = Op(1),

T γN ′qT B̂MqT = Op(1), Z ′T Ω̂ZT = Op(1), (Z ′T Ω̂ZT )−1 = Op(1),

where ZT = [ Mq⊥ MqT ]⊗ [ Nq⊥ NqT ].

The symmetric analogue is given by the following set of assumptions.
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Assumptions D. B∗ ∈ Sm. B̂ ∈ Sm and Ψ̂ ∈ Sm(m+1)/2 are estimators indexed by T . Each

vec(B̂) ∈ Rm(m+1)/2 is a non–degenerate random vector and B̂ = Op(1). Ψ̂ ∈ Pm(m+1)/2
+

almost surely. If Mq ∈ Gm×(m−q) spans the null space of B∗, there exists a sequence of

possibly random matrices MqT ∈ Gm×(m−q), whose singular values are bounded away from

zero in probability, PMqT

p→ PMq , and, for γ > 0,

σq(M
′
q⊥B̂Mq⊥) = O−1

p (1), T γB̂MqT = Op(1), T γM ′qT B̂MqT = Op(1),

D†mZ
′
TDmΨ̂D′mZTD

†
m
′ = Op(1), (D†mZ

′
TDmΨ̂D′mZTD

†
m
′)−1 = Op(1),

where ZT = [ Mq⊥ MqT ]⊗ [ Mq⊥ MqT ]. In this context, we will set Ω̂ = DmΨ̂D′m.

Assumptions C and D establish sufficient conditions for Lemma 6 to hold under the non–

symmetric and symmetric settings respectively. The only additions concern the asymptotic

behaviour of Ω̂ and Ψ̂: when these matrices are rescaled conformably with B̂, they are required

to be asymptotically well–conditioned. This is the manifestation of the counterbalancing effect

we saw in Example 12. Just as before, when NrT = Nr and MrT = Mr span the left and right

null spaces of B∗ respectively and
√
T (B̂ − B∗) = Op(1), then Assumptions C and D reduce

to Assumptions A and B respectively.

Definition 5 (The Plug–in Principle in General Asymptotics). Suppose B̂ ∈ Rn×m and

Ω̂ ∈ Pnm are estimators indexed by T and let B∗ ∈ Rn×m. Let B̂∗ ∈ Rn×m be a random

sequence indexed by T whose null spaces converge in probability to the null spaces of B∗ and

let NqT ∈ Gn×(n−q) and MqT ∈ Gm×(m−q) span the left and right null spaces of B̂∗ respectively.

For a given 0 ≤ r < min{n,m} and RRA scheme, let N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r)

span the left and right null spaces of B̂RRA
r respectively. The weak plug–in principle for rank

test statistics is said to hold for the rank test statistic T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
) relative to the

null spaces of B̂∗ if

(i) Under eitherH0(r) orHT (r), T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
)−T 2γθτ(B̂, Ω̂, PNrT , PMrT

) = Op(T
−γ).

(ii) Under H1(r), then |τ(B̂, Ω̂, P
N̂r
, P

M̂r
)| = O−1

p (1) if |τ(B̂, Ω̂, P
N̂∗r
, P

M̂∗r
)| = O−1

p (1), where

N̂∗r ∈ Gn×(n−r) and M̂∗r ∈ Gm×(m−r) span the left and right null spaces of (B̂∗)RRAr

respectively.

It is said to satisfy the strong plug–in principle relative to the null spaces of B̂∗ if additionally
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(iii) Under H1(r), τ(B̂, Ω̂, P
N̂r
, P

M̂r
)− τ(B̂, Ω̂, P

N̂∗r
, P

M̂∗r
) = op(1), where N̂∗r ∈ Gn×(n−r) and

M̂∗r ∈ Gm×(m−r) span the left and right null spaces of (B̂∗)RRAr respectively.

When γ = 1
2 , B̂∗ is fixed at B∗ and NqT and MqT are both fixed and span the null spaces

of B∗, the general asymptotics plug–in principle reduces to the standard asymptotics plug–in

principle. Note that the choice of the symbol γ is deliberate as it will turn out to be exactly

the γ that appears in Lemmas 4 – 6. That is, the quality of the approximation in the general

plug–in principle under H0(r) and HT (r) depends on the minimum rate of convergence of B̂

along NrT and MrT . This was 1
2 under standard asymptotics and is different here due to the

more general asymptotics.

The generalized set of assumptions and the generalized notion of the plug–in principle

together allow us to generalize Theorem 1.

Theorem 2. Suppose Assumptions K hold along with either Assumptions C or D. Suppose

the null space estimators N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) are obtained by either a DBA

or a CDA with cond(ΘT ) = Op(1). Let B̂∗ = [ Nq⊥ NqT ]−1′
[
N ′q⊥B̂Mq⊥ 0

0 0

]
[ Mq⊥ MqT ]−1

and let N̂∗r ∈ Gn×(n−r) and M̂∗r ∈ Gm×(m−r) span its left and right null spaces respectively.

Suppose the following inclusions hold almost surely

P
N̂∗r
B̂P

M̂∗r
∈ X , (P

M̂∗r
⊗ P

N̂∗r
)Ω̂(P

M̂∗r
⊗ P

N̂∗r
) ∈ Y,

P
N̂r
B̂P

M̂r
∈ X , (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
) ∈ Y,

and suppose either of the following two conditions hold

(i) For every X ∈ X , Y ∈ Y, N ∈ Gn×n, and M ∈ Gm×m, X̃ = PN−1XN
′XMPM−1X′ ∈ X ,

Ỹ = (PM−1X′M ⊗ PN−1XN)′Y (PM−1X′M ⊗ PN−1XN) ∈ Y, and κ(X̃, Ỹ ) = κ(X,Y ).

Moreover, infX∈P ‖PN̂∗rT B̂TPM̂∗rT −X‖ = op(1) and infX∈P ‖PN̂rT B̂TPM̂rT
−X‖ = op(1),

where N̂∗rT = [ Nq⊥ NqT ]−1N̂∗r , M̂∗rT = [ Mq⊥ MqT ]−1M̂∗r , N̂rT = [ Nq⊥ NqT ]−1N̂r,

M̂rT = [ Mq⊥ MqT ]−1M̂r, B̂T = [ Nq⊥ NqT ]′B̂[ Mq⊥ MqT ].

(ii) ZT = Op(1), infX∈P ‖PN̂∗r B̂PM̂∗r −X‖ = op(1), and infX∈P ‖PN̂rB̂PM̂r
−X‖ = op(1).

Then T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
) = T 2γθκ

(
P
N̂r
B̂P

M̂r
, (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗ P

N̂r
)
)

satisfies the

weak plug–in principle relative to the sequence B̂∗. If, additionally, the distance between

B̂∗ and the set of discontinuity points of the rank–r RRA is bounded away from zero in

probability, then the statistic satisfies the strong plug–in principle relative to B̂∗.
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Theorem 2 is strictly more general than Theorem 1. When Assumptions C and D specialize

to Assumptions A and B respectively, Theorem 1 is a special case of Theorem 2 (ii).

Condition (i) of Theorem 2 is an invariance condition that allows the plug–in principle

to hold in the context of Example 12, where both B̂ and Ω̂ must be rescaled conformably

in order to evaluate the asymptotics. The set of transformations in this condition may seem

peculiar. However, they are simple manifestations of the invariance of all of the statistics we

have considered so far (except for t) with respect to the group of transformations

(B̂, Ω̂, N̂r, M̂r) 7→ (N ′B̂M, (M ⊗N)′Ω̂(M ⊗N), N−1N̂r,M
−1M̂r),

where N ∈ Gn×n and M ∈ Gm×m.16 Thus, the set of transformations (X,Y ) 7→ (X̃, Ỹ ) with

respect to which κ is invariant in condition (i) defines a group.17

Condition (ii), on the other hand, allows the plug–in principle to hold in the context of

Example 13, where ZT is bounded in probability and the invariance conditions in (i) do not

hold. This condition also allows the plug–in principle to hold in standard asymptotics.

The plug–in principle applied to the context of Example 12 allows one to simply plug–

in the limiting null space of B̂. The plug–in principle applies regardless of the order of

integration of the process (fractional cointegration is also allowed) and not only to the F

statistic but also to the JA and LRA statistics. It also applies in the contexts of added

lags and arbitrary deterministic terms such as polynomial trends and dummies. The plug–

in principle in Example 13 applies relative to a random sequence rather than a constant

one. In particular, one cannot plug–in the null space of B∗. That is because under either

H0(r) or HT (r), P
M̂r
− PMr = Op(T

−1/2), which is too slow for the plug–in principle to

work. One can, however, plug in MrT =
√
T Σ̂1/2(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr because

P
M̂r
− PMrT

= Op(T
−1). See Example 19 for a Monte Carlo illustration.

A large class of statistics is nested under Theorem 2, including all of the standard asymp-

totics statistics of the literature as well as the majority of the cointegration rank statistics in

the literature. In particular, it nests all of the statistics included in Table 1 except for the

ones superscripted by the symbol †. Those, along with recent statistics by Hallin et al. (2012)

and Boswijk et al. (2015), are of the form T 2γθτ({yt : t = 1, . . . , T}, P
M̂r

). Thus, they explic-

16The t statistic is not invariant to this group of transformations but it is invariant to the subgroup of transfor-

mations where both N and M are non–zero scalars.
17See Ferguson (1967) and Lehmann & Romano (2005) for more on invariance in hypothesis testing.
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itly depend on a null space estimator and their dependence on the data is more complicated

than what we have considered in this paper. However, it is evident from the proofs of the

asymptotics of these results that these statistics are asymptotically equivalent to infeasible

versions T 2γθτ({yt : t = 1, . . . , T}, PMr) under H0(r) and that both the feasible and infeasible

statistics diverge under H1(r). Thus, a form of the plug–in principle continues to hold for

these statistics as well.

It follows from Theorem 2 that the Johansen (1988), Kleibergen & van Dijk (1994), and

Kleibergen & Paap (2006) statistics, which differ from each other only in their implicit null

space estimators, differ from each other by Op(T
−1/2) under H0(r) and HT (r). Thus, the

choice among these will have to depend on either Monte Carlo performance or numerical

expedience as noted in Section 3.

It is important at this point to warn against an often repeated mistake in the cointegration

literature: that any estimator of the cointegration space will do in working out the asymptotics

of cointegration rank tests. This is clearly not the case in Example 13, where plugging in the

true null spaces produces incorrect asymptotics (see Example 19). It is also not true in the

context of Example 12, where the null space estimator must match the rate of convergence

of the matrix itself. Example 11 can easily be modified to a cointegration example where the

statistic diverges under H0(r).

The simplification to asymptotic analysis afforded by Theorem 2 is noteworthy. It allows

the researcher to obtain the asymptotics not only for the different alternatives but also under

misspecification. We summarize in the following corollaries.

Corollary 3. Suppose Assumptions K and C hold and suppose we have null space estima-

tors N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with cond(ΘT ) =

Op(1). UnderH0(r) orHT (r), if T 2γθτ
(
B̂, Ω̂, PNrT , PMrT

)
d→ ζ, then T 2γθτ

(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→

ζ. In particular, if

(
T γvec(N ′rT B̂MrT ), (MrT ⊗NrT )′Ω̂(MrT ⊗NrT )

)
d→ (ξr,Ωr),
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then we have

T 2γ−1LRA
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

T 2γ−1F
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

T 2γ−1JA
(
B̂, Ω̂, P

N̂r
, P

M̂r

)
d→ ‖mat(Ω−1/2

r ξr)‖22.

Under H0(r), ξr and Ωr in Corollary 3 are typically functionals of a Brownian motion and

deterministic terms (if deterministic trends are included), while under HT (r) they are typically

of the Ornstein–Uhlenbeck form (Hubrich et al., 2001). The limiting behaviour under H0(r)

and HT (r) of all of the statistics in Johansen (1988), Johansen (1991), Kleibergen & van Dijk

(1994), Yang & Bewley (1996), Quintos (1998), Gonzalo & Pitarakis (1999), Lütkepohl &

Saikkonen (1999), Kleibergen & Paap (2006), Avarucci & Velasco (2009), and Cavaliere et al.

(2010a) follow from Corollary 3. These results assume correct specification, so the limiting

distributions above are nuisance–parameter–free. In the case of misspecification, the limiting

distributions may not be free of nuisance parameters. It follows from Corollary 3 that the

statistics proposed by Johansen (1988), Kleibergen & van Dijk (1994), and Kleibergen &

Paap (2006) have the exact same behaviour under the misspecification conditions of Caner

(1998) (infinite variance shocks), Cavaliere et al. (2010b) (heteroskedastic shocks), and Aznar

& Salvador (2002) and Cavaliere et al. (2014) (misspecified lag length).

Corollary 4. Suppose Assumptions K and D hold and suppose we have a null space estimator

M̂r ∈ Gm×(m−r) obtained by either a DBA or a CDA with cond(ΘT ) = Op(1). Under H0(r)

or HT (r), if T 2γθτ
(
B̂, Ω̂, PMrT

, PMrT

)
d→ ζ, then T 2γθτ

(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ζ. In particular,

if (
T γvech(M ′rT B̂MrT ), D†m−r(MrT ⊗MrT )′Ω̂(MrT ⊗MrT )D†m−r

′
)

d→ (ξr,Ωr),

then we have

T 2γ−1LRA
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

T 2γ−1F
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖ξr‖2Ωr

T 2γ−1JA
(
B̂, Ω̂, P

M̂r
, P

M̂r

)
d→ ‖mat(Dm−rΩ

−1/2
r ξr)‖22,

and if MrT
p→Mr, a non–random matrix of orthonormal columns, then

T γ−1/2t
(
B̂, Ω̂, P

M̂r

)
d→ tr(mat(Dm−rξr))

(vec′(Im−r)Dm−rΩrD′m−rvec(Im−r))1/2
.
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Similar observations apply to Corollary 4 as do to Corollary 3. The asymptotic distribu-

tions of the Bierens (1997), Nyblom & Harvey (2000), Breitung (2002), and Nielsen (2010)

statistics under H0(r) and HT (r) follow from Corollary 4. As an application, we explicitly

derive the asymptotics under HT (r) of the Nyblom & Harvey (2000) statistic along with a

couple of more statistics (see Appendix B for the mathematical details).

Example 14. Consider the setting of Example 13. Under HT (r), if Mr ∈ Gm×(m−r) consists

of orthonormal columns and spans the null space of B∗, the Nyblom & Harvey (2000) statistic

converges in distribution to tr(C22 − C ′12C
−1
11 C12), where

C11 =

∫ 1

0

[∫ u

0
W ∗1 (s)ds

] [∫ u

0
W ∗1 (s)ds

]′
du

C12 =

∫ 1

0

[∫ u

0
W ∗1 (s)ds

]
K ′(u)du

C22 =

∫ 1

0
K(u)K ′(u)du

W ∗1 (u) = W1(u)−
∫ 1

0
W1(s)ds

K(u) = W2(u)− uW2(1) + (M ′rΣMr)
−1/2(M ′rDMr)

1/2

∫ u

0
W ∗3 (s)ds,

and (W ′1,W
′
2,W

′
3)′ is a standard Brownian motion whose three components have dimensions

r, m− r, and m− r respectively. On the other hand, the naive statistic tr(TPMrB̂PMr) that

we considered in Example 13 converges in distribution to tr(C22).

The limiting distribution of the Nyblom & Harvey (2000) statistic reduces to the one

reported by Cappuccio & Lubian (2009) in the univariate case. As the distribution is invariant

to the transformation (K,W3) 7→ (MK,NW3) whenever M and N are orthogonal matrices, it

depends on D only through {σi((M ′rΣMr)
−1/2(M ′rDMr)

1/2)}, the singular values of the local

alternative’s signal–to–noise ratio along the null spaces of B∗.

Based on these asymptotics, we can formulate other statistics for testing rank in the context

of Example 13. One example is T 2
∑m

i=r+1 λ
2
i (B̂), which is equivalent to TF (B̂, Inm, PM̂r

, P
M̂r

)

with the null spaces estimated from the EIG or SVD RRAs and converges in distribution

to ‖C22 − C ′12C
−1
11 C12‖2. This statistic is illustrated in Example 19. Another example is

T 2λ2
r+1(B̂), which is equivalent to TJ(B̂, In, Im, PM̂r

, P
M̂r

) and converges in distribution to

‖C22 − C ′12C
−1
11 C12‖22.

Corollaries 3 and 4 (and by inclusion, Corollaries 1 and 2) highlight a remarkable property

of the asymptotics of rank test statistics: only the asymptotics along NrT and MrT have any
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contribution to the limiting distribution of the test statistics. That is, the asymptotics of B̂

along neither Nr⊥ nor Mr⊥ have any contribution to the asymptotics whatsoever.

Finally, we mention a couple of applications of the new approach of this paper to the

issues of dominance and rank estimation. Some of the rank test statistics we have considered

exhibit interesting dominance relationships. The statistics LR, F , and J satisfy κ(X,Y ) ≥

κ(PXQ, (Q ⊗ P )Y (Q ⊗ P )), whenever P and Q are orthogonal projection matrices. This

implies that these statistics satisfy

T 2γθτ(B̂, Ω̂, P
N̂i
, P

M̂i
) ≤ T 2γθτ(B̂, Ω̂, P

N̂r
, P

M̂r
)+Op(‖PN̂iT (In−PN̂rT )‖+‖P

M̂iT
(Im−PM̂rT

)‖)

under either Assumptions C or D, either H0(r) or HT (r), and i ≥ r.18 When the null spaces are

estimated by DBA, Lemma 1 (iii) implies that T 2γθτ(B̂, Ω̂, P
N̂i
, P

M̂i
) ≤ T 2γθτ(B̂, Ω̂, P

N̂r
, P

M̂r
).

On the other hand, when the null spaces are estimated by CDA, Lemma 5 implies that

T 2γθτ(B̂, Ω̂, P
N̂i
, P

M̂i
) ≤ T 2γθτ(B̂, Ω̂, P

N̂r
, P

M̂r
)+Op(T

−γ). In both cases, we have that under

H0(r) or HT (r), every subsequence of T 2γθτ(B̂, Ω̂, P
N̂i
, P

M̂i
) that converges in distribution

is asymptotically distributed as a random variable stochastically dominated by the limiting

distribution of T 2γθτ(B̂, Ω̂, P
N̂r
, P

M̂r
). This generalizes the results of Cragg & Donald (1997)

and Donald et al. (2007), which establish the limiting stochastic dominance for F statistics

with particular choices of the null space estimators and Ω̂.19 Cragg & Donald (1993) show

that under the assumptions of Example 7, when Ω̂ is of Kronecker product form and Ω̂
p→ Φ,

then F has an asymptotic distribution stochastically dominated by the χ2((n − i)(m − i))

distribution. Cragg & Donald (1997) have noted this does not seem to generalize to general

forms of Ω̂.

The dominance relationships above imply that T 2γθτ(B̂, Ω̂, P
N̂i
, P

M̂i
) = Op(1) under ei-

ther Assumptions C or D, H0(r) or HT (r), and i ≥ r. More generally, if κ in Theorem

2 satisfies κ(X,Y ) = O(‖X‖2θ) whenever Y † = O(1) as ‖X‖ → 0, then we have that

T 2γθτ(B̂, Ω̂, P
N̂i
, P

M̂i
) = Op(1) under the aforementioned conditions. All of the statistics

in Table 2 satisfy this condition. This then allows us to estimate the rank of B using

Iτ (i) = T 2γθτ
(
B̂, Ω̂, P

N̂i
, P

M̂i

)
+ f(T )g(i),

18The non–standardized t under the restriction B̂ ∈ Pm can also be shown to satisfy a similar inequality.
19Donald et al. (2007) establish a further stochastic dominance result for t, which is not nested here. Their result

depends on stronger assumptions on the limiting distribution of B̂ than we are allowing ourselves here.
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where g is strictly increasing, f(T )→∞ as T →∞, and f(T )/T 2γθ → 0. For i = min{n,m},

the test statistic is not defined and so we set Iτ (i) = f(T )g(i). A common choice for f and g in

the model selection literature is f(T ) = log T and g(r) = (m− r)(n− r). The intuition here is

that T 2γθτ
(
B̂, Ω̂, P

N̂i
, P

M̂i

)
can be thought of as measures of fit of the RRA as it is bounded

for i ≥ rank(B) and unbounded for i < rank(B). As i increases, however, the parametrization

of the RRA increases and so a cost is added to prevent over–parametrization. Using standard

model selection techniques and under the assumptions we have made so far, it can be shown

that argmin{Iτ (i) : i = 0, . . . ,min{n,m}} is a consistent estimator of rank(B) (see e.g. Cragg

& Donald (1997)). Hubrich et al. (2001) reviews the cointegration rank estimation literature.

5 Monte Carlo

This section illustrates the theory presented in previous sections through a series of Monte

Carlo experiments organized in examples. It is in no way intended as a study of the small

sample performance of the various tests (that is a topic for a separate study). We follow Donald

et al. (2007) in reporting PP plots, which plot nominal size, p, on the vertical axis against

the observed rejection rate, α(p). In each case, we report PP plots for a number of statistics,

including the infeasible statistic to which the plug–in principle applies. For computational

efficiency, we have used the statistics in their simplified forms that avoid the computation

of Moore–Penrose inverses and projection matrices (see footnote 3). The Matlab code for

generating these plots is available on the author’s website.

5.1 Standard Asymptotics

Example 15 (The Plug–in Principle for General Matrices). Let {(x′t, u′t)′ : t = 1, . . . , 50} be

i.i.d. N(0, I8). Let {εt : t = 0, . . . , T} be a stationary process satisfying εt = 0.5εt−1 + ut.

Let B =

[
0.75 0 0 0

0 0.5 0 0
0 0 0 0
0 0 0 0

]
and yt = Bxt + εt for t = 1, . . . , 50. Our sample consists of {(y′t, x′t)′ :

t = 1, . . . , 50}. The small size of the dataset and the moderate autocorrelation is at about

the range where first order asymptotics usually begin to break down for an F statistic with

4 degrees of freedom. Thus, the specification is chosen to be challenging. We estimate B

by OLS and the asymptotic variance of B̂ nonparametrically using a Bartlett kernel with

the traditional bandwidth b4(50/100)1/4c = 3 for the small–b case and bandwidth T for the
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Figure 6: PP Plots for the F tests of Example 15

fixed–b case. The number of replications is set to 2000. For each replication, we computed F

statistics based on the SVD, RSD, CDA, LU, and QR RRAs. For the CDA, we used Θ equal

to the small–b estimate of the asymptotic variance matrix of B̂.

The limiting distribution of the rank–2 small–b F statistic is χ2(4). The limiting distribu-

tion of the rank–2 fixed–b F statistic isW ′(1)
(

2
∫ 1

0 (W (s)− sW (1))(W (s)− sW (1))′ds
)−1

W (1),

where W is a standard Brownian motion of dimension 4 (Kiefer & Vogelsang, 2002a).

The strong plug–in principle is clearly in effect in this example. The third column of Figure

6 demonstrates that the feasible and infeasible statistics are practically the same under H0(r).

The first and second columns, on the other hand, illustrate the strong plug–in principle under

H1(r). Figure 6 also demonstrates the superior performance of fixed–b tests in terms of size.

This is consistent with the fixed–b theory and Monte Carlo evidence in the literature (Kiefer

et al., 2000; Kiefer & Vogelsang, 2002a,b, 2005).

Note that the infeasible statistics have a tendency to over–rejects relative to the feasible

statistics. This makes sense because the null space estimators implicit in the infeasible statis-

tics are passive and do not adapt to B̂. The null space estimators implicit in the feasible

statistics, in contrast, actively seek to annihilate B̂.

Example 16 (Discontinuity of RRAs). Suppose that instead of the B of Example 15, we

have B =

[
0.5 0 0 0
0 0.5 0 0
0 0 0 0
0 0 0 0

]
. Then there are multiple rank–1 SVD approximations, the LU and QR

algorithms run into multiple pivots, and as a result, these RRAs will have a discontinuity at
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Figure 7: PP Plots for the F tests of Example 16

B. This implies that the rank test statistics for rank–1 will not necessarily diverge at the

same rate. In fact, they can be seen to diverge at heterogenous rates in the second column of

Figure 7. Thus, the strong plug–in principle fails in this example, although the weak plug–in

principle continues to hold.

Example 17 (The Plug–in Principle for Symmetric Matrices). Suppose now that we have

the same setting above, with B =

[
0.75 0 0 0

0 0.5 0 0
0 0 0 0
0 0 0 0

]
and we estimate it by OLS subject to the

restriction of symmetry. Thus B̂ is symmetric and vech(B̂) has a positive definite asymptotic

variance, which was again estimated non–parametrically with bandwidths 3 and 50.

For each replication, we computed F and t statistics as in Example 3 with the same RRAs

as above except that we used the LU decomposition utilized in Donald et al. (2007) as it is

designed for symmetric matrices. The statistic based on the QR null space estimator takes

the right null space estimator M̂r and uses P
M̂r
B̂P

M̂r
to formulate the rank test statistics.

That tests based on this null space estimator should have power follows from Lemma 3 (ii)

because B ∈ Pm. There is no guarantee that this QR test for symmetric matrices would have

power against a non–definite symmetric matrix.

The limiting distribution of the rank–2 small–b F statistic is χ2(3). The limiting distribu-

tion of the rank–2 fixed–b F statistic has the same functional form as in Example 15, except

the dimension of the underlying Brownian motion here is 3. The limiting distribution of the

rank–2 small–b t statistic is N(0, 1). The limiting distribution of the rank–2 fixed–b t statis-
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tic is W (1)
/√

2
∫ 1

0 (W (s)− sW (1))2ds, where W is a standard Brownian motion (Kiefer &

Vogelsang, 2002a).

The results are ploted in Figure 8 and 9. Clearly, the tests exhibit similar behaviour to

what we have seen in Example 15.

Figure 8: PP Plots for the F tests of Example 17

Figure 9: PP Plots for the t tests of Example 17
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5.2 General Asymptotics

Example 18 (The Cointegrated VAR Model). Consider a variant of the model given in

Example 12 with B =

[−0.25 0 0 0
0 −0.5 0 0
0 0 0 0
0 0 0 0

]
and T = 50. This model generates I(1) data. If we

proceed as in Example 12, estimating the model by OLS and formulating F and JA statistics,

the strong plug–in principle is expected to hold. The F statistic for rank 2 converges in

distribution to a generalized Dickey Fuller limiting distribution with 2 degrees of freedom

(Johansen, 1988), while the JA statistics converges in distribution to the maximum eigenvalue

distribution with 2 degrees of freedom (Johansen, 1991). Both statistics evaluated at rank 0

and 1 diverge at a rate determined by the strong plug–in principle. Figure 7 confirms these

results for a variety of null space estimators.

Figure 10: PP Plots for the F and JA tests of Example 18

Example 19 (Common Stochastic Trends). Consider the model given in Example 13 with

Σ = I4, Γ =

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
and T = 50. Here we look at the t statistic proposed by Nyblom &

Harvey (2000) as well as the F statistic proposed in Example 14. For each of these, we also

consider the naive statistic that plugs in M ′r = [ 0 0 1 0
0 0 0 1 ] rather than the correct choice of MrT

discussed in Examples 13 and 14.

The results are given in Figure 11. Clearly, the naive statistic perform quite differently to

all other statistics. The figure also displays results for the Cholesky RRA, which can only be

used here because B̂ ∈ P4.
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Figure 11: PP Plots for the F and t tests of Example 19

6 Conclusion

This paper has demonstrated that all rank test statistics are functions of implicit null space

estimators and developed the properties of null space estimators under both standard and

cointegration asymptotics. The behaviour of rank test statistics has been shown to be com-

pletely governed by the implicit null space estimators through a plug–in principle. This has

allowed for a general theory of rank testing that simplified the asymptotics of rank test statis-

tics, clarified the relationships between the various rank test statistics, made full use of the

numerical analysis literature, and motivated numerous new rank test statistics.

We briefly mention some possible venues for future research. First, as a number of statistics

in the literature have been shown to be asymptotically equivalent, the next natural step is

to study small sample performance and higher order asymptotics. Second, as this paper has

presented a theory of subspace estimation, the natural next step is to consider inference on

subspaces. Third, the paper has presented a number of estimators of rank that ought to be

tested in a simulation study. Fourth, this paper has considered the case of fixed n and m and

it would be useful to extend the theory for application to high–dimensional data.
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Appendix A: Reduced–Rank Approximations

In this section, we develop the properties of some of the most popular RRAs in the literature

and discuss some of the statistics that have utilized these RRAs. We assume throughout that

B̂ ∈ Gn×m, Ω̂ ∈ Pnm+ , and Ψ̂ ∈ Pm(m+1)/2
+ .

The Singular Value Decomposition. The most important reduced–rank approximation is the

singular value decomposition (SVD) approximation.20 The SVD of B̂ is of the form B̂ = Û ŜV̂ ′,

where Û ∈ Rn×n and V̂ ∈ Rm×m are orthogonal matrices and Ŝ is diagonal with diagonal

elements σ1(B̂) ≥ σ2(B̂) ≥ · · · ≥ σmin{n,m}(B̂) > 0. We have

B̂ =
[
Û·1 Û·2

]Ŝ1 0

0 Ŝ2

V̂ ′·1
V̂ ′·2

 = Û·1Ŝ1V̂
′
·1 + Û·2Ŝ2V̂

′
·2,

where Ŝ1 ∈ Rr×r. Then, as is well known B̂SV D
r = Û·1Ŝ1V̂

′
·1 is closest in Euclidian distance to

B̂ among all matrices of rank r. In particular,

min{n,m}∑
i=r+1

σ2
i (B̂) = ‖B̂ − B̂SV D

r ‖2 ≤ ‖B̂ −A‖2

whenever rank(A) = r (Horn & Johnson, 1985, Example 7.4.1). B̂SV D
r is unique if and only if

σr(B̂) 6= σr+1(B̂) (Markovsky, 2012, Theorem 2.23). Finally, the above suggests the null space

estimators N̂r = Û·2 and M̂r = V̂·2. This implies that N̂ ′rB̂M̂r = Ŝ2. Ratsimalahelo (2003)

and Kleibergen & Paap (2006) utilize these null space estimators to formulate the statistic

Tvec′(N̂ ′rB̂M̂r){(M̂r ⊗ N̂r)
′Ω̂(M̂r ⊗ N̂r)}−1vec(N̂ ′rB̂M̂r).

Using the fact that for any H ∈ Rp×k and G ∈ Rp×p satisfying H ′GH ∈ Gk×k,

(PHGPH)† = H(H ′GH)−1H = PH(PHGPH)†PH , (∗)

it follows that the Ratsimalahelo–Kleibergen–Paap statistic is equal to F (B̂, Ω̂, P
N̂r
, P

M̂r
). The

identity (∗) is verified by checking the four conditions of the Moore–Penrose inverse (Stewart

& Sun, 1990, Theorem III.1.1).

20Interestingly, the singular value decomposition has a long history in applied mathematics as a rank reveal-

ing decomposition (Stewart, 1993) and yet it was one of the very last decompositions to be used in a rank test

(Ratsimalahelo, 2003; Kleibergen & Paap, 2006; Donald et al., 2007).
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When B̂ ∈ Sm, Û ′V̂ is a diagonal matrix with either +1 or −1 on the diagonal. In

particular, every column of N̂r differs from a column in M̂r by at most a sign and vice versa

so that P
N̂r

= P
M̂r

. Donald et al. (2007) use this to construct the statistic

Tvech′(M̂ ′rB̂M̂r){D†m−r(M̂r ⊗ M̂r)
′DmΨ̂D′m(M̂r ⊗ M̂r)D

†
m−r

′}−1vech(M̂ ′rB̂M̂r).

Noting that vech(M̂ ′rB̂M̂r) = D†m−r(M̂r ⊗ M̂r)
′Dmvech(B̂) and using (∗) again, this statistic

may be written as

Tvec′(B̂)D′mP(M̂r⊗M̂r)D
†
m−r

′{P(M̂r⊗M̂r)D
†
m−r

′DmΨ̂D′mP(M̂r⊗M̂r)D
†
m−r

′}†P(M̂r⊗M̂r)D
†
m−r

′Dmvec(B̂),

This can be simplified by writing

P
(M̂r⊗M̂r)D

†
m−r

′ = (M̂ ⊗ M̂r)D
†
m−r

′
(
D†m−r(M̂r ⊗ M̂r)

′(M̂ ⊗ M̂r)D
†
m−r

′
)−1

D†m−r(M̂r ⊗ M̂r)
′

= (M̂r ⊗ M̂r)Dm−r

(
D′m−r(M̂

′
rM̂r ⊗ M̂ ′rM̂)Dm−r

)−1
D′m−r(M̂r ⊗ M̂r)

′

= (M̂r ⊗ M̂r)Dm−rD
†
m−r

(
(M̂ ′rM̂r)

−1 ⊗ (M̂ ′rM̂)−1
)
D†m−r

′D′m−r(M̂r ⊗ M̂r)
′

= (M̂r ⊗ M̂r)Dm−rD
†
m−r

(
(M̂ ′rM̂r)

−1 ⊗ (M̂ ′rM̂)−1
)

(M̂r ⊗ M̂r)
′

= DmD
†
m(M̂r ⊗ M̂r)

(
(M̂ ′rM̂r)

−1 ⊗ (M̂ ′rM̂)−1
)

(M̂r ⊗ M̂r)
′

= DmD
†
m(P

M̂r
⊗ P

M̂r
),

where the third equality follows from Theorem 3.13 (d) of Magnus & Neudecker (1999), while

the fourth and fifth follow from Theorem 3.12 (b) and Theorem 3.9 (a) of Magnus & Neudecker

(1999). Substituting into the statistic and noting that DmD
†
m(P

M̂r
⊗ P

M̂r
)Dm = (P

M̂r
⊗

P
M̂r

)Dm by Theorem 3.13 (a) of Magnus & Neudecker (1999), we have that the Donald et al.

(2007) statistic is exactly F (B̂,DmΨ̂D′m, PM̂r
, P

M̂r
).

The Robin–Smith Decomposition. The RSD of B̂ takes matrices Ξ ∈ Pn+ and Υ ∈ Pm+ and

obtains B̂ = Û ŜV̂ ′, where Û ∈ Gn×n, V̂ ∈ Gm×m, and Ŝ satisfy:

(i) The columns of Û−1′ are generalized eigenvectors of (B̂Υ−1B̂′,Ξ).

(ii) The columns of V̂ −1′ are generalized eigenvectors of (B̂′Ξ−1B̂,Υ).

(iii) Ŝ is diagonal with diagonal entries, µ1(B̂) ≥ µ2(B̂) ≥ · · · ≥ µmin{n,m}(B̂) > 0.21

21The RSD is also a special case of the generalized singular value decomposition of Van Loan (1976), which is also

utilized in the numerical analysis literature on RRA (Hansen, 1998).
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The RSD arises naturally in a number of contexts. In canonical correlation analysis B̂ is

a sample covariance matrix of two random vectors with sample covariance matrices Ξ and Υ,

the columns found in (i) and (ii) define the coefficients of the sample canonical variates, while

(iii) lists the sample canonical correlations. In reduced–rank regression, on the other hand, we

take B̂ to be the OLS estimator in the regression of y on x, while Ξ is the sample variance of

the residuals, and Υ is the inverse of the sample second moment of x (Reinsel & Velu, 1998).

The RSD is easily derived from the SVD: if Û0Ŝ0V̂
′

0 is the SVD of Ξ−
1
2 B̂Υ−

1
2 then B̂ =

Û ŜV̂ ′ with Û = Ξ−
1
2 Û0, Ŝ = Ŝ0, and V̂ = Υ−

1
2 V̂0 and it is easily checked that Û , Ŝ, and V̂

satisfy (i) – (iii) above, with µi(B̂) = σi(Ξ
− 1

2 B̂Υ−
1
2 ) = λ

1/2
i (Ξ−1B̂Υ−1B̂′). Clearly the RSD

reduces to the SVD when Ξ = In and Υ = Im.

Now just as we did in the SVD case, write B̂ = Û·1Ŝ1V̂
′
·1 + Û·2Ŝ2V̂

′
·2, where Ŝ1 ∈ Rr×r

and set B̂RSD
r = Û·1Ŝ1V̂

′
·1. We may also write B̂RSD

r = Ξ1/2(Ξ−1/2B̂Υ−1/2)SV Dr Υ1/2, which

minimizes ‖B̂ − A‖Υ⊗Ξ = ‖Ξ−1/2(B̂ − A)Υ−1/2‖ with respect to all matrices A of rank r.

Clearly B̂RSD
r is unique if and only if µr(B̂) 6= µr+1(B̂) (see Theorem 2.29 of Markovsky

(2012)). We may estimate the null spaces by setting N̂r to the last n− r columns of Û−1′ and

M̂r to the last m− r columns of V̂ −1′. This implies that N̂ ′rB̂M̂r = Ŝ2.

By property (i) of the RSD, N̂ ′rΞN̂r = In−r, while property (ii) implies that M̂ ′rΥM̂r =

Im−r. This, and the fact σ2
i (A) = λi(AA

′) = λi(A
′A) for any matrix A (Horn & Johnson,

1991, p. 135), implies that

µ2
i+r(B̂) = σ2

i (Ŝ2)

= σ2
i

(
N̂ ′rB̂M̂r

)
= σ2

i

(
(N̂rΞN̂r)

−1/2N̂ ′rB̂M̂r(M̂
′
rΥM̂r)

−1/2
)

= λi

(
(N̂ ′rΞN̂r)

−1/2N̂ ′rB̂M̂r(M̂
′
rΥM̂r)

−1M̂ ′rB̂
′N̂r(N̂rΞN̂r)

−1/2
)

= λi

(
(N̂ ′rΞN̂r)

−1/2N̂ ′rB̂PM̂r
(P

M̂r
ΥP

M̂r
)†P

M̂r
B̂′N̂r(N̂rΞN̂r)

−1/2
)
, using (∗)

= λi

(
(P

M̂r
ΥP

M̂r
)†/2P

M̂r
B̂′N̂r(N̂rΞN̂r)

−1N̂ ′rB̂PM̂r
(P

M̂r
ΥP

M̂r
)†/2
)

= λi

(
(P

M̂r
ΥP

M̂r
)†/2P

M̂r
B̂′P

N̂r
(P

N̂r
ΞP

N̂r
)†P

N̂r
B̂P

M̂r
(P

M̂r
ΥP

M̂r
)†/2
)
, using (∗)

= σ2
i

(
(P

N̂r
ΞP

N̂r
)†/2P

N̂r
B̂P

M̂r
(P

M̂r
ΥP

M̂r
)†/2
)
.

The Anderson (1951) likelihood ratio statistic takes Ξ = Σ̂ and Υ = Γ̂−1 to obtain N̂r

and M̂r and is given by LR(B̂, Σ̂, Γ̂, P
N̂r
, P

M̂r
) = T

∑min{n,m}
i=r+1 log

(
1 + µ2

i (B̂)
)

. Similarly,
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A(B̂, Σ̂, Γ̂, P
N̂r
, P

M̂r
) = T

∑min{n,m}
i=r+1 µ2

i (B̂) and J(B̂, Σ̂, Γ̂, P
N̂r
, P

M̂r
) = Tµ2

r+1(B̂).

The Cragg–Donald Approximation. This RRA is discussed at length in Section 3.2. Here

we will focus only on the computational details. An often cited criticism of the CDA in the

econometrics literature is that it is difficult to compute for general forms of Θ. The statistics

literature, on the other hand, has often resorted to manipulating first order conditions to yield

iterative solutions of the RRAs (see e.g. p. 33 and p. 63 of Reinsel & Velu (1998) and Gabriel

& Zamir (1979)). In the process of proving Lemma 2 (iv) (see equation (2)) we find that

vec(B̂CDA
r ) = (M̂r ⊗ N̂r)⊥{(M̂r ⊗ N̂r)

′
⊥Θ−1(M̂r ⊗ N̂r)⊥}−1(M̂r ⊗ N̂r)

′
⊥Θ−1vec(B̂),

where N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) span the left and right null spaces of B̂CDA
r

respectively. We may therefore iterate this equation as outlined in the following algorithm,

which is used in all of the Monte Carlo experiments of this paper.

Algorithm 1 (Cragg–Donald Approximation). Initialize B̂CDA
r as any rank–r RRA of B̂

and set N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) to span the left and right null spaces of B̂CDA
r

respectively. Iterate the following steps until B̂CDA
r converges:

(i) Obtain

vec(B̃) = (M̂r ⊗ N̂r)⊥{(M̂r ⊗ N̂r)
′
⊥Θ−1(M̂r ⊗ N̂r)⊥}−1(M̂r ⊗ N̂r)

′
⊥Θ−1vec(B̂)

(ii) Set B̂CDA
r to any rank–r RRA of B̃ and N̂r ∈ Gn×(n−r) and M̂r ∈ Gm×(m−r) to span

the left and right null spaces of B̂CDA
r respectively.

The initial choice of B̂CDA
r can be important, particularly when Θ is ill–conditioned. In this

case, the initial choice may throw away information that Θ would have picked up. For example,

with the SVD as the initial RRA it is impossible to obtain the correct CDA in Example 6

when |δ| < ε. The algorithm employed in this paper obtains an RRA of mat(Θ−1/2vec(B̂)),

which appears to work quite well. The author also tried using an RSD with the Kronecker

product approximation of Θ proposed in Robin & Smith (1995) as well as the approximation

proposed by Van Loan & Pitsianis (1993) but these still were not able to provide the correct

CDA in Example 6.

The LU Decomposition with Complete Pivoting. This decomposition arises from Gaussian

elimination in linear system and is used in Cragg & Donald (1996) to construct an F statistic.
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The algorithm constructs permutation matrices Π̂1 and Π̂2 such that Π̂1B̂Π̂2 = L̂Ŝ, where

L̂ ∈ Gn×n is lower triangular with 1’s along its diagonal and all subdiagonal elements are

smaller than 1 in absolute value and Ŝ ∈ Rn×m is upper triangular with |Ŝ(i,i)| ≥ |Ŝ(i,j)|

for all j ≥ i (Golub & Van Loan, 1996, Theorem 3.4.2). Thus L̂ is bounded and so is it’s

inverse (Higham, 1987, Theorem 6.1). The rank–r approximation is then given by B̂LU
r =

Π̂′1L̂
[
Ŝ11 Ŝ12
0 0

]
Π̂′2, where Ŝ11 ∈ Gr×r.22 We may take N̂ ′r = [ 0 In−r ]L̂−1Π̂1 and M̂r =

Π̂2

[
Ŝ−1
11 Ŝ12

Im−r

]
. Following the same steps as we used in the representation of the Ratsimalahelo–

Kleibergen–Paap statistic, the Cragg & Donald (1996) statistic is precisely F (B̂, Ω̂, P
N̂r
, P

M̂r
).

It remains to show that this algorithm satisfies conditions (i) and (ii) of Definition 2.23

Let Ŝ(r) be the result of the r–th permutation and Gaussian elimination of the algorithm.

Then Ŝ = Ŝ(min{n,m}−1). Now |Ŝ(1,1)| = |Ŝ(1)
(1,1)| = maxi,j |B̂(i,j)| ≥ σ1(B̂)/

√
nm. Likewise,

|Ŝ(2,2)| = |Ŝ(2)
(2,2)| = maxi>1 |Ŝ(1)

(i,j)| ≥ σ1(Ŝ
(1)
(2:n,1:m))/

√
(n− 1)(m− 1) ≥ σ1(Ŝ

(1)
(2:n,1:m))/

√
nm ≥

σ2(Ŝ(1))/
√
nm, where the last inequality follows from Corollary 3.1.3 of Horn & Johnson

(1991).24 Since the smallest singular value of the r–th step Gaussian elimination matrix is

bounded below by (1 + n)−1,25 we have that σ2(Ŝ(1)) ≥ σ2(B̂)/(1 + n) (Horn & Johnson,

1991, Theorem 3.3.16). Therefore |Ŝ(2,2)| ≥
σ2(B̂)

(1+n)
√
nm

. Following the same logic, we find that

|Ŝ(r,r)| ≥
σr(B̂)

(n+1)r−1
√
nm

for r = 1, . . . ,min{n,m}.

To prove the other inequality, first note that Ŝ(i,j) = O(Ŝ(i,i)) for i ≤ j by construction.

We also have that Ŝ(j,j) = O(Ŝ(i,i)) for i ≤ j (Wilkinson, 1961, equation 5.3). It follows that

Ŝ(i,j) = O(Ŝ(k,k)) for k ≤ i ≤ j. Therefore, we will have proven the inequality if we can show

that Ŝ(r+1,r+1) = O(σr+1(B̂)) as B̂ converges to a rank–r matrix. The case r = 0 follows from

22Cragg & Donald (1996) obtain their estimates of the null spaces by running the LU algorithm only up to the

r–th step. This is exactly equivalent to our formulation because subsequent steps of the LU algorithm have no effect

on B̂LUr . See also problem 3.2.2 of Golub & Van Loan (1996).
23The LU decomposition with complete pivoting is not commonly used in the numerical analysis literature to

detect rank because it is neither as efficient as the SVD nor as computationally attractive as the QR decomposition.

The bounds for the LU decomposition are given here because they cannot be found elsewhere.
24For A ∈ Rn×m, 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ m, the matrix A(i:j,k:l) denotes the submatrix of A consisting of

the rows i to j and columns k to l.
25The r–th step Gaussian elimination matrix in the algorithm is of the form In + θe′r, where θ =

(0, . . . , 0, θr+1, . . . , θn)′, with |θj | ≤ 1 and er the r–th column of In (Golub & Van Loan, 1996, p. 95). It fol-

lows that ‖(In+θe′r)x‖ ≤ ‖x‖+‖θ‖|xr| ≤ (1+‖θ‖)‖x‖ ≤ (1+
√
n− r)‖x‖ and so σ1(In+θe′r) ≤ 1+

√
n− r ≤ 1+n.

Since (In+ θe′r)
−1 = In− θe′r is also a Gaussian elimination matrix, it follows that σn(In+ θe′r) = 1

σ1(In−θe′r)
≥ 1

1+n .
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the fact that |Ŝ11| ≤ σ1(B̂). Therefore, let r > 0 and consider the inequality

|Ŝ(r+1,r+1)| ≤
√

2(r + 1)σ1(Ŝ)

σr(Ŝ(1:r,1:r))
σr+1(Ŝ(1:r+1,1:r+1)), r = 1, . . . ,min{n,m} − 1,

a proof of which can be found in Chandrasekaran & Ipsen (1994) p. 601–602. Now σr(Ŝ(1:r,1:r)) ≥
3 min1≤i≤r |Ŝ(i,i)|√

4r+6r−1
≥ 3σr(B̂)

(n+1)r−1
√
nm(4r+6r−1)

, where the first inequality follows from Theorem 6.1 of

Higham (1987) and the second inequality follows from our analysis above. On the other hand,

since Ŝ is obtained from B̂ by multiplying it with min{n,m}−1 Gaussian elimination matrices,

σ1(Ŝ) ≤ (n+ 1)min{n,m}−1σ1(B̂). Finally, applying Corollary 3.1.3 of Horn & Johnson (1991)

again, σr+1(Ŝ(1:r+1,1:r+1)) ≤ σr+1(Ŝ) ≤ (n + 1)min{n,m}−1σr+1(B̂). Putting this all together

we obtain, |Ŝ(r+1,r+1)| ≤ 1
3

√
2(r + 1)nm(4r + 6r − 1)(n+ 1)r+2 min{n,m}−3σr+1(B̂)/σr(B̂).

Donald et al. (2007) utilize the Bunch–Parlett LU algorithm designed for symmetric ma-

trices (Golub & Van Loan, 1996, Section 4.4). The algorithm can be shown to satisfy the

conditions for a DBA by similar arguments to those used above. Using these null spaces in

F (B̂, Ω̂, P
M̂r
, P

M̂r
) we obtain the Donald et al. (2007) LU statistic.

Other LU RRAs based on different pivoting strategies can be found in Hansen (1998). It

is important to note, however, that the LU algorithm with no pivoting and the LU algorithm

with partial pivoting are not rank–revealing. For example, if B̂ = [ 0 1
0 1 ], then both algorithms

produce Ŝ = B̂. Thus, both algorithms fail to push the content of B̂ into the upper left corner

block of Ŝ and to leave the bottom block empty. That is, they fail to satisfy the bounds in

Definition 2.

The Block LU Decomposition. A related algorithm to the LU is the BLU. Whereas the LU

decomposition arises from the Gaussian elimination algorithm, the BLU arises from block

Gaussian elimination. If B̂ ∈ Rn×m is partitioned as
[
B̂11 B̂12

B̂21 B̂22

]
, where B̂11 ∈ Rr×r, σr(B̂11) =

O−1(1) as B̂ − B̂∗ → 0, rank(B̂∗) = r, and σr(B̂
∗) = O−1(1), then B̂22 − B̂21B̂

−1
11 B̂12 =

O(σr+1(B̂)) as B̂ − B̂∗ → 0. To see this, write

Ŝ =

B̂11 0

0 B̂22 − B̂21B̂
−1
11 B̂12

 =

 Ir 0

−B̂21B̂
−1
11 In−r

 B̂
Ir −B̂−1

11 B̂12

0 Im−r

 = Û−1B̂V̂ −1′.

The singular values of Ŝ are the union of the singular values of B̂11 and the singular values

of B̂22 − B̂21B̂
−1
11 B̂12. On the other hand, the i–th singular values of the right hand side

expression are bounded above by O(1)σi(B̂) (Horn & Johnson, 1991, Theorem 3.3.16 (d)).
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Since the singular values of B̂11 are bounded away from zero and σr+1(B̂)→ 0, it follows that

σi(B̂22 − B̂21B̂
−1
11 B̂12)→ 0 and σi(B̂22 − B̂21B̂

−1
11 B̂12) = O(σr+i(B̂)). Thus conditions (i) and

(ii) of Definition 2 are satisfied when B̂ − B̂∗ → 0. We can define B̂BLU
r =

[
B̂11 B̂12

B̂21 B̂21B̂
−1
11 B̂12

]
.

The null spaces may then be estimated as N̂ ′r = [ −B̂21B̂
−1
11 In−r ] and M̂r =

[
−B̂−1

11 B̂12

Im−r

]
.

Kleibergen & van Dijk (1994) and Robin & Smith (1995) construct F statistics using such null

space estimators. We should note that the BLU satisfies all of the conditions of Definition 2

except for the upper triangular condition on Ŝ.

The QR Decomposition with Pivoting. This decomposition arises from extensions to the Gram–

Schmidt orthogonalization algorithm and, to the author’s knowledge, has never been used in

a rank test. The algorithm, which can be found in Section 5.4.1 of Golub & Van Loan

(1996), constructs a permutation matrix V̂ and an orthogonal matrix Û such that B̂V̂ = Û Ŝ.

Chandrasekaran & Ipsen (1994) prove that if Ŝ is partitioned as
[
Ŝ11 Ŝ12

0 Ŝ22

]
, with Ŝ11 ∈ Rr×r,

then σr(Ŝ11) ≥ (rmax{n,m})−1/22−rσr(B̂).26 The second inequality of Definition 2 can be

derived along the same line of argument as in the derivation for LU decomposition above, on

noting that, by construction, Ŝ(i,j) ≤ Ŝ(k,k) whenever k ≤ i ≤ j. There are numerous other

rank–revealing QR algorithms in the literature (see Hansen (1998) for a survey). The QR

algorithm we have presented is often preferred to the other RRAs as it is quicker to compute.

Jordan Canonical Decomposition. If a square matrix is rank deficient, then it has an eigenvalue

at zero. By the continuity of the eigenvalues of a matrix with respect to its elements (Horn

& Johnson, 1985, Appendix D), a matrix should have an eigenvalue close to zero if it is close

to rank deficiency. Unfortunately, there is little else to infer from the eigenvalues of a general

matrix. An n× n matrix can have all its eigenvalues at zero but have rank–(n− 1) (e.g. the

Jordan canonical nilpotent matrix). A matrix can also have its eigenvalues uniformly bounded

away from zero and still be ill–conditioned (Stewart & Sun, 1990, Exercise 8 of Section I.4).

Finally, eigenvalues are not generally differentiable in the entries of the matrix (Stewart & Sun,

1990, Example I.3.2) and their excessive sensitivity may lead to misleading conclusions about

the rank deficiency of a matrix. Thus, eigenvalues are not recommended for rank detection in

general.

26Chandrasekaran & Ipsen (1994) report their bounds for the case n = m. The bounds given above result from

applying the Chandrasekaran & Ipsen bounds to the completed matrices [ B̂ 0 ] when n > m and
[
B̂
0

]
when n < m

and noting that the added rows or columns have no effect on Ŝ11 or the singular values of Ŝ22 and B̂.
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Exceptions to this rule occur when the limit of B̂ has a special structure that allows one

to infer the behaviour of the eigenvalues under the various alternatives. This is the case for

the Stock & Watson (1988) statistic as the limit of B̂ is known to have either all eigenvalues

at 1 under the null or else a determined number of eigenvalues with real part less than one

under the alternative.

Another exception to the rule is the case of symmetric matrices, which have well behaved

eigenvalues by Weyl’s Theorem (Stewart & Sun, 1990, Corollary IV.4.9).27 In particular, if

B̂ ∈ Sm, then the SVD of B̂ has |λ1(B̂)|, . . . , |λm(B̂)| (possibly reordered) along the diagonal

of Ŝ. Thus the SVD null space estimator is obtained by collecting the eigenvectors associated

with the m − r eigenvalues of B̂ that are closest to zero. We have already seen how Donald

et al. (2007) construct an F statistic using this RRA.

If B̂ converges to a positive semi–definite matrix, we may utilize the spectral decomposition

instead. Here B̂ = Û ŜÛ ′ has λ1(B̂) ≥ · · · ≥ λm(B̂) along the diagonal of Ŝ. We may then

estimate the null space by collecting the eigenvectors associated with λm−r+1(B̂), . . . , λm(B̂)

in the columns of M̂r. Then
√
T tr(M̂ ′rB̂M̂r) =

√
T
∑m

i=r+1 λi(B̂), the rank test statistic

proposed by Donald et al. (2007), is exactly t
(
B̂, 1

m−r (D′mDm)−1, P
M̂r

)
. To see this, write

t

(
B̂,

1

m− r
(D′mDm)−1, P

M̂r

)
=

√
T tr(M̂ ′rB̂M̂r)√

1
m−rvec′(Im)(P

M̂r
⊗ P

M̂r
)DmD

†
m(P

M̂r
⊗ P

M̂r
)vec(Im)

=

√
T tr(M̂ ′rB̂M̂r)√

1
m−rvec′(Im)(P

M̂r
⊗ P

M̂r
)DmD

†
mvec(Im)

=

√
T
∑m

i=r+1 λi(B̂)√
1

m−r tr(mat((P
M̂r
⊗ P

M̂r
)vec(Im)))

=

√
T
∑m

i=r+1 λi(B̂)√
1

m−r tr(P
M̂r

)

=
√
T

m∑
i=r+1

λi(B̂).

The second equality follows from Theorem 3.12 (b) and Theorem 3.9 (a) of Magnus &

Neudecker (1999) and the third from the fact that DmD
†
mvec(Im) = DmD

†
mDmvech(Im) =

Dmvech(Im) = vec(Im).

27A more general exception is the class of normal matrices {A ∈ Rn×n : A′A = AA′}. This includes orthogonal,

skew–symmetric, and symmetric matrices. See Section IV.3 of Stewart & Sun (1990) for further details.
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More generally, Donald et al. (2007) suggest normalizing using an estimate of the asymp-

totic variance of B̂.

t
(
B̂, Ψ̂, P

M̂r

)
=

√
T tr(M̂rM̂

′
rB̂)√

vec′(Im)(P
M̂r
⊗ P

M̂r
)DmΨ̂D′m(P

M̂r
⊗ P

M̂r
)vec(Im)

.

Cholesky Decomposition. If B̂ ∈ Pm+ , we may employ a rank revealing Cholesky decomposi-

tion as well. Following (Higham, 1990), we can write Ṽ ′B̂Ṽ = S̃′S̃, where B̂1/2Ṽ = Ũ S̃ is

the QR decomposition (with pivoting) of B̂1/2. Now if S̃ is partitioned as
[
S̃11 S̃12

0 S̃22

]
, with

S̃11 ∈ Rr×r, then using the Chandrasekaran & Ipsen (1994) formula, we have that σr(S̃11) ≥

(rm)−1/22−rσ
1/2
r (B̂). The fact that σ1(S̃22) = O(σ

1/2
r+1(B̂)) as B̂ converges to a rank–r matrix

follows as indicated in the discussion of the QR algorithm. The decomposition implicit in the

Cholesky RRA of B̂ is then given by Ŝ = diag2(S̃) and Û = V̂ = Ṽ S̃′diag−1(S̃).28 The fact

that this decomposition satisfies the conditions for an RRA follows from the results of Higham

(1987). Just as in the QR case, the Cholesky RRA has never been used in a rank test. For

an estimate of the null space one may simply take Ṽ S̃−1diag(S̃)
[

0
Im−r

]
.

Appendix B: Proofs

Proof of Lemma 1. (i) rank(B̂DBA
i ) > i is impossible since the Û−1B̂DBA

i V̂ −1′ has a rank of

at most i by construction. If rank(B̂DBA
i ) < i, then rank([ Ŝ11 Ŝ12 ]) < i, which is impossible

since σi(Ŝ11) ≥ K1σi(B̂) > 0 by Definition 2 (i) so Ŝ11 is non–singular.

(ii) Set B̂∗ = B∗. Since its r–th singular value is fixed and positive, it follows from

Definition 2 (ii) that ‖B̂ − B̂DBA
i ‖ ≤ ‖Û‖‖V̂ ‖‖Ŝ22‖ = O(σr+1(B̂)) as B̂ − B∗ → 0 since U

and V are bounded. The result then follows from the fact that σr+1(B̂) = O(‖B̂ − B∗‖) as

B̂ −B∗ → 0 (Horn & Johnson, 1985, Example 7.4.1).

(iii) Let Û = [ û1 · · · ûn ]. N̂i is orthogonal to span(B̂DA
i ) = span ([ û1 · · · ûi ]). It is

therefore orthogonal to span ([ u1 · · · ûr ]) = span(B̂DA
r ). Thus, span(N̂i) ⊂ span(N̂r). The

nestedness of the right null spaces is proven similarly.

Proof of Lemma 2. (i) Suppose rank(B̂CDA
i ) < i. Then for arbitrary x ∈ Rn, y ∈ Rm, and

h ∈ R, rank(B̂CDA
i + hxy′) ≤ i (Horn & Johnson, 1985, Result 0.4.5). By the definition of

28For a A ∈ Rm×m, diag(A) ∈ Rm×m is defined by diag(A)(i,j) = A(i,j) when i = j and zero otherwise.

55



B̂CDA
i ,

‖B̂ − B̂CDA
i − hxy′‖2Θ = ‖B̂ − B̂CDA

i ‖2Θ − 2vec′(B̂ − B̂CDA
i )Θ−1(y ⊗ x)h+ ‖xy′‖2Θh2

≥ ‖B̂ − B̂CDA
i ‖2Θ.

The left hand side is quadratic in h and achieves a minimum at h = 0, it follows that its

derivative with respect to h at h = 0 must be zero and so

vec′(B̂ − B̂CDA
i )Θ−1(y ⊗ x) = 0.

Since x and y are arbitrary, B̂ = B̂CDA
i , which is impossible because rank(B̂) > rank(B̂CDA

i ).

(ii) It follows from the basic theory of positive definite matrices and the definition of the

CDA that

‖B̂ − B̂CDA
i ‖ ≤ λ1/2

1 (Θ)‖B̂ − B̂CDA
i ‖Θ ≤ λ1/2

1 (Θ)‖B̂ −B∗‖Θ ≤
(
λ1(Θ)

λnm(Θ)

)1/2

‖B̂ −B∗‖

for all i ≥ r. The result follows from the fact that cond(Θ) = λ1(Θ)/λnm(Θ).

(iii) Lemma III.3.5 of Stewart & Sun (1990) proves that

max{‖(In − PN̂r)PN̂i‖2, ‖(Im − PM̂r
)P

M̂i
‖2} ≤ ‖(B̂CDA

r )†‖2‖B̂CDA
r − B̂CDA

i ‖2

≤ ‖(B̂CDA
r )†‖2

(
‖B̂ − B̂CDA

r ‖2 + ‖B̂ − B̂CDA
i ‖2

)
.

The result then follows from the fact that (B̂CDA
r )† → (B∗)† as B̂CDA

r → B∗ because

rank(B̂CDA
r ) = rank(B∗) = r (Stewart & Sun, 1990, p. 146).

(iv) For h ∈ Rr2 the matrix, B̂CDA
i + mat((M̂i⊥ ⊗ N̂i⊥)h) has a rank of at most i. From

the definition of the CDA, we know that

‖B̂ − B̂CDA
i −mat((M̂i⊥ ⊗ N̂i⊥)h)‖2Θ = ‖B̂ − B̂CDA

i ‖2Θ − 2vec′(B̂ − B̂CDA
i )Θ−1(M̂i⊥ ⊗ N̂i⊥)h

+ h′(M̂i⊥ ⊗ N̂i⊥)′Θ−1(M̂i⊥ ⊗ N̂i⊥)h

≥ ‖B̂ − B̂CDA
i ‖2Θ

and it follows just as in (i) that

vec′(B̂ − B̂CDA
i )Θ−1(M̂i⊥ ⊗ N̂i⊥) = 0.

By the same logic we can show that

vec′(B̂ − B̂CDA
i )Θ−1(M̂i ⊗ N̂i⊥) = 0,

vec′(B̂ − B̂CDA
i )Θ−1(M̂i⊥ ⊗ N̂i) = 0.
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Since (M̂i⊗N̂i)⊥ =
[
M̂i⊥⊗N̂i⊥ M̂i⊗N̂i⊥ M̂i⊥⊗N̂i

]
, we can combine the three equations

above to arrive at,

vec′(B̂ − B̂CDA
i )Θ−1(M̂i ⊗ N̂i)⊥ = 0. (1)

It follows that B̂CDA
i satisfies the equation(M̂i ⊗ N̂i)

′
⊥Θ−1/2

(M̂i ⊗ N̂i)
′Θ1/2

Θ−1/2vec(B̂CDA
i ) =

(M̂i ⊗ N̂i)
′
⊥Θ−1/2

0

Θ−1/2vec(B̂).

The matrix on the left hand side consists of two blocks of full rank that are orthogonal to each

other. It is therefore invertible and we have the unique solution vec(B̂i) = P̂ivec(B̂), where

P̂i = (M̂i ⊗ N̂i)⊥{(M̂i ⊗ N̂i)
′
⊥Θ−1(M̂i ⊗ N̂i)⊥}−1(M̂i ⊗ N̂i)

′
⊥Θ−1. (2)

Now using the well known identity

In = G
1
2H(H ′GH)−1H ′G

1
2 +G−

1
2H⊥(H ′⊥G

−1H⊥)−1H ′⊥G
− 1

2 , (3)

for G ∈ Pn+ and H ∈ Gn×m, we have that

Θ−1 = Θ−
1
2 InmΘ−

1
2

= (M̂i ⊗ N̂i){(M̂i ⊗ N̂i)
′Θ(M̂i ⊗ N̂i)}−1(M̂i ⊗ N̂i)

′

+ Θ−1(M̂i ⊗ N̂i)⊥{(M̂i ⊗ N̂i)
′
⊥Θ−1(M̂i ⊗ N̂i)⊥}−1(M̂i ⊗ N̂i)

′
⊥Θ−1. (4)

Substituting (1) and (4) into T‖B̂ − B̂CDA
i ‖2Θ proves (iv).

Proof of Lemma 3. (i) The rate of convergence of B̂RRA
r follows from Lemma 1 (ii) and Lemma

2 (ii). The rate of convergence of the subspace estimators follows from the inequality

max{‖P
N̂r
− PNr‖, ‖PM̂r

− PMr‖} ≤ K‖B̂RRA
r −B∗‖, (5)

for some K that depends only on B∗ (Gohberg et al., 2006, Theorem 13.5.1).

(ii) We will need the following lemma.

Lemma 7. Let B̂, B̂∗ ∈ Gn×m, rank(B̂∗) = r, and Θ ∈ Pnm+ . We assume that B̂∗ = O(1)

and σr(B̂
∗) = O−1(1) as B̂ − B̂∗ → 0. Let the RRAs {B̂RRA

i : 0 ≤ i < min{n,m}} be either

DBAs or CDAs. In the latter case, we assume that cond(Θ) = O(1) as B̂ − B̂∗ → 0. Finally,

let N̂i and M̂i span the left and right null spaces of B̂RRA
i respectively. Then there exists an

oblique projection matrix P̂i such that:
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(i) For 0 ≤ i < min{n,m}, vec(B̂i) = P̂ivec(B̂).

(ii) For 0 ≤ i < min{n,m}, (Inm − P̂i)PM̂i⊗N̂i
= Inm − P̂i.

(iii) For 0 ≤ i ≤ r, P̂i = O(1).

Proof of Lemma 7. First, we consider the DBA. Let Û = [ Û·1 Û·2 ] and Ŝ =
[
Ŝ1·
Ŝ2·

]
be

partitioned conformably, with Ŝ2· ∈ G(n−i)×m. Define the oblique projection matrices Q̂i =

Û·2(Û ′·1⊥Û·2)−1Û ′·1⊥ and Ŵi = V̂ ′−1Ŝ′1·⊥(Ŝ2·Ŝ
′
1·⊥)†Ŝ2·V̂

′. Then clearly B̂ − B̂DBA
i = Q̂iB̂ =

B̂Ŵi = Q̂iB̂Ŵi. We may therefore, define Inm − P̂i = Ŵ ′i ⊗ Q̂i. Thus (i) and (ii) follow from

the fact that the null space estimators may be chosen as N̂i = Û·1⊥ and M̂i = V̂ ′−1Ŝ′1·⊥. We

prove (iii) by showing that both Q̂i and Ŵi are bounded. Q̂i is the product of Û·2, a submatrix

of Û , and (Û ′·1⊥Û·2)−1Û ′·1⊥, a submatrix of Û−1. Since both Û and Û−1 are bounded, Q̂i must

be bounded. Next, we may choose Ŝ′1·⊥ =
[
Ŝ−1
11 Ŝ12

−Im−i

]
so that Ŵi = V̂ ′−1

[
0 Ŝ−1

11 Ŝ12Ŝ
†
22Ŝ22

0 −Ŝ†22Ŝ22

]
V̂ ′.

V̂ and its inverse are bounded by assumption. Ŝ†22Ŝ22 is an orthogonal projection matrix

(Stewart & Sun, 1990, Theorem III.1.3) and therefore bounded. Ŝ12 is a submatrix of Ŝ,

which is bounded. Finally, ‖Ŝ−1
11 ‖2 = σ−1

i (Ŝ11) ≤ 1

K1σi(B̂)
, which is bounded as B̂ − B̂∗ → 0.

Next, consider the CDA. (i) follows from equation (2). From (i) and (3), we find that

Inm − P̂i = Θ(M̂i ⊗ N̂i)((M̂i ⊗ N̂i)
′Θ(M̂i ⊗ N̂i))

−1(M̂i ⊗ N̂i)
′, (6)

which clearly satisfies (Inm − P̂i)PM̂i⊗N̂i
= Inm − P̂i. (iii) follows from the fact that

‖P̂i‖2 = ‖Θ1/2Θ−1/2P̂iΘ
1/2Θ−1/2‖2

≤ ‖Θ1/2‖2‖Θ−1/2(M̂i ⊗ N̂i)⊥{(M̂i ⊗ N̂i)
′
⊥Θ−1(M̂i ⊗ N̂i)⊥}−1(M̂i ⊗ N̂i)

′
⊥Θ−1/2‖2‖Θ−1/2‖2

= (cond(Θ))1/2.

The middle term on the right hand side of the inequality has an L2 norm of 1 because it is an

orthogonal projection.

Lemma 7 (i) states that vec(B̂RRA
i ) is obtained from vec(B̂) by an oblique projection.

Lemma 7 (ii) states that vec(B̂RRA
i ) and vec(B̂) can only be different if they differ along

M̂i ⊗ N̂i. That is, the RRA is obtained by removing from vec(B̂) components along the

estimated null spaces. Lemma 7 (iii) ensures that the oblique projection is bounded if the

rank is underestimated.
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Now note that ‖B̂RRA
i − B̂‖2 ≥ σ2

i+1(B̂) by (Horn & Johnson, 1985, Example 7.4.1). If

i < r, the right hand side converges in probability to σ2
i+1(B∗) > 0 and so ‖B̂RRA

i − B̂‖2 is

O−1
p (1). Next, ‖B̂RRA

i − B̂‖2 = ‖vec(B̂RRA
i − B̂)‖2 = ‖(Inm − P̂i)vecB̂‖2 by Lemma 7 (i). By

Lemma 7 (ii), ‖(Inm− P̂i)vec(B̂)‖ = ‖(Inm− P̂i)(PM̂i
⊗P

N̂i
)vec(B̂)‖ ≤ ‖Inm− P̂i‖‖PN̂iB̂PM̂i

‖.

Finally, Lemma 7 (iii) implies that P̂i = Op(1) so that P
N̂i
B̂P

M̂i
is O−1

p (1).

If n = m and B∗ ∈ Pm, the fact that P
N̂i
B̂P

M̂i
= O−1

p (1) implies that B̂P
M̂i

= O−1
p (1).

The consistency of B̂ then implies that B∗P
M̂i

= O−1
p (1), which implies that (B∗)1/2P

M̂i
=

O−1
p (1) and therefore P

M̂i
B∗P

M̂i
= O−1

p (1). Appealing to consistency again gives us that

P
M̂i
B̂P

M̂i
= O−1

p (1). The analogous result for P
N̂i
B̂P

N̂i
follows from a similar argument.

(iii) The result follows from inequality (5) applied to (B∗)RRAi .

Proof of Theorem 1. Substitute X̂ = P
N̂r
B̂P

M̂r
, X = PNrB̂PMr , Ŷ = (P

M̂r
⊗ P

N̂r
)Ω̂(P

M̂r
⊗

P
N̂r

), and Y = (PMr ⊗ PNr)Ω̂(PMr ⊗ PNr).

Then, under H0(r) or HT (r), Lemma 3 (i) implies

X̂ −X = (P
N̂r
− PNr)B̂(P

M̂r
− PMr) + PNrB̂(P

M̂r
− PMr) + (P

N̂r
− PNr)B̂PMr = Op(T

−1)

Ŷ − Y = ((P
M̂r
⊗ P

N̂r
)− (PMr ⊗ PNr))Ω̂((P

M̂r
⊗ P

N̂r
)− (PMr ⊗ PNr))

+ (PMr ⊗ PNr)Ω̂((P
M̂r
⊗ P

N̂r
)− (PMr ⊗ PNr))

+ ((P
M̂r
⊗ P

N̂r
)− (PMr ⊗ PNr))Ω̂(PMr ⊗ PNr) = Op(T

−1/2).

Next we show that, under either H0(r) or HT (r), each of Assumptions A and B imply

that Y † = Op(1). In particular, we will show that rank(Y ) = (n − r)(m − r) almost surely

and σ(n−r)(m−r)(Y ) = O−1
p (1) under Assumptions A, while rank(Y ) = (m − r)(m − r + 1)/2

almost surely and σ(m−r)(m−r+1)/2(Y ) = O−1
p (1) under Assumptions B. Consider Assumptions

A first, rank((PMr ⊗ PNr)Ω̂(PMr ⊗ PNr)) = rank((PMr ⊗ PNr)Ω̂1/2) = rank(PMr ⊗ PNr) =

rank(PNr)rank(PMr) = (n− r)(m− r) almost surely. The first two equalities follow from (d)

and (b) of Result 0.4.6 of Horn & Johnson (1985) respectively, the third equality follows from

Theorem 4.2.15 of Horn & Johnson (1991), and the last from the Spectral Decomposition

Theorem along with Exercise 5 of Section 1.1 of Horn & Johnson (1985). Now

σ(n−r)(m−r)((PMr ⊗ PNr)Ω̂(PMr ⊗ PNr)) = σ2
(n−r)(m−r)((PMr ⊗ PNr)Ω̂1/2)

≥ σ2
(n−r)(m−r)(PMr ⊗ PNr)σ−2

1 (Ω̂−1/2)

= σnm(Ω̂)
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almost surely (Horn & Johnson, 1991, Theorem 3.3.16 (d)), which is bounded away from

zero in probability by Assumptions A. On the other hand, Assumptions B imply that PNr =

PMr and so, by similar arguments to those used earlier, rank((PMr ⊗ PNr)Ω̂(PMr ⊗ PNr)) =

rank((PMr ⊗ PMr)DmΨ̂D′m(PMr ⊗ PMr)) = rank((PMr ⊗ PMr)Dm) almost surely. Now, for

Z ∈ Sm, 0 = (PMr ⊗ PMr)Dmvech(Z) = vec(PMrZPMr) if and only if vech(PMrZPMr) = 0.

But the set of all such Z has dimension r(r + 1)/2 + r(m − r) so rank((PMr ⊗ PMr)Dm) =

m(m + 1)/2 − r(r + 1)/2 − r(m − r) = (m − r)(m − r + 1)/2. It follows that the rank of

(PMr ⊗ PNr)Ω̂(PMr ⊗ PNr) is (m− r)(m− r + 1)/2 almost surely. Finally,

σ(m−r)(m−r+1)/2((PMr ⊗ PNr)Ω̂(PMr ⊗ PNr))

= σ2
(m−r)(m−r+1)/2((PMr ⊗ PMr)DmΨ̂1/2)

≥ σ2
(m−r)(m−r+1)/2((PMr ⊗ PMr)Dm)σm(m+1)/2(Ψ̂)

almost surely. The result then follows from the fact that σm(m+1)/2(Ψ̂) = O−1
p (1) and

σ2
(m−r)(m−r+1)/2((PMr ⊗ PMr)Dm) is a positive constant as rank((PMr ⊗ PMr)Dm) = (m −

r)(m− r + 1)/2.

SinceX = Op(T
−1/2) under eitherH0(r) orHT (r), Assumption K (i) implies that L1(X̂,X, Ŷ , Y ) =

Op(T
1/2−θ) and L2(X̂,X, Ŷ , Y ) = Op(T

−θ). Therefore, under H0(r) or HT (r), T θκ(X,Y ) −

T θκ(X̂, Ŷ ) = Op(T
θ+1/2−θ−1)+Op(T

θ−θ−1/2) = Op(T
−1/2). The weak plug–in principle under

H0(r) and HT (r) is therefore established.

Consider next the plug–in principle under H1(r). Since the Euclidean norm can be though

of as the Hilbert space norm on the set of matrices Rn×m associated with inner product

〈A,B〉 = tr(A′B), Theorem 4.10 of Rudin (1986) implies that there exists a unique X∗ ∈ P

that minimizes the distance from P to PNrB̂PMr . Since infX∈P ‖PNrB̂PMr − X‖ = op(1),

it follows that X − X∗ = op(1). Since B̂ − B∗ = op(1) and PNrB
∗PMr 6= 0, it follows

that X∗ = O−1
p (1). Then Assumption K (ii) implies that |κ(X∗, Y )| = O−1

p (1) and As-

sumption K (i) implies that |κ(X,Y ) − κ(X∗, Y )| = op(1). Putting these two together,

we have that |κ(X,Y )| ≥ |κ(X∗, Y )| − |κ(X,Y ) − κ(X∗, Y )| = O−1
p (1) + op(1). Thus,

|κ(X,Y )| = O−1
p (1). Next, take X̂∗ ∈ P as the closest element of P to P

N̂r
B̂P

M̂r
and note that

‖X̂ − X̂∗‖ = infX∈P ‖PNrB̂PMr −X‖ = op(1). Lemma 3 (ii) then implies that X̂ = O−1
p (1)

so X̂∗ = O−1
p (1) as well. Thus Assumption K (ii) implies that |κ(X̂∗, Ŷ )| = O−1

p (1) and

Assumption K (i) implies that |κ(X̂, Ŷ )− κ(X̂∗, Ŷ )| = op(1). Therefore, again, we have that
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|κ(X̂, Ŷ )| ≥ |κ(X̂∗, Ŷ )| − |κ(X̂, Ŷ )− κ(X̂∗, Ŷ )| = O−1
p (1) + op(1). Thus, |κ(X̂, Ŷ )| = O−1

p (1).

This establishes the weak plug–in principle under H1(r).

Finally, if we additionally assume that the underlying RRA is continuous at B∗, Lemma

3 (iii) implies that X̂ −X = op(1) and Ŷ − Y = op(1) and since L1(X̂,X, Ŷ , Y ) = Op(1) and

L2(X̂,X, Ŷ , Y ) = Op(1), the strong plug–in principle holds.

Proof of Corollary 1. The proof for general κ follows from Theorem 1. For the LRA, F , and

JA statistics, the proof follows from the fact that κ(X,Y ) = ϕ(Y †/2vec(X))+O(‖Y †/2vec(X)‖3)

as Y †/2vec(X)→ 0, where ϕ is homogenous of degree 2.

Proof of Corollary 2. The proof for general κ, LRA, F , and JA statistics follows the same

logic as in Corollary 1. For the t statistic, Theorem 1 implies that it has the same limit-

ing distribution as the infeasible statistic t(B̂, Ψ̂, PMr). Now the numerator of the infeasible

statistic has the limiting distribution tr(Mrmat(Dm−rξr)M
′
r)) = tr(mat(Dm−rξr))). On the

other hand, the square of the denominator can be written as

vec′(Im)((MrM
′
r ⊗MrM

′
r)DmΨ̂D′m(MrM

′
r ⊗MrM

′
r))vec(Im)

= vec′(Im)((Mr ⊗Mr)(Mr ⊗Mr)
′DmΨ̂D′m(Mr ⊗Mr)(Mr ⊗Mr)

′)vec(Im)

= vec′(Im)((Mr ⊗Mr)(Mr ⊗Mr)
′DmD

†
mDmΨ̂D′mD

†
m
′D′m(Mr ⊗Mr)(Mr ⊗Mr)

′)vec(Im)

= vec′(Im)((Mr ⊗Mr)Dm−rD
†
m−r(Mr ⊗Mr)

′DmΨ̂D′m(Mr ⊗Mr)D
†
m−r

′D′m−r(Mr ⊗Mr)
′)vec(Im),

where the first equality follows from the properties of Kronecker products, the second from

the properties of the generalized inverse, and the third from the properties of the commutator

(Magnus & Neudecker, 1999, Theorems 3.9 and 3.12). This then has a limiting distribution

of vec′(Im)((Mr ⊗ Mr)Dm−rΩrD
′
m−r(Mr ⊗ Mr)

′)vec(Im). The final step follows from the

fact that for any symmetric matrix A ∈ R(m−r)×(m−r), vec′(Im)(Mr ⊗Mr)Dm−rvech(A) =

trace(MrAM
′
r) = trace(A) = vec′(Im−r)vec(A) = vec′(Im−r)Dm−rvech(A), thus vec′(Im)(Mr⊗

Mr)Dm−r = vec′(Im−r)Dm−r. The final substitution follows from the fact “these convergences

are jointly valid” as Nyblom and Harvey would say (Nyblom & Harvey, 2000, p. 194).

Proof of Lemma 4. First, note that the singular values of [ Nr⊥ NrT ] and [ Mr⊥ MrT ]
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are bounded away from zero as B̂T − B̂∗T → 0. To see this, write

σn([ Nr⊥ PNrTNr ]) ≤ σn([ Nr⊥ NrT ])σ1

Ir 0

0 (N ′rTNrT )−1N ′rTNr


≤ σn([ Nr⊥ NrT ])(1 + ‖(N ′rTNrT )−1N ′rTNr‖2)

≤ σn([ Nr⊥ NrT ])(1 + ‖(N ′rTNrT )−1/2‖2‖(N ′rTNrT )−1/2N ′rT ‖2‖Nr‖2)

= σn([ Nr⊥ NrT ])

(
1 +

‖Nr‖2
σn−r(NrT )

)
,

where the first inequality follows from Theorem 3.3.16 (d) of Horn & Johnson (1991). Now

since [ Nr⊥ Nr ] is of full rank and PNrTNr → Nr as B̂T − B̂∗T → 0, the left hand side is

bounded away from zero as B̂T − B̂∗T → 0. Since σn−r(NrT ) is bounded away from zero as

B̂T − B̂∗T → 0, it follows that σn([ Nr⊥ NrT ]) is also bounded away from zero. A similar

argument proves that σm([ Mr⊥ MrT ]) is also bounded away from zero as B̂T − B̂∗T → 0.

Next, define B̂∗ = [ Nr⊥ NrT ]−1′ B̂∗T [ Mr⊥ MrT ]−1 and note that

‖B̂ − B̂∗‖ ≤ ‖[ Nr⊥ NrT ]−1‖‖[ Mr⊥ MrT ]−1‖‖B̂T − B̂∗T ‖.

Similarly

‖B̂∗‖ ≤ ‖[ Nr⊥ NrT ]−1‖‖[ Mr⊥ MrT ]−1‖‖B̂∗T ‖.

Thus B̂ − B̂∗ = O(‖B̂T − B̂∗T ‖) and B̂∗ = O(1) as B̂T − B̂∗T → 0. It also follows that

|σr(B̂)− σr(B̂∗)| = O(‖B̂T − B̂∗T ‖) as B̂T − B̂∗T → 0 (Horn & Johnson, 1991, Theorem 3.3.16

(c)). Thus σr(B̂
∗) is bounded away from zero as B̂T − B̂∗T → 0 if and only if σr(B̂) is. Since

σr(N
′
r⊥B̂Mr⊥) ≤ ‖Nr⊥‖2‖Mr⊥‖2σr(B̂) (Horn & Johnson, 1991, Theorem 3.3.16 (d)), σr(B̂)

is bounded away from zero as B̂T − B̂∗T → 0 and therefore so is σr(B̂
∗). Property (ii) of

Definition 2 then implies that ‖B̂ − B̂DBA
i ‖ = O(σr+1(B̂)) as B̂T − B̂∗T → 0. Now,

σr+1(B̂) ≤ ‖[ Nr⊥ NrT ]−1‖2‖[ Mr⊥ MrT ]−1‖2σr+1(B̂T )

by Theorem 3.3.16 (d) of Horn & Johnson (1991). Thus σr+1(B̂) = O(σr+1(B̂T )). Since

rank(B̂∗T ) = r, it follows from the properties of singular values that σr+1(B̂T ) = O(‖B̂T−B̂∗T ‖)

and therefore ‖B̂ − B̂DBA
i ‖ = O(‖B̂T − B̂∗T ‖) as B̂T − B̂∗T → 0.

Next, recall from Lemma 7 (iii) that B̂DBA
i = (In−Q̂i)B̂, where Q̂i = O(1) as B̂−B̂∗ → 0.

By a similar argument to that used above, Q̂i = O(1) as B̂T − B̂∗T → 0. This then implies that
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B̂DBA
i MrT = O(‖B̂MrT ‖) = O(‖B̂T − B̂∗T ‖) as B̂T − B̂∗T → 0. A similar argument applies for

N ′rT B̂
DBA
i .

Proof of Lemma 5. First, note that since [ Nr⊥ NrT ] and [ Mr⊥ MrT ] have singular

values bounded away from zero (see the proof of Lemma 4), so does ZT (Horn & Johnson,

1991, Theorem 4.2.15).

Next, define B̂CDA
iT = [ Nr⊥ NrT ]′B̂CDA

i [ Mr⊥ MrT ]. Then just as in the proof of

Lemma 2 (ii),

‖B̂T − B̂CDA
iT ‖2 = ‖Z ′Tvec(B̂ − B̂CDA

i )‖2

≤ λ1(ΘT )‖Z ′Tvec(B̂ − B̂CDA
i )‖2ΘT

= λ1(ΘT )‖B̂ − B̂CDA
i ‖2Θ.

Since B̂∗ = [ Nr⊥ NrT ]−1′ B̂∗T [ Mr⊥ MrT ]−1 has a rank r,

‖B̂T − B̂CDA
iT ‖2 ≤ λ1(ΘT )‖B̂ − B̂∗‖2Θ

= λ1(ΘT )‖Z ′Tvec(B̂ − B̂∗)‖2ΘT

≤ λ1(ΘT )λ1(Θ−1
T )‖Z ′Tvec(B̂ − B̂∗)‖2

= cond(ΘT )‖B̂T − B̂∗T ‖2,

where the last equality follows from the definition of B̂T and B̂∗T . It follows that B̂CDA
i MrT

and N ′rT B̂
CDA
i are O(‖B̂T − B̂∗T ‖). The fact that B̂ − B̂CDA

i is also O(‖B̂T − B̂∗T ‖) follows

from the fact that ‖B̂ − B̂CDA
i ‖ ≤ ‖Z−1

T ‖‖B̂T − B̂CDA
iT ‖ and the boundedness away from zero

of the singular values of ZT . Finally, using Lemma III.3.5 of Stewart & Sun (1990) again,

max{‖(In − PN̂rT )P
N̂iT
‖2,‖(Im − PM̂rT

)P
M̂iT
‖2} ≤ ‖(B̂CDA

rT )†‖2‖B̂CDA
rT − B̂CDA

iT ‖2

≤ ‖(B̂CDA
rT )†‖2

(
‖B̂T − B̂CDA

rT ‖2 + ‖B̂T − B̂CDA
iT ‖2

)
.

The result then follows from the fact that (B̂CDA
rT )† − (B̂∗T )† → 0 as ‖B̂T − B̂∗T ‖ → 0 because

‖B̂CDA
rT − B̂∗T ‖ → 0, rank(B̂CDA

rT ) = rank(B̂∗T ) = r, B̂∗T = Op(1), and ‖(B̂∗T )†‖2 = 1

σr(B̂∗T )
=

Op(1) (Stewart & Sun, 1990, p. 146).

Proof of Lemma 6. (i) By Lemmas 4 and 5, T γ‖B̂ − B̂RRA
r ‖ = Op(1). On the other hand,

multiplying and dividing T γ(B̂−B̂∗) by [ Nr⊥ NrT ]′ and [ Mr⊥ MrT ] on the left and right,

T γ(B̂ − B̂∗) = [ Nr⊥ NrT ]−1′
[

0 T γN ′r⊥B̂MrT

T γN ′rT B̂Mr⊥ T γN ′rT B̂MrT

]
[ Mr⊥ MrT ]−1 = Op(1). Lemmas
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4 and 5 also imply that T γN ′rT B̂
RRA
r and T γB̂RRA

r MrT are Op(1). Therefore, T γ V̂ ′·1MrT =

Op(1), where Û·1Ŝ11V̂
′
·1 is the SVD of B̂RRA

r , since Û·1 = Op(1) and Ŝ−1
11 = Op(1). This then

implies that T γ(PMrT
− P

M̂r
)MrT = T γ(Im − PM̂r

)MrT = T γ V̂·1V̂
′
·1MrT = Op(1). If we now

let VrT be a matrix of orthonormal columns that spans MrT , then since the singular values of

MrT are O−1
p (1), we have that T γ V̂ ′·1VrT = Op(1), which implies that T γ(PMrT

−P
M̂r

) = Op(1)

by Theorem 2.6.1 of Golub & Van Loan (1996). In particular, T γ(PMrT
−P

M̂r
)Mr⊥ = Op(1).

An analogous argument proves the rates for the left null space estimator.

(ii) The proof for the DBA is identical to that used in Lemma 3 (ii). As for the CDA,

the argument requires a slight modification because P̂i may not be bounded in probability.

However, P̂iT = Z ′T P̂iZ
−1
T
′ = Z ′TΘ1/2Θ−1/2P̂iΘ

1/2Θ−1/2Z−1
T
′ = Op(cond1/2(ΘT )) = Op(1)

as Θ−1/2P̂iΘ
1/2 is an orthogonal projection matrix. Note that P̂iT satisfies (2) with all the

matrices substituted for ones with subindex T . This follows from the fact that (M̂iT⊗N̂iT )⊥ =

(Z−1
T (M̂i ⊗ N̂i))⊥ = ZT (M̂i ⊗ N̂i)⊥. Now

σ2
r (B̂) ≤ ‖B̂ − B̂CDA

i ‖2

≤ λ1(Θ)‖B̂ − B̂CDA
i ‖2Θ

≤ σ2
1(Z−1

T )λ1(ΘT )‖B̂ − B̂CDA
i ‖2Θ

=
λ1(ΘT )

σ2
nm(ZT )

‖B̂T − B̂CDA
iT ‖2ΘT ,

where B̂CDA
iT = [ Nr⊥ NrT ]′B̂CDA

i [ Mr⊥ MrT ]. By the properties of quadratic forms, we

then have

σ2
r (B̂) ≤ cond(ΘT )

σ2
nm(ZT )

‖B̂T − B̂CDA
iT ‖2

=
cond(ΘT )

σ2
nm(ZT )

‖(Inm − P̂iT )vec(B̂T )‖2

=
cond(ΘT )

σ2
nm(ZT )

‖(Inm − P̂iT )(P
M̂iT
⊗ P

N̂iT
)vec(B̂T )‖2

≤ cond(ΘT )

σ2
nm(ZT )

‖Inm − P̂iT ‖2‖PN̂iT B̂TPM̂iT
‖2.

Since σr(B̂) and σnm(ZT ) are O−1
p (1), while cond(ΘT ) and P̂iT are Op(1), it follows that

P
N̂iT

B̂TPM̂iT
= O−1

p (1). The final boundedness result follows from the fact that P
N̂iT

B̂TPM̂iT
=

P
N̂iT

[ Nr⊥ NrT ]′P
N̂i
B̂P

M̂i
[ Mr⊥ MrT ]P

M̂iT
.

When n = m and the null spaces are estimated by DBA, P
N̂i
B̂P

M̂i
= O−1

p (1) implies that

B̂P
M̂i

= O−1
p (1) and therefore B̂∗P

M̂i
= O−1

p (1). Now factoring out the rescaling matrices,
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infX∈Pm ‖B̂∗ − X‖ ≤ ‖Z−1
T ‖ infX∈Pm

∥∥∥[M ′r⊥B̂Mr⊥ 0
0 0

]
−X

∥∥∥ = ‖Z−1
T ‖ infX∈Pr ‖M ′r⊥B̂Mr⊥ −

X‖ = op(1). Let X be the closest elements of Pm to B̂∗ (Rudin, 1986, Theorem 4.10). Then,

XP
M̂i

= O−1
p (1) and X1/2P

M̂i
= O−1

p (1), which in turn implies that P
M̂i
XP

M̂i
= O−1

p (1).

Since B̂ − X = op(1), we have that P
M̂i
B̂P

M̂i
= O−1

p (1). A similar argument proves that

P
N̂i
B̂P

N̂i
= O−1

p (1) as well as the results for the CDA.

(iii) The proof is identical to that of Lemma 3 (iii).

Proof of Theorem 2. Suppose κ is invariant with respect to the transformations given in (i).

Then, under either H0(r) or HT (r), we may write the statistic as T 2γθκ(X̂, Ŷ ) with X̂ =

P
N̂rT

B̂TPM̂rT
and Ŷ = (P

M̂rT
⊗ P

N̂rT
)Ω̂T (P

M̂rT
⊗ P

N̂rT
), where Ω̂T = Z ′T Ω̂ZT , where ZT =

[ Mr⊥ MrT ] ⊗ [ Nr⊥ NrT ]. The infeasible analogue is then given by X = P
N̂∗r
B̂TPM̂∗r

=[
0 0
0 N ′rT B̂MrT

]
and Y =

([
0 0
0 Im−r

]
⊗
[

0 0
0 In−r

])
Ω̂T

([
0 0
0 Im−r

]
⊗
[

0 0
0 In−r

])
. The proof of the plug–

in principle under H0(r) and HT (r) then proceeds by demonstrating that P
N̂rT

and P
M̂rT

are

T γ–consistent. To that end, write∥∥∥PM̂rT
−
[

0 0
0 Im−r

]∥∥∥
2
≤ K

∥∥∥M̂rTQ−
[

0
Im−r

]∥∥∥
2

= K
∥∥∥[ Mr⊥ MrT ]−1(M̂rQ−MrT )

∥∥∥
2

= K
∥∥[ Mr⊥ MrT ]−1

∥∥
2

∥∥∥M̂rQ−MrT

∥∥∥ ,
where K > 0 and depends only on

[
0

Im−r

]
and Q ∈ G(m−r)×(m−r) is arbitrary (Gohberg

et al., 2006, Theorem 13.5.1). We now claim that the infimum of ‖M̂rQ −MrT ‖ over Q ∈

G(m−r)×(m−r) is ‖(P
M̂r
−Im)MrT ‖. To see this, note that theory of least squares approximation

implies that the infimum of ‖M̂rQ−MrT ‖ over Q ∈ R(m−r)×(m−r) is ‖(P
M̂r
− Im)MrT ‖ and is

therefore less than or equal to the infimum over the subset G(m−r)×(m−r). On the other hand,

the fact that G(m−r)×(m−r) is dense in R(m−r)×(m−r) (Horn & Johnson, 1985, Exercise 5.6.8)

and the continuity for the norm furnish the opposite inequality. Continuing then,

T γ
∥∥∥PM̂rT

−
[

0 0
0 Im−r

]∥∥∥
2
≤ K

∥∥[ Mr⊥ MrT ]−1
∥∥

2

∥∥∥T γ(P
M̂r
− PMrT

)MrT

∥∥∥ = Op(1).

A similar expression holds for the left null space estimator. Following the same logic as in

Theorem 1 then, X̂ − X = Op(T
−2γ), Ŷ − Y = Op(T

−γ), Y † = Op(1), and X = Op(T
−γ)

under either H0(r) or HT (r). Condition (i) of Theorem 1 then implies that L1(X̂,X, Ŷ , Y ) =

Op(T
−γ(2θ−1)) and L2(X̂,X, Ŷ , Y ) = Op(T

−2γθ). Thus, under H0(r) or HT (r), T 2γθκ(X̂, Ŷ )−
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T 2γθκ(X,Y ) = Op(T
2γθ−2γθ+γ−2γ) +Op(T

2γθ−2γθ−γ) = Op(T
−γ). The weak plug–in principle

under H0(r) and HT (r) is therefore established.

Consider next the plug–in principle under H1(r). For the DBA the result follows as in

Theorem 1. For the CDA on the other hand, let X∗ ∈ P be the unique matrix that minimizes

the distance from P to P
N̂∗rT

B̂TPM̂∗rT
. Since infX∈P ‖PN̂∗rT B̂TPM̂∗rT − X‖ = op(1), it follows

that X −X∗ = op(1).

Recalling that B̂∗T =
[
N ′r⊥B̂Mr⊥ 0

0 0

]
satisfies B̂T − B̂∗T = op(1) and P

N̂∗rT
B̂∗TPM̂∗rT

= O−1
p (1)

(apply Lemma 6 (ii) to B̂∗), it follows that X∗ = O−1
p (1). Then Assumption K (ii) implies

that |κ(X∗, Y )| = O−1
p (1) and Assumption K (i) implies that |κ(X,Y ) − κ(X∗, Y )| = op(1).

Putting these two together, we have that |κ(X,Y )| ≥ |κ(X∗, Y )| − |κ(X,Y ) − κ(X∗, Y )| =

O−1
p (1) + op(1). Thus, |κ(X,Y )| = O−1

p (1). Next, take X̂∗ ∈ P as the closest element of P

to P
N̂rT

B̂TPM̂rT
and note that ‖X̂ − X̂∗‖ = infX∈P ‖PN̂rT B̂TPM̂rT

−X‖ = op(1). Lemma 6

(ii) then implies that X̂ = O−1
p (1) so X̂∗ = O−1

p (1) as well. Thus Assumption K (ii) implies

that |κ(X̂∗, Ŷ )| = O−1
p (1) and Assumption K (i) implies that |κ(X̂, Ŷ ) − κ(X̂∗, Ŷ )| = op(1).

Therefore, again, we have that |κ(X̂, Ŷ )| ≥ |κ(X̂∗, Ŷ )|−|κ(X̂, Ŷ )−κ(X̂∗, Ŷ )| = O−1
p (1)+op(1).

Thus, |κ(X̂, Ŷ )| = O−1
p (1). This establishes the weak plug–in principle under H1(r). The

strong plug–in principle under H1(r) follows from the same argument used in the proof of

Theorem 1.

Now suppose ZT = Op(1). Let X̂ and Ŷ be as in Theorem 1 and let X = PNrT B̂PMrT
and

Y = (PMrT
⊗ PNrT )Ω̂(PMrT

⊗ PNrT ). Then by the same logic as before X̂ −X = Op(T
−2γ),

while Ŷ − Y = Op(T
−γ) under either H0(r) or HT (r). In order to prove that Y † = Op(1),

it suffices to show that its rank is almost surely constant and the smallest non–zero singular

value is O−1
p (1). Following the same steps as used in the proof of Theorem 1, we can show

that Assumptions C imply that rank(Y ) = (n− r)(m− r) almost surely. However, we cannot

use the same bounds on Y † as Assumptions C do not ensure that σnm(Ω̂) is O−1
p (1). Instead,

we use Theorem 3.3.16 (d) of Horn & Johnson (1991) to write

σ(n−r)(m−r)((PMrT
⊗ PNrT )Ω̂(PMrT

⊗ PNrT )) ≥
σ(n−r)(m−r)((MrT ⊗NrT )′Ω̂(MrT ⊗NrT ))

σ1((M ′rTMrT )1/2 ⊗ (N ′rTNrT )1/2)

=
σ(n−r)(m−r)((MrT ⊗NrT )′Ω̂(MrT ⊗NrT ))

σ1(MrT )σ1(NrT )

= O−1
p (1).

On the other hand, Assumptions D imply that rank(Y ) = (m− r)(m− r+ 1)/2 almost surely
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and, using similar arguments to those used in the proof of Theorem 1,

σ(m−r)(m−r+1)/2((PMrT
⊗ PMrT

)Ω̂(PMrT
⊗ PMrT

))

≥
σ(m−r)(m−r+1)/2((MrT ⊗MrT )′Ω̂(MrT ⊗MrT ))

σ1((M ′rTMrT )1/2 ⊗ (M ′rTMrT )1/2)

=
σ(m−r)(m−r+1)/2(Dm−rD

†
m−r(MrT ⊗MrT )′DmΨ̂D′m(MrT ⊗MrT )D†m−r

′D′m−r)

σ2
1(MrT )

≥ σ−2
1 (MrT )σ(m−r)(m−r+1)/2(D†m−r(MrT ⊗MrT )′DmΨ̂D′m(MrT ⊗MrT )D†m−r

′)

= O−1
p (1).

Since X = Op(T
−γ) under either H0(r) or HT (r), condition (i) of Theorem 1 implies that

L1(X̂,X, Ŷ , Y ) = Op(T
−γ(2θ−1)) and L2(X̂,X, Ŷ , Y ) = Op(T

−2γθ). Therefore, under H0(r)

or HT (r), T 2γθκ(X̂, Ŷ ) − T 2γθκ(X,Y ) = Op(T
2γθ−2γθ+γ−2γ) + Op(T

2γθ−2γθ−γ) = Op(T
−γ).

The weak plug–in principle under H0(r) and HT (r) is therefore established. Under H1(r), the

exact same arguments as in the proof of Theorem 1 are applied to prove the weak and strong

plug–in principles.

Proof of the Asymptotics of Example 14. We will show that Assumptions D are satisfied and

derive an expression for ξr in Corollary 4. We can simplify the analysis by writing ut =

ηt + ψt/T , where (ε′t, η
′
t, ψ
′
t)
′ ∼ N

([
0
0
0

]
,
[

Σ 0 0
0 B 0
0 0 D

])
are i.i.d. Let Q1 = [ Mr⊥ Mr ] be an

orthogonal matrix.

The fact that vec(B̂) is nondegenerate follows from the fact that it is a composite of func-

tions continuous–almost–everywhere of continuous random variables. Now the usual asymp-

totic arguments imply that for u ∈ [0, 1],T−3/2
∑buT c

t=1 M ′r⊥(yt − y)

T−1/2
∑buT c

t=1 M ′r(yt − y)

 d→

 (M ′r⊥BMr⊥)1/2
∫ u

0 W
∗
1 (s)ds

(M ′rΣMr)
1/2(W2(u)− uW2(1)) + (M ′rDMr)

1/2
∫ u

0 W
∗
3 (s)ds

 ,
where W1 is generated by η, W2 is generated by ε, and W3 is generated by ψ (Phillips &

Durlauf, 1986; Phillips & Solo, 1992; Billingsley, 1999). Letting QT = [ Mr⊥ TMr ] and

H =
[

(M ′r⊥BMr⊥)1/2 0

0 (M ′rΣMr)1/2

]
we have,

H−1Q′T Γ̂QTH
−1

H−1Q′1Σ̂QTH
−1

 d→



C11 C12

C ′12 C22∫ 1
0 W

∗
1 (u)W ∗1

′(u)du
∫ 1

0 W
∗
1 (u)dW ′2(u)

0 Im−r


.

67



Thus, Q′√
T

Σ̂Q√T , with Q√T = [ Mr⊥
√
TMr ], converges in distribution to a block–diagonal

positive definite matrix.

Now consider Q′1Σ̂1/2Q1Q
′
1Σ̂1/2Q1 = Q′1Σ̂Q1 =

[
Op(1) Op(T−1)

Op(T−1) Op(T−1)

]
, where the blocks are

conformable with Q1. The (2, 2) block implies that M ′rΣ̂
1/2Mr⊥M

′
r⊥Σ̂1/2Mr+(M ′rΣ̂

1/2Mr)
2 =

Op(T
−1). Thus M ′r⊥Σ̂1/2Mr = Op(T

−1/2) and M ′rΣ̂
1/2Mr = Op(T

−1/2). Using the first of

these in the (1, 1) block we have that (M ′r⊥Σ̂1/2Mr⊥)2 −M ′r⊥Σ̂Mr⊥ = Op(T
−1), which im-

plies that M ′r⊥Σ̂1/2Mr⊥ − (M ′r⊥Σ̂Mr⊥)1/2 = Op(T
−1/2) (Horn & Johnson, 1985, Exercise

7.2.18). Using this in the (1, 2) block, we obtain that, in fact, M ′r⊥Σ̂1/2Mr = Op(T
−1)

and not just Op(T
−1/2) as found earlier. If we now go back to the (2, 2) block we obtain

that T (M ′rΣ̂
1/2Mr)

2 − TM ′rΣ̂Mr = Op(T
−1). Therefore

√
TM ′rΣ̂

1/2Mr −
√
T (M ′rΣ̂Mr)

1/2 =

Op(T
−1/2), a fact that we will need later, and Σ̂1/2Q√T converges in distribution to an almost

surely invertible matrix.

Putting it all together, Q′√
T
B̂Q√T = Q′√

T
Σ̂1/2(Q′T Σ̂)−1Q′T Γ̂QT (Σ̂QT )−1Σ̂1/2Q√T con-

verges in distribution to an almost surely positive definite matrix and since the submatrix

M ′r⊥B̂Mr⊥ converges in distribution to an almost surely positive definite matrix, σr(B̂) =

O−1
p (1) (Horn & Johnson, 1991, Corollary 3.1.3).

Just as before, let MrT =
√
T Σ̂1/2(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr and compute

B̂MrT = (Q′√
T

Σ̂1/2)−1
√
TQ′√

T
Γ̂(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr

= (Q′√
T

Σ̂1/2)−1

√TM ′r⊥Γ̂(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr

TM ′rΓ̂(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr


= Op(1)

 0

Op(T
−1)

 .
Thus, T γB̂MrT = Op(1) with γ = 1. On the other hand, using the asymptotics of Σ̂1/2 that
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we obtained earlier, we have

MrT =
√
T Σ̂1/2(Im −Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂)Mr

=
√
T Σ̂1/2Mr −

√
T Σ̂1/2Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂Mr

=
√
T Σ̂1/2Mr +Op(T

−1/2)

=
√
TPMr Σ̂

1/2Mr +
√
TPMr⊥Σ̂1/2Mr +Op(T

−1/2)

=
√
TPMr Σ̂

1/2Mr +Op(T
−1/2)

= Mr(M
′
rΣMr)

1/2 + op(1).

It follows that [ Mr⊥ MrT ] has singular values bounded away from zero in probability and

MrT (M ′rΣ̂Mr)
−1/2 as well as MrT (M ′rTMrT )−1/2 converge to Mr in probability.

Finally, since there is no normalization, Ψ̂ = 1
m−r (D′mDm)−1, which satisfies the condi-

tions in Assumptions D since ZT and its inverse are bounded in probability. On the other

hand, TM ′rT B̂MrT = T 2M ′rΓ̂Mr−T 2M ′rΓ̂Mr⊥(M ′r⊥Γ̂Mr⊥)−1M ′r⊥Γ̂Mr
d→ (M ′rΣMr)

1/2(C22−

C21C
−1
11 C12)(M ′rΣMr)

1/2. Thus Assumptions D are satisfied. By Theorem 2, the limiting

distribution of the Nyblom & Harvey (2000) statistic under HT (r) is the limiting distribution

of T tr(PMrT
B̂) = T tr((M ′rTMrT )−1/2M ′rT B̂MrT (M ′rTMrT )−1/2), which is as stated.
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